
Shaping the Linux kernel
MPTCP implementation

towards upstream acceptance

Doru-Cristian Gucea

Octavian Purdila

Agenda

MPTCP in a nutshell

Use-cases

Basics

Initial Linux kernel implementation

Implementation alternatives

Towards upstream submission

Questions

MPTCP in nutshell

● Transport level multi-path solution

● Unmodified applications and network

● Works at least as well as regular TCP

● Works when a regular TCP would work

● Falls back to regular TCP if needed

● Fair with TCP, moves traffic away from
congestion

Improved mobility with MPTCP

Throughput during a subway trip

Other MPTCP use-cases

● Power improvements via race to idle

● VM migration across different network domains

● Multi-WiFi: take advantage of multiple APs

● Improved throughput and reliability in the data-center

MPTCP basics

3G celltower

MPTCP basics

3G celltower
SYN

MP_CAPABLE X
SYN

MP_CAPABLE X

MPTCP basics

3G celltower

SYN/ACK

M
P_CAPABLE Y

SYN/ACK

M
P_CAPABLE Y

MPTCP basics

3G celltower

ACK

M
P_CAPABLE
ACK

M
P_CAPABLE

MPTCP basics

3G celltower
STATE
CWND
Snd.SEQNO
Rcv.SEQNO
…

MPTCP basics

3G celltower
STATE
CWND
Snd.SEQNO
Rcv.SEQNO
…

MPTCP basics

3G celltower
STATE
CWND
Snd.SEQNO
Rcv.SEQNO
…

MPTCP basics

3G celltower
STATE
CWND
Snd.SEQNO
Rcv.SEQNO
…

SYN/ACK

JOIN X
SYN/ACK

JOIN X

MPTCP basics

3G celltower
STATE
CWND
Snd.SEQNO
Rcv.SEQNO
…

STATE B
CWND
Snd.SEQNO
Rcv.SEQNO
…

MPTCP basics

3G celltower
STATE
CWND
Snd.SEQNO
Rcv.SEQNO
…

STATE B
CWND
Snd.SEQNO
Rcv.SEQNO
…

DATA

SEQ A

DSEQ
: 1

DATA

SEQ A

DSEQ
: 1

MPTCP basics

3G celltower
STATE
CWND
Snd.SEQNO
Rcv.SEQNO
…

STATE B
CWND
Snd.SEQNO
Rcv.SEQNO
…

DATA

SEQ A

DSEQ
: 1

DATA

SEQ A

DSEQ
: 1

DATA
SEQ B

DSEQ: 2

DATA
SEQ B

DSEQ: 2

Initial Linux kernel implementation

● Implementation done directly at the TCP level

● Good performance

● Low overhead when falling back to TCP

● Intrusive changes that increases the complexity of the TCP stack

Key MPTCP structures

Meta socket

Sub-flow socketMaster socket Sub-flow socket

TCP socket, visible to userspace

TCP sockets, not visible to userspace

Pros/cons of using TCP sockets

● Re-use TCP code that transfers data to/from userspace
(tcp_sendmsg, tcp_recvmsg)

● Makes MPTCP transparent to the application (including fallback)

● Some TCP functions now must deal with 3 cases

– TCP socket

– MPTCP sub-flow socket

– MPTCP meta socket

Creating the master socket

Meta socket

SYN,MP

SYN,ACK,MP

ACK,MP

Master socket

m
ptcp_sk_clone

Meta socket

Fallback to TCP

SYN,MP

SYN,ACK

ACK

Meta socket

Plain TCP socket

m
pc =

false

TCP queues (simplification)

Backlog q

Receive q

out of order q

tcp_v4_rcv

tcp_recvmsg
tcp_sendmsg

Write q

tcp_write_xmittcp_retransmit_skb

tcp_transmit_skb

MPTCP receive path

Meta backlog q

 Sub-flow receive q

Sub-flow out of order q

tcp_v4_rcv

m
p

tc
p

_
b

a
ck

lo
g

_
rc

v

mptcp_sk_ready

mptcp_sk_ready

 Meta receive q

 Meta out of order q

tcp_recvmsg

MPTCP send path

tcp_sendmsg

Meta write q

mptcp_write_xmitmptcp_retransmit_skb

Sub-flow write q

Mptcp scheduler

MPTCP DSS options

● Maps meta seq to sub-flow seq

● 20 bytes

● Does not fit into skb->cb

● Save them in the skb data in
the space reserved for the TCP
header

● Everytime pskb_copy() is called
from the TCP stack we need to
copy DSS manually

Head

Data

Tail

End

R
eservered for

M
A

C
/IP

/T
C

P
 heade

r

Save
DSS
here

Alternative approaches

● Userspace implementation

– Requires infrastructure to pass / receive MPTCP options from userspace

● Use control messages for sendmsg/recvmsg

● Needs new userspace ABIs to handle the connection handshake

– Complete rewrite

● Create a separate layer on top of TCP (similar with how NFS, CIFS
uses TCP)

Towards a separate MPTCP layer

● Eliminate the branches in the TCP code that deals with MPTCP sub-
flow and meta sockets

– Isolate the MPTCP sub-flow functionality

– MPTCP meta sockets are not TCP sockets – create a new protocol to deal
with them

● Eliminate code duplication between TCP and MPTCP

MPTCP sub-flow specific code in TCP

● MPTCP connection hand-shake

– Client side

– Server side

● MPTCP receive window

● MPTCP send and receive path hooks

● MPTCP coupled congestion code

Isolate MPTCP connection handshake – TX

● Connection socket operations are
used to abstract and isolate IPv4
and IPv6

● By defining MPTCP specific
connection socket operation we
isolated the TX part of MPTCP sub-
flow handshake

queue_xmit

send_check

con_request

syn_recv_sock

...

Connect socket operations

Isolate MPTCP connection handshake – RX

● On the receive side request
socket operations are used to
abstract MD5 code

● Unfortunately these operations
are not enough to isolate MPTCP
code but...

● We noticed significant code
duplication between the IPv4
and IPv6 paths

md5_lookup

calc_md5_hash

Request socket operations

Isolate MPTCP connection handshake – RX

● Added new operations to
abstract and isolate the IPv4 and
IPv6 paths

● With that we also isolated the
RX part of MPTCP sub-flow
handshake

Request socket operations

init_req

cookie_init_seq

cookie_init_seq

route_req

send_synack

queue_hash_add

init_seq

Isolate MPTCP receive window and send path

● Introduce a new structure to
abstract some TCP socket operations

● Specific operations for the meta
socket, sub-flow socket and regular
TCP

write_xmit

write_wakeup

select_initial_window

init_buffer_space

set_rto

TCP socket operations

...

git diff v3.18..mptcp_trunk --stat (>10)

 include/linux/tcp.h | 85 +­

 include/net/sock.h | 11 +

 include/net/tcp.h | 194 ++­

 net/core/sock.c | 35 +­

 net/ipv4/af_inet.c | 27 +­

 net/ipv4/inet_connection_sock.c | 21 +­

 net/ipv4/tcp.c | 182 ++­

 net/ipv4/tcp_fastopen.c | 28 +­

 net/ipv4/tcp_input.c | 320 +++­

 net/ipv4/tcp_ipv4.c | 202 ++­

 net/ipv4/tcp_minisocks.c | 95 +­

 net/ipv4/tcp_output.c | 254 ++­­

 net/ipv4/tcp_timer.c | 81 +­

 net/ipv6/tcp_ipv6.c | 274 +++­

Separate MPTCP meta layer

● Rationale: the meta socket is not a TCP socket

● Create a new IP protocol level socket for MPTCP

socket(AF_INET, SOCK_STREAM, IPROTO_TCP|TCPEXT_MPTCP)

WIP: early allocation of the master socket

● Allocate the master socket as soon as the meta socket is created

● Falling back to TCP adds overhead as we now go through the meta
socket

● MPTCP is not transparent at the application level*

● Simplifies the connect path:

– Connect of meta socket translates to connect on master socket

– Avoids cloning the meta socket and changes in the inet connection layer

WIP: receive path

 Sub-flow receive q

mptcp_recvmsg

 Meta receive q

 Meta out of order q

tcp_recvmsg mptcp_recvmsg (on meta socket)

 wait_event(wq, ready_sub-flows)

 for all ready sub-flows

 lock sock(sub-flow)

 tcp_read_sock(sub-flow) – recv actor

 clone SKB and add to meta socket

 clear sub-flow ready bit

 release_sock(sub-flow)

 tcp_recvmsg (meta socket, O_NONBLOCK)

sk_data_ready (on sub-flow sockets)

 scan the rx queue update DSS mapping

 mark sub-flow and wake-up meta socket

WIP: send path

mptcp_sendmsg Meta write q

Sub-flow write q

tcp_send_skb?

tcp_push

MPTCP Reinjection
work queue

Conclusions

● MPTCP has interesting use-cases and it is used commercially

● The initial Linux kernel implementation had large TCP stack changes

● We have been steadily reducing changes to the TCP stack

● We believe a separate MPTCP layer should help us reduce TCP
changes even more and help us manage the complexity

Thank you!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

