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MPTCP in nutshell

● Transport level multi-path solution

● Unmodified applications and network

● Works at least as well as regular TCP 

● Works when a regular TCP would work

● Falls back to regular TCP if needed 

● Fair with TCP, moves traffic away from 
congestion



Improved mobility with MPTCP



Throughput during a subway trip



Other MPTCP use-cases 

● Power improvements via race to idle

● VM migration across different network domains

● Multi-WiFi: take advantage of multiple APs

● Improved throughput and reliability in the data-center
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Initial Linux kernel implementation

● Implementation done directly at the TCP level

● Good performance

● Low overhead when falling back to TCP

● Intrusive changes that increases the complexity of the TCP stack



Key MPTCP structures

Meta socket

Sub-flow socketMaster socket Sub-flow socket

TCP socket, visible to userspace

TCP sockets, not visible to userspace



Pros/cons of using TCP sockets

● Re-use TCP code that transfers data to/from userspace 
(tcp_sendmsg, tcp_recvmsg)

● Makes MPTCP transparent to the application (including fallback)

● Some TCP functions now must deal with 3 cases

– TCP socket

– MPTCP sub-flow socket

– MPTCP meta socket



Creating the master socket

Meta socket

SYN,MP

SYN,ACK,MP

ACK,MP

Master socket

m
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Meta socket



Fallback to TCP

SYN,MP

SYN,ACK

ACK

Meta socket

Plain TCP socket
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false



TCP queues (simplification)

Backlog q

Receive q

out of order q

tcp_v4_rcv

tcp_recvmsg
tcp_sendmsg

Write q

tcp_write_xmittcp_retransmit_skb

tcp_transmit_skb



MPTCP receive path

Meta backlog q

 Sub-flow receive q

Sub-flow out of order q

tcp_v4_rcv
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mptcp_sk_ready

mptcp_sk_ready

 Meta receive q

 Meta out of order q

tcp_recvmsg



MPTCP send path

tcp_sendmsg

Meta write q

mptcp_write_xmitmptcp_retransmit_skb

Sub-flow write q

Mptcp scheduler



MPTCP DSS options

● Maps meta seq to sub-flow seq

● 20 bytes 

● Does not fit into skb->cb

● Save them in the skb data in 
the space reserved for the TCP 
header

● Everytime pskb_copy() is called 
from the TCP stack we need to 
copy DSS manually
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Alternative approaches

● Userspace implementation

– Requires infrastructure to pass / receive MPTCP options from userspace

● Use control messages for sendmsg/recvmsg

● Needs new userspace ABIs to handle the connection handshake

– Complete rewrite

● Create a separate layer on top of TCP (similar with how NFS, CIFS 
uses TCP)



Towards a separate MPTCP layer

● Eliminate the branches in the TCP code that deals with MPTCP sub-
flow and meta sockets 

– Isolate the MPTCP sub-flow functionality

– MPTCP meta sockets are not TCP sockets – create a new protocol to deal 
with them

● Eliminate code duplication between TCP and MPTCP



MPTCP sub-flow specific code in TCP

● MPTCP connection hand-shake

– Client side

– Server side

● MPTCP receive window

● MPTCP send and receive path hooks

● MPTCP coupled congestion code



Isolate MPTCP connection handshake – TX

● Connection socket operations are 
used to abstract and isolate IPv4 
and IPv6

● By defining MPTCP specific 
connection socket operation we 
isolated the TX part of MPTCP sub-
flow handshake

queue_xmit

send_check

con_request

syn_recv_sock

...

Connect socket operations



Isolate MPTCP connection handshake – RX

● On the receive side request 
socket operations are used to 
abstract MD5 code

● Unfortunately these operations 
are not enough to isolate MPTCP 
code but...

● We noticed significant code 
duplication between the IPv4 
and IPv6 paths 

md5_lookup

calc_md5_hash

Request socket operations



Isolate MPTCP connection handshake – RX

● Added new operations to 
abstract and isolate the IPv4 and 
IPv6 paths

● With that we also isolated the 
RX part of MPTCP sub-flow 
handshake

Request socket operations

init_req

cookie_init_seq

cookie_init_seq

route_req

send_synack

queue_hash_add

init_seq



Isolate MPTCP receive window and send path

● Introduce a new structure to 
abstract some TCP socket operations

● Specific operations for the meta 
socket, sub-flow socket and regular 
TCP

write_xmit

write_wakeup

select_initial_window

init_buffer_space

set_rto

TCP socket operations

...



git diff v3.18..mptcp_trunk --stat (>10)

 include/linux/tcp.h                    |   85 +­

 include/net/sock.h                     |   11 +

 include/net/tcp.h                      |  194 ++­

 net/core/sock.c                        |   35 +­

 net/ipv4/af_inet.c                     |   27 +­

 net/ipv4/inet_connection_sock.c        |   21 +­

 net/ipv4/tcp.c                         |  182 ++­

 net/ipv4/tcp_fastopen.c                |   28 +­

 net/ipv4/tcp_input.c                   |  320 +++­

 net/ipv4/tcp_ipv4.c                    |  202 ++­

 net/ipv4/tcp_minisocks.c               |   95 +­

 net/ipv4/tcp_output.c                  |  254 ++­­

 net/ipv4/tcp_timer.c                   |   81 +­

 net/ipv6/tcp_ipv6.c                    |  274 +++­



Separate MPTCP meta layer

● Rationale: the meta socket is not a TCP socket

● Create a new IP protocol level socket for MPTCP

socket(AF_INET, SOCK_STREAM, IPROTO_TCP|TCPEXT_MPTCP)



WIP: early allocation of the master socket

● Allocate the master socket as soon as the meta socket is created

● Falling back to TCP adds overhead as we now go through the meta 
socket

● MPTCP is not transparent at the application level*

● Simplifies the connect path: 

– Connect of meta socket translates to connect on master socket

– Avoids cloning the meta socket and changes in the inet connection layer



WIP: receive path

 Sub-flow receive q

mptcp_recvmsg

 Meta receive q

 Meta out of order q

tcp_recvmsg mptcp_recvmsg (on meta socket) 

    wait_event(wq, ready_sub-flows) 

    for all ready sub-flows 

        lock sock(sub-flow)

        tcp_read_sock(sub-flow) – recv actor

            clone SKB and add to meta socket 

        clear sub-flow ready bit

        release_sock(sub-flow) 

    tcp_recvmsg (meta socket, O_NONBLOCK) 

sk_data_ready (on sub-flow sockets)   

    scan the rx queue update DSS mapping

    mark sub-flow and wake-up meta socket



WIP: send path

mptcp_sendmsg Meta write q

Sub-flow write q

tcp_send_skb?

tcp_push

MPTCP Reinjection 
work queue



Conclusions

● MPTCP has interesting use-cases and it is used commercially

● The initial Linux kernel implementation had large TCP stack changes 

● We have been steadily reducing changes to the TCP stack

● We believe a separate MPTCP layer should help us reduce TCP 
changes even more and help us manage the complexity



Thank you!
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