
Issuing SYN Cookies in XDP

Petar Penkov, Eric Dumazet, Stanislav Fomichev
Mountain View, USA

Google
ppenkov@google.com edumazet@google.com sdf@google.com

Abstract

Google’s servers are subject to various network attacks, which
at large magnitudes may affect customers. One particular type
of a distributed denial-of-service (DDoS) attack is TCP SYN
flood and SYN cookies have been a popular stateless mecha-
nism for mitigating its impact. Though effective, in Linux this
strategy requires traversing a lengthy TCP/IP stack, which sig-
nificantly limits the rate of issuing SYN cookies, and leaves
room for improvement.
In this paper we discuss an XDP-based approach to improving
a host’s resilience to SYN flood attacks. This approach relies
on the early placement of the XDP hook on the networking
stack to bypass much of the existing overhead. In addition to
the performance advantages, this solution grants better visibil-
ity into ongoing attacks.

Keywords
Linux, eBPF, BPF, TCP, SYN Cookies, SYN Flood, XDP

Introduction
Google’s servers experience attacks of various magnitudes,
the largest of which can have significant negative impact for
our customers. The emergence of the eXpress Data Path
(XDP) and the extended Berkeley Packet Filter (eBPF) have
opened up a world of possibilities for enhancing the Linux
kernel and, in particular, for improving the robustness of our
servers and performance of our defenses during DDoS at-
tacks.

Motivation
SYN Flood
A SYN flood is an attack during which an attacker seemingly
tries to open many connections with a server by sending TCP
SYN packets, but never establishes the complete connections
by replying to the server’s SYN-ACK packets. This forces the
server to maintain state for each of the half-open connections,
which eventually exhausts system resources and disrupts le-
gitimate traffic.

SYN Cookies
SYN cookies are a technique used to mitigate this attack by
choosing a special initial sequence number as a function of
the current time, represented by a timestamp t, the Maximum

Segment Size m, and the tuple of TCP source and destination
addresses and ports. The 32-bit sequence number of the SYN-
ACK packet is constructed as follows:

• The top five bits are chosen as the last 5 bits of t.
• The following 3 bits are a mapping of m.
• The last 24 bits are the cryptographic hash of t and the

source and destination addresses and ports.

When the corresponding ACK arrives, the host needs to
recompute the cookie and verify the result matches the ac-
knowledgement number.

Problem
Even though SYN cookies eliminate the need to maintain lo-
cal state for opening connections during SYN flood attacks
by encoding this state in the transmitted packet, issuing these
cookies is expensive as it requires multiple memory allo-
cations and a traversal of various layers (GRO, RFS, RPS,
TCP/IP stacks). Therefore, a DoS might still be achieved if
the server spends most of its CPU time issuing these cookies,
which ultimately disrupts legitimate traffic. The following
section details how XDP can be used to reduce the overhead
of issuing SYN cookies in the kernel.

Design Overview
Kernel Support
Because generating a SYN cookie requires access to a cryp-
tographic key, internal to the kernel, we defined a kernel
helper function bpf tcp gen syncookie to aid creating
the SYN-ACK packet. [1]

This function takes the following 5 parameters:

• struct bpf sock *sk - listener socket, retrieved via
bpf skc lookup tcp(). Because this function takes
as a parameter the TCP header of the packet, full dis-
section to the transport header is needed. It is im-
portant to note that we cannot retrieve the socket via
bpf sk lookup tcp() instead as it does not retrieve
timewait and request sockets.

• struct iphdr *iph - pointer to the beginning of the
IP header inside the packet.

• int ip len - total length of the IP header, including op-
tions.



• struct tcphdr *th - pointer to the beginning of the
TCP header inside the packet.

• int th len - total length of the TCP header, including
options.
This function verifies the incoming packet is indeed a TCP

SYN packet, that the headers are of the correct length, and
that a SYN cookie is needed. This behavior is controlled by
the net.ipv4.tcp syncookies sysctl. If the function
successfully generates a SYN cookie, it returns a 64-bit value
with the cookie as its lower 32 bits, and the MSS as the upper
32 bits. Otherwise, a negative value is returned and the packet
is passed to the kernel unmodified.

This function is present in kernels after 5.4.

BPF Program
The XDP program that generates SYN cookies adopts the fol-
lowing outline:
• Parse the packet to the TCP header.
• If it is not a TCP SYN packet, the unmodified packet is

passed to the network stack via XDP PASS.
• Otherwise, the XDP program looks up the corresponding

socket, and invokes bpf tcp gen syncookie() to get
the sequence number for the SYN-ACK.

• If the returned value indicates that a SYN cookie was not
generated, then the packet is passed unmodified to the ker-
nel networking stack via XDP PASS.

• If a SYN cookie was generated, the program will mod-
ify the packet headers in place to create the corresponding
SYN-ACK reply, and send it back out on the same NIC via
XDP TX or XDP REDIRECT.

• Additionally, the program exports counters for the num-
bers of SYN cookies issued on each port. There is much
flexibility in the metrics that can be exported but per-port
counters are both low-cost and an improvement over the
in-kernel metrics.

Bimodal Operation
Even though this approach improves the performance of a
host during an attack, the majority of the time any given host
is not under a SYN flood. However, if the program described
in the previous subsection is executed for every packet, it
would introduce a small but notable regression. To mitigate
this, we define two modes of operation for the BPF program
(Figure 1) to only enable the defense when needed.

Passive Mode While in this mode, the assumption is that
the host is not under an attack. The program skips most pack-
ets and only tries to issue a SYN cookie if a timer T1 has
expired. If issuing this cookie was successful, the program
enters Flood Mode, as described below. Otherwise, the timer
is reset. Because only a few short checks are done for the
majority of the traffic, the overhead is significantly smaller.
Small values of T1 would improve responsiveness to SYN
flood attacks, but would make the overhead more visible to
user traffic. Conversely, large values of T1 lead to small im-
pact to user traffic and slower response time to an ongoing
attack.

Figure 1: Relationship between the two modes of operation

Flood Mode While in this mode, the BPF program attempts
to issue a SYN cookie for every incoming packet. If a SYN
cookie has not been issued successfully for a time T2, the
program falls back to Passive Mode. A large T2 would pre-
vent the BPF program from quickly exiting this mode even
after it is no longer subject to an attack, therefore imposing
an unnecessary overhead to user traffic.

Implementation One possible implementation of this logic
is as follows:

1 /* global variables */
2 const u64 passive_timer; // T_1
3 const u64 flood_timer; // T_2
4 u64 last_sample;
5 u64 last_cookie;
6

7 bool skip() {
8 u64 now = bpf_ktime_get_ns();
9 if (now < last_cookie + flood_timer) {

10 // Flood mode: never skip
11 last_sample = now;
12 return true;
13 }
14

15 if (now > last_sample + passive_timer) {
16 // Passive mode: don’t skip
17 last_sample = now;
18 return true;
19 }
20

21 // Passive mode: skip
22 return false;
23 }

Evaluation
To quantify the advantages of the XDP approach, we com-
pared the performance of 100 TCP CRR-style flows while the
host is subjected to SYN floods of various magnitudes. Fig-
ure 2 displays the achieved throughput, as percentage of the
maximum achieved throughput, at different flood rates, again
displayed as percentage of the maximum achieved flood rate.
The graph demonstrates two key results:
• The maximum SYN flood rate a host can absorb in XDP is

about 40% higher than without XDP.
• The impact on legitimate flows is much less significant at

higher flood rates when issuing SYN cookies in XDP.



Figure 2: 100-flow throughput at different SYN flood rates compared between kernel and XDP SYN cookie generation

Challenges and Future Work
One of the limitations of using XDP today is that there is no
agreed upon solution for supporting multi-buffer packets. [2]
In this particular case, this means we cannot attach the SYN
cookie BPF program on the driver XDP hook if the driver
supports packet header split. A workaround for this issue is to
attach the BPF program to either TC ingress or generic XDP,
both of which trade back some of the performance benefits.

One clear area for future work is to extend the BPF pro-
gram so it verifies that an incoming SYN-ACK carries a cor-
rect SYN cookie. While the support for this functionality is
already present in the Linux Kernel, it is unclear how to prop-
agate this information to the TCP/IP stack so a connection can
be established without duplicating the SYN cookie verifica-
tion. [3]

Conclusion
Issuing SYN cookies in XDP significantly improves the re-
silience of the networking stack to SYN flood attacks both in
terms of peak SYN flood absorption rate, and impact on cus-
tomer traffic. Additionally, the BPF nature of the implemen-
tation offers better visibility to ongoing attacks and higher ve-
locity for configuration changes, new metrics, and bug fixes.

Acknowledgements
Thanks to Willem de Bruijn, Jason Zhang, Wei Wang, Ma-
hesh Bandewar, Luigi Rizzo, Vlad Dumitrescu, and everyone

else for their continued feedback and support in the design of
this work.

References
[1] P. Penkov, “[bpf-next,v2 3/6] bpf: add

bpf tcp gen syncookie helper.” [Online]. Available:
https://lore.kernel.org/netdev/20190729165918.92933-
4-ppenkov.kernel@gmail.com/

[2] J. Brouer, “XDP multi buffer design.” [Online].
Available: https://github.com/xdp-project/xdp-
project/blob/master/areas/core/xdp-multi-buffer01-
design.org

[3] L. Bauer, “[PATCH bpf-next v3 4/8] bpf: add helper
to check for a valid SYN cookie.” [Online]. Available:
https://lore.kernel.org/netdev/20190322015406.26453-
5-lmb@cloudflare.com/


