
Ethernet Product Group

Pawel Szymanski, Manasi Deval

Netdev 0x14, August 2020

Ethernet Product Group

Agenda

• Background

• Test Setup

• Performance Characterization Results

• Summary

Ethernet Product Group

Background – What is TLS?

• Network protocol providing privacy and data integrity

• Runs in L4 layer - for example TCP and UDP

• Commonly used in many Internet applications such as web
browsing, VoD etc.

• Consists of 2 subprotocols:

• Handshake Protocol – used to negotiate the security parameters of the connection
(for example crypto algorithm)

• Record Protocol – fragments application data in records, protects the records and
transmits them over a transport protocol

• Supports multiple crypto algorithms – for example AES GCM

Ethernet Product Group

Background – TLS
implementation
options in Linux

Application

TLS library

Socket layer

Network Stack
(TPC/IP, Network driver etc.)

User Space

Kernel Space

User Space TLS

Application

TLS
Record Protocol

Network Stack
(TPC/IP, Network driver etc.)

KTLS

Socket layer

Handshake and
Record protocols

TLS library

Handshake protocol

Crypto
Algoritm

Ethernet Product Group

HTTP server - User Space TLS Data Flow

Kernel with KTLS disabled

HTTP server and TLS library (User Space)
Legend

Plain Text
Data

Encrypted
Data

Syscall

File read
syscall

Socket write
syscall

1

2

34
5

6

Ethernet Product Group

HTTP server - Kernel TLS Write Data Flow

Kernel with KTLS enabled

HTTP server and TLS library (User Space)
Legend

Plain Text
Data

Encrypted
Data

Syscall

File read
syscall

Socket write
syscall 1

2

34 5

6

Ethernet Product Group

HTTP server - Kernel TLS Sendfile Data Flow

Kernel - KTLS enabled

HTTP server and TLS library (User Space)

Sendfile
syscall

Legend

Plain Text
Data

Encrypted
Data

Syscall

1

2
3

Ethernet Product Group

TLS Performance Characterization Goal

Compare TLS Record protocol throughput for User Space TLS, KTLS
Write and KTLS Sendfile in the following scenarios:

- Simple Web Server
• File size: 1KB - 10MB
• TCP/TLS connection number: 100
• Each connection sends HTTP Get requests back-to-back

- Media streaming (e.g. MPEG DASH)
• File size: 1MB
• TCP/TLS connection number: 10K
• Each connection sends HTTP Get request with 1-5s space in between

Ethernet Product Group

Hardware Setup

9

CPU1CPU0
UPI

2x Intel Xeon Gold 6142M CPU 32C @ 2.60GHz
(Skylake)

384GB DDR4 (192 GB per socket, 32GB per channel) @
2666 MT/s

1x Intel M.2 SATA SSD DC S3110 520GB (OS)

1x Intel NVMe SSD DC P4600 1TB

1x Intel 800 series NIC - 100GbE

2x Intel Xeon Gold 6142M CPU 32C @ 2.60GHz
(Skylake)

384GB DDR4 @ 2666 MT/s

1x Intel M.2 SATA SSD DC S3110 520GB (OS)
1x Intel 800 series NIC - 100GbE

100GbE

HTTP Server

HTTP Client

BIOS Configuration

Hyper-threading Disabled

C-states Disabled

P-states (EIST) Disabled

Turbo Disabled

CPU Power & Performance Policy Performance

Enable CPU HWPM Native Mode

Ethernet Product Group

Software Configuration

10

* Other names and brands may be claimed as the property of others.* Other names and brands may be claimed as the property of others.

OS Ubuntu 18.04.2

Linux Kernel 5.1.0 with KTLS enabled and AESNI driver

OpenSSL OpenSSL 3.0.0-dev with AESNI support enabled

NGINX (server) 1.5.11 with KTLS Sendfile patch

WRK (client) 4.1.0

TLS configuration
TLS 1.2

Max Record Size – 16KB
Crypto Algorithm - AES128-GCM-SHA256

HTTP
HTTP 1.1

Persistent connections – Enabled
HTTP GET Requests

Ethernet Product Group

Simple Web Server – Throughput Comparison

KTLS Sendfile is more efficient for file size 64KB and above

0%

20%

40%

60%

80%

100%

120%

140%

1KB 4KB 16KB 64KB 256KB 1MB 10MB

Simple Web Server - Relative Performance

User Space KTLS Write KTLS Sendfile

Test parameters:
• 16 NGINX process
• 100 HTTPS connections
• HTTP GET Requests

Ethernet Product Group

Why KTLS Sendfile is less efficient for smaller files?

1. Sending HTTP response needs 2 syscalls

• Write() syscall to send HTTP Response Header from user space buffer

• Sendfile() syscall to send HTTP Response payload from file system

2. Precomputed hash key exponents not reused for subsequent TLS
records

• AESNI Crypto driver precomputes hash key exponents to parallelize encryption
process (so called Karatsuba algorithm)

• No mechanism to reuse pre-computed hash keys between subsequent encrypt
requests passed from TLS to Crypto driver

Ethernet Product Group

Media Streaming Test Scenario

HTTPS traffic parameters:

• Iso Throughput:

• Files in TMPFS - 70 Gb/s

• Files in NVMe – 30 Gb/s

• File size: 1MB

• # of connections: 10K

Metrics taken :

• CPU Utilization

• Memory Bandwidth Utilization

Ethernet Product Group

Media Streaming Test – CPU utilization

- KTLS Write and KTLS Sendfile efficiency are close

- User Space efficiency is 16-20% lower

0

5

10

15

20

25

30

35

40

70 Gb/s, files in TMPFS 30 Gb/s, files in NVMe

C
P

U
 U

ti
li

za
ti

o
n

 i
n

 %

CPU Utilization

User Space TLS KTLS Write KTLS Sendfile

Ethernet Product Group

Media Streaming Test – Memory Bandwidth

KTLS Sendfile and KTLS Write consume much more memory BW than User Space TLS

0

5

10

15

20

25

70 Gb/s, files in TMPFS 30 Gb/s, files in NVMe

M
e

m
o

ry
 B

W
 in

 G
B

/s

Memory Bandwidth

User Space TLS KTLS Write KTLS Sendfile

Ethernet Product Group

Key Take-aways

• Main options to implement TLS
• User Space TLS
• KTLS: Write and Sendfile

• In Simple Web Server scenario, KTLS Sendfile provides highest
performance for files 64KB and above

• In Multimedia Streaming scenario, KTLS Sendfile and KTLS Write provide
lower CPU utilization, but higher memory bandwidth utilization

