
IPVLAN – The beginning

Mahesh Bandewar, Eric Dumazet

Google
Mountain View, CA, USA

maheshb@google.com edumazet@google.com

Abstract
The commonly used method to connect namespaces to the outside

world without going through the forwarding set up on the host

used to be the macvlan. This setup is simple and efficient except

when the next-hop devices apply policies barring host to act like a

layer2-switching device. This is especially problematic where the

connected next-hop, e.g. switch is expecting frames from a

specific mac for a given port. In a situation like this the macvlan

setup does not work. The host will either have to fall-back to non-

efficient forwarding methods or something else. IPvlan was

designed to address this specific need along with few other

mentioned in next few sections. This paper attempts to describe

these use cases and highlights differences with macvlan devices

and briefly talk about future enhancements planned.

Keywords
IPvlan, Macvlan, Layer2 Switch, ARP, Broadcast, Multicast,
IPv4, IPv6

 Introduction
This paper attempts to describe the motivation behind
developing the IPvlan virtual device driver. It highlights
the challenges faced, describes various use cases and
briefly touches on the future enhancements planned.

The need
• Macvlan setup: In many modern setup the fabric

that connects hosts together have security policy
which does not allow hosts to emit frames apart
from the mac-address (L2) assigned to it. This
ensures that the switch port the host is connected
to always receives packets coming from the
legitimate host and there is no L2 level spoofing
involved. Even though this prohibits the L2 level
spoofing issue, it poses host a problem for using
macvlan device type of solution to use when multi
namespace setup is required. The basic
requirement for the macvlan based setup is to
have every virtual device use one of the mac-
addresses reserved by the NIC or possibly

randomly generate one for each of the virtual
devices. Assigning each such virtual device to
namespace and then making the underlying
physical device to act like a switch to mux and
demux packets is a common setup. But this also
means each ns is not going to TX L2 frames with
the random L2 address that is assigned to each of
these virtual devices. This would make the
connected switch drop the packets thinking these
are spoofed and hence disrupting the connectivity.

• Promiscuous mode: One other issue of using
multiple L2 addresses on the NIC is that each of
such NIC can handle certain no of unicast and
multicast L2 addresses. Once the limit is reached,
the NIC will be forced to operate in promiscuous
mode. This could have deterring performance
impact on host if the connected switch hardware
forwards more than necessary traffic its way
(especially multicast traffic).

• Forwarding alternative: In a restrictive
environment like above where switches don’t
allow frames other than the NICs’ L2 address, the
other alternative that can be used does not involve
macvlans. In this setup device pairs like virtual-
Ethernets can be used and the default namespace
can be put into the forwarding mode so that the
packets coming out and are needing to send to
these namespaces be forwarded from and to
within the default namespace effectively making
the default namespace a forwarding instance.
Though this solution works on a functional basis,
the performance / packet rate expected from this
setup is is much lesser since every packet that is
going in or out is processed 2+ times on the
network stack (2x Ingress + Egress or 2x Egress +
Ingress). This is a huge cost to pay for.

• NAT: Another possible alternative is to use some
sort of NAT-ing on the host so that connected
switch always sees the same L2 from the host but
this approach also suffers from the same
performance pitfall as mentioned in the
forwarding approach.

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

mailto:maheshb@google.com

Development Challenges and Choices

Integrate changes into macvlan
Initially when started working on the solution to solve the
above problem, making changes into the existing solution
(i.e. macvlan) was the plausible choice. The basic idea in
macvlan is to use L2 to find the right virtual device in the
hash-table. The same logic needed to be extended to use L3
for these “new mode(s)” to work. When it comes to IP
(L3), a device could have multiple IPs at the same time.
This was proving difficult to accommodate while
maintaining the current driver structure of macvlan without
compromising it in any way.

Broadcast / Multicast tweaks
One other problem that macvlan faces is handling of
broadcast / multicast traffic. It does good job now with the
implementation of multicast filters and deferring the RX
traffic to work-queues. However it has to handle the traffic
which is deterrent to the performance of the device. Since
ipvlan has L3 knowledge and can be used to handle
broadcast / multicast in an efficient manner. If IPv4 is not
enabled, processing of broadcast can be completely turned
off and this eliminates large chunk of overhead on the
driver while multicast filters can handle the multicast
traffic with some optimization.

Communication with the host (defaultns)
Similar to the macvlan devices, the traffic to and from the
master device cannot be sent to and from slaves. In the
macvlan setup the problem can be solved if the host is
connected to a switch that allows hair-pin mode. However,
not many switches support this mode.

Packets from the slave interfaces will reach the master
interface (mostly in the default-ns) but the replies can’t
reach the slave interfaces since the bridge on the master is
transparent in the TX mode. This causes TX replies from
the master to leave the host and will be lost resulting in
broken connectivity.

This can be worked-around by assigning one of the
virtual devices to the host and eliminating the
configuration on the master interface, as shown in Fig1.

If the above is not possible in some setups, there is another
way this can be achieved is by injecting specialty routes in
both name-spaces (masters’ as well as slaves’ name-space).
This is too hacky as well as not really scalable in the way it

is currently implemented. I’m not sure if there is a cleaner
way of implementing this.

Typical Use Cases

L2 Mode
This mode is equivalent to the bridge mode in macvlan.
The usual deployment case is the slaves are assigned to the
namespaces and packets are completely processed on stack
instance attached to the namespace. This is true for both
ingress as well as egress. This is setup is more suited for
the independent as well as configurationtrusted
namespaces. This setup is similar to connecting multiple
hosts to a switch where each host can function
independently and relies on the switch to provide
connectivity.

L3 Mode
This is more restrictive mode. The usual deployment case
is same as above except that most of the networking related
decisions are taken in the namespace where master is
attached. This includes any encapsulation / routing policy
that is specific to the address assigned to a namespace.
Currently the address manipulation on the virtual device
from it’s attached namespace is allowed, but even that
would be restricted with future enhancement.

Future Enhancements

Deferring multicast / broadcast traffic
In the current IPvlan implementation; there is no concept
of deferred work and all traffic is processed as and when it
appears. With multicast / broadcast work-queue

Fig1: Host setup making all traffic go though the
bridge on the master device

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

implementation, the unicast packets will get preferential
treatment boosting throughput and improving latencies.

ARP filter
Broadcast processing is a big burden in IPv4 enabled
environment especially when there are large no of virtual
devices / slaves present on a master device. Every packet
has to be duplicated n-times when there are n slaves. This
burden can be lightened with tricks like ARP-filter. The
packet can be probed and it can be dropped directly when
none of the slaves are interested in it and can be forwarded
to only the one who will process it. This reduces the need
to make n-copies of the packets for every ARP broadcast.

Macvtap type of enhancements
Macvtap is a character device that largely follows tun/tap
ioctls and can be used by Kvm/Qemu or any other other
hypervisor that supports tun/tap devices. A similar device
can be envisioned to work with IPvlan. The mac-address
will be inherited by the slave device while the IPvlan can
learn about L3 on slave and use that to switch packets to
and from the device.

Xmit offload to hardware
If the underlying (master) device supports L2 hardware
acceleration, then the TX path can be offloaded to the
hardware which can be more efficient than the standard TX
path.

Special L3 mode
When master is configured to use as bridge while each of
the name-spaces gets individual slave links. In a setup like

this L2 mode is easier to configure but this is not possible
in the L3 mode. All the traffic that is not unicast cannot be
delivered to any link and hence this special mode is
required. In this mode, one of the slave link will be
nominated to receive this traffic and that slave link can be
assigned to the name-space (default-ns) which processes
all other traffic.

Configuration Lock
There are deployment situations where the name-spaces
are not trusted and there is a need to lock-down
configuration from salves' namespace. This can be
achieved by simply allowing only the namespace where
master belongs can make changes.

Userspace utility support (CRIU / Docker)
Docker containers make effective use of namespaces and
face the same connectivity performance issues when it
comes to the network namespaces. CRIU tool is used for
checkpoint / restore operations in container migrations
setups. IPvlan benefits can be extended to these offering,
but since IPvlan is relatively new, these tools do not
include support yet.

Authors Biographies
Eric Dumazet, and Mahesh Bandewar both work as
Software Engineers at Google.

Proceedings of netdev 0.1, Feb 14-17, 2015, Ottawa, On, Canada

