
Traffic Control connection tracking hardware offload

Oz Shlomo, Paul Blakey

Mellanox, Ra’anana Israel

ozsh@mellanox.com, paulb@mellanox.com

Abstract

Recent industry advancements toward the use of Traffic

Control (TC) as well as Open vSwitch (OVS) has created

new requirements, one of which is supporting connection

tracking (CT). Connection tracking datapath actions and

matches require stateful packet processing that is

challenging to fully offload. However, there is still

significant value in processing connections in established

state, where the bulk of the connection data is passed, in

hardware while handling the connections’ setup and

teardown, which cause connections to enter and exit the

established state, on the software slow path. In addition,

packet steering based on the CT state requires packet

reclassification, which dictates a multi-table design.

Hardware offload of multi-table rules exposes the system

to misses in hardware because the hardware offload

process is not atomic. In this paper, we will present an

infrastructure that was recently introduced to the Linux

kernel to support the hardware offload of the connection

tracking action.

Keywords

Linux, Traffic Control (TC), Connection tracking (CT), conntrack,

nft, netfilter (nf), flowtable (ft), hardware offload, Openvswitch

(OVS)

 Introduction

Connection tracking is a tool for stateful packet processing

[1]. Connections are managed in a flow table enabling the

association of a packet with the following states:

• New – first packet of a connection.

• Established – two-way communication was estab-

lished.

• Related – packets of a connection that are part of

existing related connection (e.g. FTP data connec-

tion)

• Invalid – packet that cannot be associated with an

existing connection. For example, TCP packets on

established connections are not within the ex-

pected sliding window. Note that this functionality

may be controlled using the tcp_liberal flag.

Connections may also be associated with a user-defined

32-bit mark or 128-bit label values. These values may be

used by the user for filtering application logic.

Source/destination Network Address Translation

(SNAT/DNAT) may also be applied.
Several user-space applications such as iptables, nft and
Open vSwitch (OVS) integrate with the connection tracking
module to provide network security functionality. For
example, OpenStack realizes the security groups feature
using connection tracking as the tool to provide stateful
ingress/egress access control.

Connection tracking action was recently added to Linux

TC [2]. The ct action uses the nf conntrack module to

initialize the connection tracking state on the skb. In

addition, the tc flower classifier was enhanced with the

ability to match on the ct state, mark and label fields, thus

providing the ability for stateful packet steering using tc

[3].

Let’s consider an example of applying a network security

policy using tc. Figure 1 illustrates a switchdev setup

where a virtual machine (VM) is running a webserver on

top of VF0. The network administrator may apply a

security policy allowing ingress http traffic to the vm using

the following set of rules on the uplink port:

Figure 2. Security group ingress filters

$ tc filter add dev uplink_rep ingress prio 1 chain 0

proto ip flower ct_state -trk ip_proto tcp dst_port 80

action ct pipe action goto chain 1

$ tc filter add dev uplink_rep ingress chain 1 prio 1

proto ip flower ct_state +new+trk action ct commit

pipe action mirred egress redirect dev vf0_rep

$ tc filter add dev uplink_rep ingress chain 1 prio 1

proto ip flower ct_state -new+est+trk action mirred

egress redirect dev vf0_rep

Figure 1. Switchdev setup

mailto:ozsh@mellanox.com

The first rule classifies http traffic by matching on tcp

destination port 80. Matching packets are processed by the

CT action which initializes the connection’s state on the

skb. The packets with the updated ct state are then

reclassified on chain 1. Chain 1 has two flows, each

matching on different ct state. The first packet of a new

connection, matched by the second rule, is committed to

the ct database and forwarded to the vm representor port.

Packets on established connections, matched by the third

rule, are simply forwarded to the vm representor ports.

The VM egress packets, received on the vf0 representor

port, follow the following rules:

Figure 3. Security group egress filters

The first filter also performs a ct lookup. However, packets

that are not part of an established connections are dropped,

as defined in the third rule. This ensures that reply packets

were initiated by a client request.

TC Offloads

TC filters are offloaded to hardware at the time of their

instantiation. When a tc filter is created, registered driver

callback methods are invoked with the filter’s list of match

criteria and its corresponding actions. With this input, the

device driver can offload the given rule using the

hardware’s data model. Network device drivers may

register to receive callbacks when filters are added or

deleted, either directly on their network devices or

indirectly on upper layer network device (e.g. tunnel

network device). The tc in_hw flag is set when the filter

was successfully offloaded to hardware.

Offloading CT Actions

The CT action cannot be fully offloaded because current

hardware does not have the stateful engines allowing it to

replicate nf conntrack software logic. However, no stateful

processing is required once connections enter the

established state (i.e. traffic was processed by both

directions), other than tcp window validation that can be

controlled using the tcp_liberal flag. As such, the system is

designed in a way where established connections are

offloaded to hardware while connection setup, teardown

and aging is handled by software.

Offloading only the established connections requires the

platform to notify the relevant device drivers when

connections enter or exit the established state. Aged

connections should also be removed from hardware.

Several integration points can be considered:

• Netfilter conntrack – the conntrack module man-

ages the connection state changes and has an ag-

ing engine.

• TC connection tracking action – the action uses nf

conntrack module. As such, the ct action can de-

duce state changes from the conntrack return

value.

• Netfilter flowtable offloads – nft mechanism that

is used for bypassing the classic forwarding path

for established connections [4, 5]

The nf flow table API was generalized to provide the

ability to create, delete and lookup flow table entries while

notifying registered network drivers of any add/del event

[6]. The nf flowtable offload infrastructure already has an

aging mechanism which integrates with netfilter conntrack

aging via the IPS_OFFLOAD_BIT flag. Connection aging

events are also communicated to the registered network

drivers. Note that the same nf flow table API may also be

used for the hardware offload of nft flow table offloads [7].

Offloading established connections in TC

The connection tracking tc action integrated with the new

nf flow table API by maintaining an nf flowtable instance

per zone [8]. Flow table entries are added when TCP/UDP

connections enter or exit the established state accordingly.

Connection aging is managed by nf flowtable and is

transparent to action ct.

The nf flowtable may also accelerate the software

processing of action ct as the flow table lookup is faster

than nf conntrack processing. As such, packets that are

processed in software may set the ct info on the skb by

executing a nf flow table lookup [9]. Lookup misses, for

connections that are not in the established state yet, or not

in the flow flow table, will be processed by the nf

conntrack module as usual.

The nf flow table instances also serve as the integration

platform for the hardware offload of established

connections. While offloading the CT action to drivers via

flow offload API, the flow table instance is provided,

allowing the network device driver to register a flow

add/del/stats callback on it. When a connection enters the

established state, a 5-tuple entry is instantiated, and the

driver is called back with a flow_offload object containing

the following input:

• 5-tuple match

$ tc filter add dev vf0_rep ingress prio 1 chain 0 proto

ip flower ct_state -trk ip_proto tcp dst_port 80 action

ct pipe action goto chain 2

$ tc filter add dev vf0_rep ingress chain 1 prio 1 proto

ip flower ct_state +est+trk action mirred egress

redirect dev uplink_rep

$ tc filter add dev vf0_rep ingress chain 1 prio 1 proto

ip flower ct_state +new+trk action drop

• ct_metadata action - containing a reference to the

ctinfo object along with the connection’s zone,

mark and label fields

• Array of packet mangle actions if snat/dnat opera-

tions are required.

Once a driver is notified of a new flow table entry it can

extract from the ct metadata action the ct state, zone, mark

and label field and perform snat/dnat if needed. Hardware

can then move on to next requested tc action - usually re-

classification on the next chain. Figure 4 illustrates a multi-

table hardware offload model as implemented in [11].

The del callback is invoked when a connection is deleted

from the relevant flow table, either from a tcp teardown

process, connection aging timeout, or flow table

purge/deletion. Aging periods are managed by the nf flow

table autonomously from nf conntrack aging and they are

currently hardcoded to 30 seconds. Future work may

control the flow table aging period.

Miss handling

Connection tracking action in the tc and ovs datapaths

initializes the ct state and called explicitly when required.

The default uninitalized ct state is untracked (-trk). Once a

packet goes through the conntrack module, it is now

marked as tracked (+trk), and the connection's state is

updated (+new, -new, +est, -est, etc). This paradigm

requires a multi-table architecture where the matching

phase needs to be repeated after the ct action is processed.

Multi-table designs can be implemented in tc using the

goto chain action or in openvswitch using the recirc action.

A simple ct multi-table classification in tc and openvswitch

datapath are shown in figures 5 and 6 accordingly.

Openvswitch dpctl rules are translated to tc flower filters

whenever the openvswitch hardware offload setting is

enabled.

Openvswitch dpctl feature set supersets tc’s feature set. As

such, not all dpctl rules can be translated to tc filters. This

introduces a scenario where a tc goto chain action may

miss because the next chain’s filter was not translated to tc.

In such use cases, the packet will continue to the

openvswitch rx handler, where the processing will

complete. To support such scenarios, tc marks the last

chain that was processed by it on an skb extension field.

Openvswitch then starts its processing with this

corresponding recird_id [10].

Figure 5. OVS dpctl dump extract

Figure 6. TC filter show output extract

The packet recirculation software model also applies to the
hardware model. TC <chain, prio> tuples are uniquely
mapped to a table in hardware. TC goto chain action is
translated to a jump table_id action in hardware. Not all the
TC filters may be offloaded to hardware either because the
offload process is pending, or the hardware may lack the
capabilities to offload the filter’s matches and actions. As
such, the packet processing which started in hardware may
miss and software is expected to continue the processing
from the tc chain id where the hardware missed. It is
incorrect sto re-start the processing from chain 0 as the
matched filters already counted the packets and may have
manipulated them. The TC skb extension is reused for
drivers to communicate to tc what was the last chain which
was processed in hardware, and then tc continues processing
from that chain.

Hardware misses may also restore the tunnel information,

which may have been removed on the hardware decap

action, and the connection tracking state, as the hardware

may have already processed the ct action. High level

hardware offload architecture may be reviewed at [11].

Future work

Connection tracking offloads introduce new scalability

requirements both in terms of table size (order of 1M

connections) and insertion rate (100s K connections per

second). New platform components may be required to

support and manage offload related bottlenecks.

Internet traffic flow size and duration have heavy tail

distribution. Most of the flows are very short while most of

the traffic bandwidth is carried by a small number of

connections. Restricting the hardware offload to elephant

flows can drastically reduce the scale requirements while

still offloading a very large percentage of the traffic. In

addition, on heavily loaded systems, short lived

connections may be closed by the time they are offloaded.

Currently the system is under the working assumption that

everything should be loaded. Under this assumption, the

software issues an offload work item for every packet with

an established state. As such, if the hardware fails to

offload a connection then, in effect the software would re-

offload that connection for every packet it will process.

recirc_id(0),in_port(1),ct_state(-trk),…, actions:ct,recirc(3)

recirc_id(3),in_port(1),ct_state(+new+trk),…, actions:ct(commit),3

recirc_id(3),in_port(1),ct_state(-new+est+trk),…, actions:4

tc filter … chain 0 … flower ct_state -trk …. \

action ct pipe action goto chain 3

tc filter … chain 3 … flower ct_state +new+trk …. \

action ct commit pipe action mirred …

tc filter … chain 3 … flower ct_state -new+est+trk …. \

action mirred egress redirect dev port4

Figure 4. Connection tracking hardware model

Perhaps a mechanism should be considered to suppress the

re-offload events under certain conditions.

References

[1] Pablo Neira Ayuso, “Netfilter’s connection tracking sys-
tem”, :login; the USENIX magazine. JUNE 2006

[2] Blakey P. Leitner M. Kuperman Y. commit

b57dc7c1 “net/sched: Introduce action ct”

https://git.kernel.org/pub/scm/linux/kernel/git/netdev/net.gi

t/commit/?id=b57dc7c13ea90e09ae15f821d2583fa0231b4

935

[3] Guy Shattah, Rony Efraim Extend TC to support Con-

nection Tracking, Proceedings of Netdev 2.2, Feb 2017

[4] Linux kernel documentation on Netfilter flowtable:
https://www.kernel.org/doc/Documentation/networking/nf_
flowtable.txt

[5] Pablo Neira Ayuso - Flow offload infrastructure,
https://lwn.net/Articles/738214/

[6] Pablo Neira Ayuso commit c29f74e0 “netfilter:
nf_flow_table: hardware offload support”
https://git.kernel.org/pub/scm/linux/kernel/git/netdev/net.gi
t/commit/?id=c29f74e0df7a02b8303bcdce93a7c0132d625
77a

[7] Paul Blakey commit 8417998 “net/mlx5: TC: Offload
flow table rules”
https://git.kernel.org/pub/scm/linux/kernel/git/netdev/net.gi
t/commit/?id=84179981317fb4fb3e9df5acd42ea33cf60377
93

[8] Paul Blakey commit c34b961a “net/sched: act_ct:
Create nf flow table per zone”
https://git.kernel.org/pub/scm/linux/kernel/git/netdev/net.gi
t/commit/?id=c34b961a249211bdb08d03bdecfb31ff22eb00
2f

[9] Paul Blakey commit 46475bb2 “net/sched: act_ct:
Software offload of established flows”
https://git.kernel.org/pub/scm/linux/kernel/git/netdev/net.gi
t/commit/?id=46475bb20f4ba019abf22b0db10bf55a41588
52e

[10] Paul Blakey, Vlad Buslov commit 95a7233c

 “net: openvswitch: Set OvS recirc_id from tc chain index”
https://git.kernel.org/pub/scm/linux/kernel/git/netdev/net.gi
t/commit/?id=95a7233c452a58a4c2310c456c73997853b2e
c46

[11] Paul Blakey - Introduce connection tracking offload,
https://lwn.net/Articles/814061/

https://git.kernel.org/pub/scm/linux/kernel/git/netdev/net.git/commit/?id=b57dc7c13ea90e09ae15f821d2583fa0231b4935
https://git.kernel.org/pub/scm/linux/kernel/git/netdev/net.git/commit/?id=b57dc7c13ea90e09ae15f821d2583fa0231b4935
https://lwn.net/Articles/738214/
https://git.kernel.org/pub/scm/linux/kernel/git/netdev/net.git/commit/?id=95a7233c452a58a4c2310c456c73997853b2ec46
https://git.kernel.org/pub/scm/linux/kernel/git/netdev/net.git/commit/?id=95a7233c452a58a4c2310c456c73997853b2ec46
https://git.kernel.org/pub/scm/linux/kernel/git/netdev/net.git/commit/?id=95a7233c452a58a4c2310c456c73997853b2ec46
https://git.kernel.org/pub/scm/linux/kernel/git/netdev/net.git/commit/?id=95a7233c452a58a4c2310c456c73997853b2ec46

