- TIPG

Transparent Inter Process
Communication

by Jon Maloy

PRESENTATION OVERVIEW

» Introduction to TIPC
> Demo

> Current status

» Roadmap 2015-2016

TIPC FEATURES

E “ L] L] L]
' All-in-one” L2 based messaging service

- Reliable datagram unicast, anycast and multicast

- Connections with stream or message transport

- Location transparent service addressing

— Multi-binding of addresses

- Immediate auto-adaptation/failover after network changes

| Service and Topology tracking function

- Nodes, processes, sockets, addresses, connections
- Immediate feedback about service availability or topology changes
—> Subscription/event function for service addresses
- Fully automatic neighbor discovery

TIPC == SIMPLICITY

. No need to configure or lookup (IP) addresses
' - Addresses are always valid - can be hard-coded
- Addresses refer to services - not locations

- Address space unique for distributed containers/name spaces

No need to configure L3 networks
- ButVLANS may be useful...
No need to supervise processes or nodes
: - No more heart-beating
_ - You will learn about changes - if you want to know
Easy synchronization during start-up
: - First, bind to own service address(es)
- Second, subscribe for wanted service addresses
= Third, start communicating when service becomes available

B o o o N o o o e o o o o

oo

2

oo

oo’ oo e e e e e e e e e e o e e o e e e e e e e e e e e e e o e e e o o o o o o o

THE DOMAIN CONCEPT

32-bit domain identifier

- Assigned to node, cluster and zone

- Structure <Z.C.N> where zero in a position means wildcard (~anywhere/anycast)

typedef uint32 t tipc domain_ t;

tipc_domain t tipc_domain (unsigned int zone,

-

&

omain <1.1.0> (Cluster)

Domain <1.0.0> (Zone)

A

)

Domain <0.0.0> (Global)

unsigned int cluster,
unsigned int node);

SERVICE ADDRESSING

“Well known port number” assigned by developer struct tipe addri

> 32-bit service type number - typically hard-coded uint3z_t type;

uint32 t instance;
- 32-bit service instance —typically calculated tipc_domain t domain;
> 32-bit domain identity b

- Indicating visibility scope on the binding side
- Indicating lookup scope on the calling side

Server Process
bind(service =42,
instance =1,
domain =0)
Client Process

sendto(service =42,

domain =0
) Server Process

bind(service =42,

domain = 0)

SERVICE BINDING

No (almost) restrictions on how to bind service addresses struct tipc_addr{
uint32 t type;
- Different service addresses can bind to same socket uint32 t instance;
.)) tipc domain t domain;
- Same service address can bind to different sockets };

- Ranges of service instances can bind to a socket

Server Process

bind(service =
lower
domain

bind(service =

Client Process :
domain

sendto(service =42,
instance = 2,
domain = 0) Server Process

bind(service =42,

domain =0)
bind(service =4711,
lower =0,
upper =100,
domain = 0)

MULTICAST

All servers bound to the given service address receive a copy struct tipc_addr(

- Delivery and sequentiality guaranteed socket-to-socket

}i

Server Process

bind(service =42,
lower =1,
domain =0)
bind(service =42,
Client Process :
domain =0)
sendto(service =42,

domain =0) Server Process

bind(service =42,

domain =0)
bind(service =4711,
lower =0,
upper =100,
domain =0)

uint32 t type;
uint32 t instance;
tipc domain t domain;

=42,
=42,

Server Process
instance =1,
Server Process
domain = 0)

bind(service
bind(service

Node <1.2.3>

A
e
o
i
Y%
)
o
o
Z

t

- Translation service address to physical destination performed
42,

Client Process
domain = 0)

sendto(service

A
o
o
i
v
o
)
o
Z

on-the-fly at source node

LOCATION TRANSPARENCY

- Replica of global binding table on each node

- Very efficient hash lookup

c
@
o
>
0
c
=
o
c
X
+
(@)
c
S
()
>
S
(5]
n
Y—
(@)
c
=
)
@©
o
(@)
-

RELIABLE DATAGRAM SERVICE

Reliable socket to socket

- Receive buffer overload protection

- No real flow control, messages may still be rejected
Rejected messages may be dropped or returned

- Configurable in sending socket
- Truncated message returned with error code

Multicast is just a special case Server Process

- But messages can not be made returnable bi”d($ef‘t'ice =‘12-
Instance =1,

domain =0)
Client Process

sendto(service =42,

domain =0
) Server Process

bind(service =42,

domain = 0)

LIGHTWEIGHT CONNECTION

Established by using service address

- Two-way setup using data-carrying messages

- Traditional TCP-style setup/shutdown also available
Stream- or message oriented

- End-to-end flow control for buffer overflow protection

- No sequence numbers, acks or retransmissions, - the link layer takes care of that
Breaks immediately if peer becomes unavailable

- lIrrespective of reason

Node <1.1.8>

Server Process

Node <1.1.1>

bind(service =42,

Client Process
domain =0)

connect(service =42,

domain = 0)

LINK

- Guarantees delivery and sequentiality for all messaging

“L2.5” reliable link layer, node to node

- Acts as “trunk” for multiple connections, and keeps track of those

- Keeps track of peer node’s address bindings in local replica of the binding table
Supervised by probing at low traffic

- “Lost service address” events issued for bindings from peer node if no link left
- Breaks all connections to peer node if no link left
Several links per node pair

- Load sharing or active-standby, - but maximum two active

- Loss-free failover to remaining link if any Node <1.1.8>
Node <1.1.1>

ra~rnce

Server Process
Client Process

bind(service =42,
Client Process

domain =0)
connect(service =42,

domain = 0)

NEIGHBOR DISCOVERY

> L2 connectivity determines network

- Neighbor discovery by L2 broadcast, qualified by a lookup domain identity

- All qualifying nodes in the same L2 broadcast domain establish mutual links
- One link per interface, maximum two active links per node pair

- Each node has its own view of its environment

L L1
e @

SERVICE SUBSCRIPTION

Users can subscribe for contents of the global address binding table

- Receives events at each change matching the subscription

There is a match when

- Bound/unbound instance or range overlaps with subscribed range

Node <1.1.7>

Server Process

bind(service =42,
instance =1,
domain =0)

Client Process

subscribe(service =42,

lower : Node <1.1.8>
upper =10)

Server Process

bind(service =42,
instance =2,
domain = 0)

A A
o :
2 o o
w Vv V
() ()
= © o
s [E S
= P
[
°
o
£
1
e
o
9
)
N
)
o
>
2
1)
©
&
) 1
n
£

Client Process

subscribe(service

TOPOLOGY SUBSCRIPTION

Special case of service subscription
- Using same mechanism, - based on service table contents

- Represented by the built

L L,
T e

WHEN TO USE TIPC

\ TIPC does not replace IP based transport protocols

- It is acomplement to be used under certain conditions

- ltis an IPC!

r
{
el

TIPC may be a good option if you
- Want startup synchronization for free

- Have application components that need to keep
continuous watch on each other

Need short latency times
Traffic is heavily intra node
Don’t want to bother with configuration

One L2 hop is enough between your components

N2 2 20 20N 2

Are inside a security perimeter

WHAT TIPC WILL
NOT DO FOR YOU

No user-to-user acknowledging of messages
- Only socket-to-socket delivery guaranteed

- What if the user doesn’t process the message?
- On the other hand, which protocol does?
No datagram transmission flow control

- For unicast, anycast and multicast
- Must currently be solved by user

- We are working on the problem...

No routing

- Only nodes on same L2 network can communicate
- But a node may attach to several L2 networks

DEMO

DEMO SETUP

Messaging Client
- A simple “Hello World” reliable datagram message exchange

- A “Hello World” message exchange used for a two-way set up a SOCK_STREAM connection
- A regular TCP-style ‘“connect/accept” to set up a SOCK_SEQPACKET connection

Service Topology Subscriber

9

9
9
9

Subscribing and receiving up/down events

for server process availability

Subscribing and receiving events about
<l.1.1>’s neighbor nodes

Remotely subscribing and receiving
events about <1.1.2>’s neighbor nodes

Subscribing and receiving events for
<l.1.1>’s links

Node <1.1.1>

Messaging
Client Process

sendto(service= 17777,
lower =0,
upper =10)

Service Topology
Subscriber Process

subscribe(service =17777,
lower 0,

upper

Node <1.1.2>

Server Process

bind(service =
instance=0
domain

|

|

|

' |

[&

! : 'ﬂ

1
|

o
' |
|
|
|
i
i
i
i
i
i
i
|
|
|
|

STATUS FEBRUARY 2015

FUNCTIONALITY

Only <I|.1.N> domains available

- In reality easy to fix
- What is the need?
Service binding table still updated by “replicast”
- Relatively easy to fix, but has not been prioritized
- It works fine with current cluster sizes
Dropped ambition to have TIPC-level routing between domains
- Only direct L2 hops is supported
—> IP level routing only option, but still no official L3 bearer
- UDP based “bearer”’ implementation soon ready for upstream
Container/Name Space support
- New as from January 2015

oo’ oo e e e e e e e e e e o e e o e e e e e e e e e e e e e o e e e o o o o o o o n'o'o ol Cofno B o o o N o o o e o o o o

API

Only a low-level socket C API available
- Hard to learn and use
- Prototype of a new, higher-level C API available

API for Python, Perl, Ruby, D
- But not for Java

Support for TIPC in ZeroMQ
- Not yet with full features

"
Ny

AVAILABILITY

Installation package available only in SLES

Earlier supported package in Debian/Ubuntu broken

- Volunteers wanted

No package yet in Fedora/RHEL

- We are working on this

tipc_sock

tipc_port

nel_lock

tipe_node_list
bal

tipc_node

tipc_link

tipc_bearer

tipc_media

eference’

ARCHITECTURE

2012

sser_port

reference | reference™ | refere

reftbl_rw_lock

hlist fead ‘ hiisighead ‘ hlist_t

ad ‘ hlist_head ‘ hiisighead ‘ hlist_head ‘

tipc_node [6]

hlist_nbde

(6] tipg node [s]

ref_table
(heap array)

node_htable

¢

global array)

tipc_node ﬂ

Laf ist_ead ¢

=5 = =
o [o e o [&] il @Ml [5 [o] men
o [e\ el @] e [o T o s

el e It

i

A

unc Tin

owner

TsT_head |’
Tst_head

eth_begfer | eth_bedfer

B
B
i

® |media

bearers[]
(global array)

tipc_media
(Ethernet)

Xx_bearer

tipc_media
(0000)

*media_list[]
(global array)

015

tipe_sockel

tipe_socket

reference | reference

reference.

referende |reference | reference

reference

rer table
reference

reftbl_lock

list_head_rcti"| list_head_rct

tipe

de,
hiist Rode

list_head_iu | list_head_rcu | list_head_rct

tipc_nofle
E Dk

B ode_htable
(heap array)

list_head_rct:

i fﬂde [6]

tipc_node u
p| hiist_node

links] 2 links[] links{] Jinks{]

active_ = active_ active_
JE Ao, » [\ St vel] Iy
tipe_link tipe_link tipe_link

owner & Jovner o

]

waiting|
Tt fead | "300

TS__head | 'fey i)

tipc_bearer

bearer_array_lock |[_Enabled

@ |medigl [

tipc_bearer

J

eth_befirer | eth_|

tipc_media
(Ethernet)

bearers[]
(heap array)

<

*media_list[]
(heap array)

IMPLEMENTATION

Significant effort to improve quality and maintainability the last 2-3 years
- Eliminated the redundant “native API”’ and related ‘“port layer”

- Only sockets are supported now

- Reduced code bloat
- Reduced structure interdependencies

- Improved locking policies
- Fewer locks, RCU locks instead of RW locks...
- Eliminated all known risks of deadlock

- Buffer handling
- Much more use of sk_buff lists and other features
- Improved and simplified fragmentation/reassembly

Support for name spaces
- Will be very useful in the cloud
- Enables “distributed containers”
Linuxification of code and coding style
—> Still too visible that TIPC comes from a different world
- Adapting to kernel naming conventions

TRAFFIC CONTROL

W

Connection flow control is still message based
- May potentially consume enormous amounts of memory

A

- skb_truesize() in combination with out no-drop requirement is a problem
- We think we have a solution
Link flow control still uses a fix window

- Too simplistic
- We need a congestion avoidance algorithm

- Lots of unnecessary retransmits

Datagram flow control missing

- Probably impossible to get this hundred percent safe
- But we can make it much better than now

SCALABILITY

Largest known cluster we have seen is 72 nodes
- Works flawlessly
- We need to get up to hundreds of nodes

= The link supervision scheme may become a problem
Limited domain support

- We need support for <Z.C.N>, not only <I.1.N>

- Makes it possible to segment TIPC networks
Name space support

- DONE!!

PERFORMANCE

Latency times better than on TCP

~& > 10-20% inter-node

- 2 to 7 times faster intra-node messaging (depends on message size)
- We don’t use the loopback interface

Throughput still poorer than TCP
= 55-100 % of maxTCP throughput inter-node

- Seems to be very environment dependent

- But 25-30% better than TCP intra-node

MANAGEMENT

New netlink based API introduced

- Replaces old ascii-based commands (also via netlink)

- Uses more standard features such as socket buffers, attribute nesting, sanity checks etc.
- Scales much better when clusters grow

New user space tool “tipc”
- Syntax inspired by “ip” tool
- Modular design inspired by git
- Uses libnl
- Replaces old “tipc-config” tool
- Part of tipc-utils package

ROADMAP 2015-2016

R R R N N N R R R N R N R N R N R N N R R R R N R R R R R R K N N R

FUNCTIONALITY

Bones | Allowing overlapping address ranges for same type

= - Currently only limitation to service binding
- Causes race problems sometimes

- Proposal exists

Updating binding table by broadcast instead of replicast
- We know how to do this
- Compatibility biggest challenge

Addressing in TIPC socket API

struct tipc_portid {
__u32 ref;
__u32 node;

}:

struct tipc_name {
__u32 type;
__u32 instance;

LIBTIPCWITH C API

Addressing inTIPC C API

typedef uint32_t tipc_domain_t;

struct tipc_addr {
uint32_t type;
uint32_t instance;
tipc_domain_t domain;

b }i
struct tipc name_seq {

__u32 type;

__u32 lower;

32
[, s Service/topology subscriptions in C API
int tipc_topsrv_conn(tipc_domain_ t topsrv_node) ;

#define TIPC_ADDR_NAMESEQ
#define TIPC_ADDR MCAST
#define TIPC ADDR NAME
#define TIPC_ADDR ID

int tipc_srv_subscr(int sd, uint32_t type, uint32_t lower, uint32_t upper,
bool all, int expire);

WN R R

int tipc_srv_evt(int sd, struct tipc_addr *srv, bool *available, bool expired);
bool tipc_srv_wait(const struct tipc_addr *srv, int expire);

struct sockaddr_tipc { int tipc_neigh_subscr(tipc_domain_t topsrv_node) ;

unsigned short family; int tipc_neigh_evt(int sd, tipc domain t *neigh_node, bool *available) ;
unsigned char addrtype;

signed char scope;

union {
struct tipc portid id;
struct tipc_name_ seq nameseq;
struct {
struct tipc name name;
__u32 domain; /* 0: own zone */
} name;
} addr;

http://sourceforge.net/pltipc/tipcutils/ci/master/tree/demos/c_api_demoltipcc.h

W

el

TRAFFIC CONTROL

Improved connection level flow control
- Packet based instead of message based
- Byte based does not seem feasible

Improved link level flow control
- Adaptable window size

- Congestion avoidance
- SACK, FRTO ...?

Datagram and multicast congestion feedback
- Sender socket selects least loaded destination
- Sender socket bocks or returns —-EAGAIN if all destinations congested
- Academic work ongoing to find best algorithm

SCALABILITY

Full network address space
- Node identity <Z.C.N> instead of <I.|.N>
- Can group nodes by discovery rules instead of VLANS

Hierarchical neighbor supervision and failure detection

- “Biased Gossip”’ type algorithm?

— /. X
(. .\ ’ ?}"i‘li’: Y
£ w gl
!

gy

Ring: Scales ~2*N TIPC: Scales ~N*(N-1)

SR
SRR
728

J

TIPC/Gossip: Scales ~M*N

PERFORMANCE

Improved link level flow control
- Already mentioned

Separate spinlock for each parallel link to same node
- Currently jointly covered by a “node_lock’, serializing access
- Loss-free transitions 1-2 and 2-1 (failover) links will be a challenge
Reducing and fragmenting code sequences covered by node_lock (link_lock)
- Gives better parallelization
- Big potential for improvements
Dualpath connections

- 20 Gb/s per connection?

General code optimization

- Based on profiling

MULTICAST/BROADCAST

Code overhaul of broadcast link
- Leveraging recent changes to unicast link

Multicast groups
- Explicit membership handling

Transactions

- Ensure “all-or-nothing” delivery

Virtual Synchronism
- Ensure virtual in-order delivery
- From different source nodes

MORE INFORMATION

TIPC project page

http://tipc.sourceforge.net/

TIPC protocol specification

http://tipc.sourceforge.net/doc/draft-spec-tipc-10.html

TIPC programmer’s guide
http://tipc.sourceforge.net/doc/tipc_2.0_prog guide.html

TIPC CAPI

http://sourceforge.net/p/tipc/tipcutils/ci/master/tree/demos/c_api_demoltipcc.h

THANKYOU

o
o
o

INTER-NODE THROUGHPUT (NETPERF)

Intel (R) Xeon(R) CPU E5-2658 v2 @ 2.40GHz 48G ECC ram
3.19 RC4+ kernel + busybox. No tuning done.
Netperf stream test, ixgbe NIC's, TCP using cubic, TIPC link window=400.

TCP:
MIGRATED TCP STREAM TEST from 0.0.0.0 (0.0.0.0) port O AF_INET to 11.0.0.3 () port O AF_INET
Recv Send Send

Socket Socket Message Elapsed
Size Size Size Time Throughput
bytes bytes bytes secs. 10%6bits/sec

87380 16384 16384 60.00 8338.82

TIPC:
TIPC STREAM TEST to <1.1.3:3089135711>
Recv Send Send

Socket Socket Message Elapsed
Size Size Size Time Throughput
bytes bytes bytes secs. 10%6bits/sec

34120200 212992 212992 60.00 4351.60

INTER-NODE THROUGPUT (TIPC TOOL)

blade3 ~ # ./client_tipc -p tcp -i eth4
***%%% TIPC Benchmark Client Started ***xx*

blade3 ~ # ./client_tipc

*%%%** TIPC Benchmark Client Started

ing 64000 in TCP Throughput Benchmark Transferring 64000 messages in TIPC Throughput Benchmark

| Msg Size | # | # Msgs/ | Elapsed | Throughput | I Msg Size | # | # Msgs/ | Elapsed | Throughput |
1 [octets] | Conns | Conn | [ms] | [octets] | Conns | Conn | [ms]

] | | | | Total [Msg/s] | Total [Mb/s] | Per Conn [Mb/s] | | | | | | Total [Msg/s] | Total [Mb/s] | Per Conn [Mb/s] |
| 64 | 1 64000 | 115 | 552409 | 282 | 282 | I 64 | 1 64000 | 304 | 209847 | 107 | 107

I 256 | 1] 32000 | 60 | 526099 | 1077 | 1077 | T 256 | 1 | 32000 | 164 | 194584 | 398 | 398 |
I 1024 | 1] 16000 | 54 | 292029 | 2392 | 2392 | T 1024 | 1 | 16000 | 104 | 153283 | 1255 | 1255 |
I 4096 | 1] 8000 | 85 | 93857 | 3075 | 3075 | T 4096 | 1| 8000 | 86 | 92803 | 3040 | 3040 |
| 16384 | 1 4000 | 209 | 19134 | 2507 | 2507 | T 16384 | 1 4000 | 147 | 27196 | 3564 | 3564

I 65536 | 1] 2000 | 248 | 8032 | 4211 | 4211 | T 65536 | 1| 2000 | 249 | 8027 | 4208 | 4208 |

Completed Throughput Benchmark

****** TIPC Benchmark Client Finished ***¥%*

TCP Inter Node

Completed Throughput Benchmark

%%%* TIPC Benchmark Client Finished ***x*

TIPC Inter Node

LATENCY (TIPC TOOL)

blade3 ~ # ./client_tipc -p tcp -i eth4

%%%% TIPC Benchmark Client Started *¥** TCP Inter NOd

B et e L E e +
| Msg Size [octets] | # Msgs | Elapsed [ms] | Avg round-trip [us] |

Completed Latency Benchmark
Transferring 64000 messages in TCP Throughput Benchmark
root@tipcl:~# bmc -p tcp

%%%%* TIPC Benchmark Client Started ***%*

Using server address 127.0.0.1:4711 TCP Intra NOde
Transferring 80000 messages in TCP Latency Benchmark

o +
| Msg Size [octets] | # Msgs | Elapsed [ms] | Avg round-trip [us] |
o +
| 64 | 80000 | 823 | 10.94 |
o +
| 256 | 40000 | 445 | 11.36

o +
| 1024 | 26666 | 1041 | 39.64

o +
| 4096 | 20000 | 884 | 44.20
et et S +
| 16384 | 16000 | 1443 | 90.35
et et S +
| 65536 | 13333 | 1833 | 137.5 |
o o +

Completed Latency Benchmark

blade3 ~ # ./client tipc
%%%%* TIPC Benchmark Client Started ***%

TIPC Inter Node

+
| Msg Size [octets] | # Msgs | Elapsed [ms] | Avg round-trip [us] |

Completed Latency Benchmark
****** TIPC Benchmark Client Finished *****%*
root@tipcl:~# bmc

%*%%* TIPC Benchmark Client Started ***%* TIPC Intra Node

Transferring 80000 messages in TIPC Latency Benchmark

| Msg Size [octets] | # Msgs | Elapsed [ms] | Avg round-trip [us] |

Completed Latency Benchmark

