TLS Performance Characterization
on modern x86 CPUs

Pawel Szymanski, Manasi Deval

Netdev 0x14, August 2020

tttttttttttttttttttt

Agenda

* Background
 Test Setup

e Performance Characterization Results

« Summary

Background — Whatis TLS?

* Network protocol providing privacy and data integrity
 Runsin L4 layer - for example TCP and UDP

« Commonly used in many Internet applications such as web
browsing, VoD etc.

* Consists of 2 subprotocols:
 Handshake Protocol — used to negotiate the security parameters of the connection
(for example crypto algorithm)

 Record Protocol - fragments application data in records, protects the records and
transmits them over a transport protocol

Supports multiple crypto algorithms — for example AES GCM

BaCkgrOund — TLS User Space TLS KTLS
implementation

[| [| [|
optionsin Linux | R S
Record protocols

User Space

Kernel Space

Socket layer Socket layer

TLS Crypto
Record Protocol Algoritm

Network Stack

(TPC/IP, Network driver etc.)

Network Stack

(TPC/IP, Network driver etc.)

Ethernet Product Group

HTTP server - User Space TLS Data Flow

Legend
HTTP server and TLS library (User Space)
| Syscall >
Socket write File read
syscall syscall
Plain Text
Data

Kernel with KTLS disabled

Encrypted

Data

Ethernet Product Group

HTTP server - Kernel TLS Write Data Flow

Legend
HTTP server and TLS library (User Space)
| Syscall >
Socket write
syscall - 6
‘ Plain Text
Data

Kernel with KTLS enabled

Encrypted

Data

Ethernet Product Group

HTTP server - Kernel TLS Sendfile Data Flow

Legend
HTTP server and TLS library (User Space)
| Syscall >
Sendfile
syscall
Data

Kernel - KTLS enabled

Encrypted

Data

[
[
[
[
[
[
[
[
Plain Text :
[
[
[
[
[
[
[
[
[

Ethernet Product Group

TLS Performance Characterization Goal

Compare TLS Record protocol throughput for User Space TLS, KTLS
Write and KTLS Sendfile in the following scenarios:

- Simple Web Server
File size: TKB - 10MB
TCP/TLS connection number: 100
Each connection sends HTTP Get requests back-to-back

- Media streaming (e.g. MPEG DASH)
File size: TMB
TCP/TLS connection number: 10K
Each connection sends HTTP Get request with 1-5s space in between

Ethernet Product Group

Hardware Setup

HTTP Server

(Skylake)

384GB DDR4 (192 GB per socket, 32GB per channel) @
2666 MT/s

1x Intel M.2 SATA SSD DC S3110 520GB (OS)

1x Intel NVMe SSD DC P4600 1TB

1x Intel 800 series NIC - 100GbE

~
2x Intel Xeon Gold 6142M CPU 32C @ 2.60GHz

UPI

A A

BIOS Configuration

Hyper-threading Disabled

C-states Disabled
P-states (EIST) Disabled
Turbo Disabled

CPU Power & Performance Policy Performance

Enable CPU HWPM Native Mode

Ethernet Product Group

CPU1

HTTP Client

100GbE

2x Intel Xeon Gold 6142M CPU 32C @ 2.60GHz |
(Skylake)
384GB DDR4 @ 2666 MT/s
1x Intel M.2 SATA SSD DC S3110520GB (0S)
1x Intel 800 series NIC - T00GbE
J

Software Configuration

Ubuntu 18.04.2

Linux Kernel 5.1.0 with KTLS enabled and AESNI driver
OpenSSL OpenSSL 3.0.0-dev with AESNI support enabled
NGINX (server) 1.5.11 with KTLS Sendfile patch
4.1.0

TLS 1.2

TLS configuration Max Record Size — 16KB
Crypto Algorithm - AES128-GCM-SHA256
HTTP 1.1

Persistent connections — Enabled
HTTP GET Requests

Ethernet Product Group

Simple Web Server — Throughput Comparison

140%

Test parameters:

Simple Web Server - Relative Performance
16 NGINX process
* 100 HTTPS connections 100%

« HTTP GET Requests
80%
60%
40%
20%
. 1KB 4KB 1MB

16KB 64KB 256KB

120%

=

=~

10MB
H User Space W KTLS Write KTLS Sendfile

KTLS Sendfile is more efficient for file size 64KB and above

Ethernet Product Group ||'|te| ~

Why KTLS Sendfile is less efficient for smaller files?

1. Sending HTTP response needs 2 syscalls

Write() syscall to send HTTP Response Header from user space buffer

Sendfile() syscall to send HTTP Response payload from file system

2. Precomputed hash key exponents not reused for subsequent TLS
records

AESNI Crypto driver precomputes hash key exponents to parallelize encryption
process (so called Karatsuba algorithm)

No mechanism to reuse pre-computed hash keys between subsequent encrypt
requests passed from TLS to Crypto driver

Ethernet Product Group

Media Streaming Test Scenario

HTTPS traffic parameters:

* |so Throughput:
Files in TMPFS - 70 Gb/s
Files in NVMe - 30 Gb/s

 Filesize: TMB
e # of connections: 10K

Metrics taken:
 CPU Utilization
 Memory Bandwidth Utilization

Ethernet Product Group

Media Streaming Test — CPU utilization

70 Gb/s, files in TMPFS 30 Gb/s, files in NVMe

CPU Utilization

CPU Utilization in %
- - N N w w I
o (6] o (6] o (§;] o

Ul

o

B User Space TLS mKTLS Write KTLS Sendfile

- KTLS Write and KTLS Sendfile efficiency are close

- User Space efficiency is 16-20% lower

Ethernet Product Group ||'|te| ~

Media Streaming Test — Memory Bandwidth

Memory Bandwidth
25

0 l I -

70 Gb/s, files in TMPFS 30 Gb/s, files in NVMe

Y Y N
o ul o

Memory BW in GB/s

(6)]

B User Space TLS mKTLS Write KTLS Sendfile

KTLS Sendfile and KTLS Write consume much more memory BW than User Space TLS

Ethernet Product Group ||'|t€| .

Key Take-aways

 Main options to implement TLS

User Space TLS
KTLS: Write and Sendfile

* |In Simple Web Server scenario, KTLS Sendfile provides highest
performance for files 64KB and above

* |n Multimedia Streaming scenario, KTLS Sendfile and KTLS Write provide
lower CPU utilization, but higher memory bandwidth utilization

Ethernet Product Group

Thank You

