
Replacing HTB with EDT and BPF

Stanislav Fomichev, Eric Dumazet, Willem de Bruijn, Vlad Dumitrescu, Bill Sommerfeld, Peter
Oskolkov

Google

Mountain View, CA
sdf@google.com, edumazet@google.com, willemb@google.com, vladum@google.com, wsommerfeld@google.com, posk@google.com

Abstract
Traditionally, rate limiting on Linux has been done using HTB
qdisc. Flow aggregates are classified into buckets and a
token-bucket mechanism is used to ensure the proper distribution
of bandwidth among multiple buckets.

Recently, the Linux TCP stack switched to the Early Departure
Time model [1]. With this model, every packet flowing through
the stack has a departure timestamp which can be adjusted. This
makes it possible to implement rate limiters in BPF.

This paper shares the details on one possible BPF rate limiter
implementation.

Keywords
Linux, TCP, EDT, EBPF, BPF, HTB, QDISC.

 Introduction
Google servers classify, measure, remark (DSCP), and rate
limit their outgoing traffic. Historically, all four
functionalities were implemented using an HTB hierarchy
with filters and actions [2]. Over time, classification,
measurement and remarking were moved to the TC egress
BPF hook, but rate limiting still used HTB.

At netdev 0x12, Van Jacobson proposed to replace
networking queues with a timing wheel and Earliest
Departure Time (EDT) in every skb, and this has been
eventually implemented in Linux [3]. Google's rate
limiting logic uses dynamically adjusted rates that avoid
congestion on the link. As a result, rate limiting can be
implemented by adjusting the EDT timestamps as desired
using BPF code, and relying on the kernel's FQ schedulers
to release packets at the time specified by the EDT
timestamp.

 Motivation
Google uses a reactive control system called BwE to push
flow aggregate rate limits on demand [4]. This means that
most of the egress traffic at Google doesn't have a rate
limit. Through some private patches, this traffic was
bypassing the HTB. Even though, percentage wise, only a
small amount of traffic was rate-limited, on the modern

NICs it's still a considerable amount. These flows still had
to traverse HTB, contending on the global root qdisc lock.

Design Overview
When we moved part of traffic management functions to
BPF, the kernel did not support EDT skb timestamps. As a
consequence, rate limiting still had to be implemented by
HTB.

In detail, the program at the TC egress BPF hook did the
following:

● Classify the packet into the flow aggregate
(essentially, figure out which flow belongs to
which container).

○ If classified flow aggregate doesn't have
a rate limit, set a special skb field that
indicates HTB bypass.

○ If classified flow aggregate has a rate
limit, set skb's tc_classid to the
appropriate value. HTB will do the rate
enforcement.

● Measure throughput and number of packets.

● Sometimes rewrite DSCP bits to change traffic
QoS.

Following that, each rate-limited flow aggregate was
assigned to a specific HTB leaf node with appropriate rate
limit, implemented using the following, flat hierarchy of
HTB classes:

Replace HTB with BPF+FQ
Once TCP stack was converted to EDT model and
appropriate skb fields were exported to BPF we've
switched to the following model:

HTB qdisc was replaced with a set of FQ qdiscs (one per
NIC queue) which provides per-flow fairness and
enforcement of skb departure timestamp. This eliminated
contention on the global HTB lock and the global qdisc
lock now is split into per-flow-aggregate state. Our BPF
program was extended with a per-flow-aggregate map and
a small amount of BPF was written to keep track of the
per-low-aggregate state.

Here is an example of simple rate-limiter in BPF:

classify packet into flow aggregate
aggregate_state = state[classify(skb)]

delay_ns = skb->len * NS_PER_SEC /

aggregate_state->rate_limit_bps

next_tstamp = &aggregate_state->next_tstamp

if *next_tstamp <= now:

 # racy, not an issue, same value expected

 *next_tstamp = now + delay_ns

 return TC_ACT_OK

if *next_tstamp - skb->tstamp >= DROP_HORIZON:

 # DROP_HORIZON is 2s

 return TC_ACT_SHOT

if *next_tstamp > skb->tstamp:

 skb->tstamp = *next_tstamp # rate-limit

__sync_fetch_and_add(next_tstamp, delay_ns)

return TC_ACT_OK

 Evaluation
Apart from flexibility, the switch from HTB to BPF+FQ
replaces the expensive single-lock contention with cheaper
_sync_fetch_and_add() contention. This gave us
significant performance benefits in both CPU utilization,
and transmission latency.

The following graphs clearly show the improvement in the
transmission latency for the rate-limited flow aggregates
(Y axis is normalized to the range of 0 to 100).

50% (green), 95% (blue) & 99% (red) TX Latency:

There is about 20x improvement in 95% latency and 10x
improvement in 99% latency.

Conclusion
Migrating from HTB to BPF+FQ for traffic shaping
significantly improved tail latency and simplified our setup
on the hosts. Having a rate limiter in BPF also allows us to
iterate faster, roll out new features and fix bugs.

Acknowledgements
Special thanks to Eric Dumazet for coming up with the
EDT approach. Thanks to Peter Oskolkov for the initial
implementation. Thanks to Vlad Dumitrescu and Bill
Sommerfeld for working on productionization, rollout and
impact summary. Thanks to everyone else who provided
the comments and suggestions.

References
1. Eric Dumazet, ​[PATCH net-next 0/9] tcp: switch to
Early Departure Time model
2. Vlad Dumitrescu, ​Scaling Linux Traffic Shaping with
BPF
3. Van Jacobson, ​Evolving from AFAP: Teaching NICs
about time
4. ​BwE: Flexible, Hierarchical Bandwidth Allocation for
WAN Distributed Computing

https://lore.kernel.org/netdev/20180921155154.49489-1-edumazet@google.com/
https://lore.kernel.org/netdev/20180921155154.49489-1-edumazet@google.com/
http://vger.kernel.org/lpc_bpf2018_talks/lpc-bpf-2018-shaping.pdf
http://vger.kernel.org/lpc_bpf2018_talks/lpc-bpf-2018-shaping.pdf
https://netdevconf.info/0x12/session.html?evolving-from-afap-teaching-nics-about-time
https://netdevconf.info/0x12/session.html?evolving-from-afap-teaching-nics-about-time
https://dl.acm.org/doi/10.1145/2829988.2787478
https://dl.acm.org/doi/10.1145/2829988.2787478

