
Test Your Limits With TRex Traffic Generator

Hanoch Haim, Cisco Systems

Abstract

Performance measurement tools are an integral part of network
testing. There is no shortage of open source tools for network
performance testing in the Linux world. To enumerate a few
popular tools in the Linux world: Netperf, iperf, Linux kernel
based pktgen. These tools tend to fall into two categories:

• Stateless packet shooting such as the Linux kernel pktgen
traffic generator

• Stateful client-server tools such as netperf and iperf.

When very high performance network performance testing
is required (quantified as many 10s of Gigabits per sec-
ond/100MPPS and/or hundreds of thousands of flows) or more
advanced functionality (e.g. realistic) is required the Linux
classical tools are insufficient. Most organizations will opt
for very expensive commercial tools such as Ixia, Spirent. In
this paper we will introduce TRex a high performance realis-
tic traffic generator and illustrate sample stateless and stateful
use cases that apply to testing Linux networking. We will also
discuss its design and tricks that help us achieve such high per-
formance.

Keywords
tcp, performance, scale,realistic traffic generation

Introduction
TRex [1] is an advanced traffic generator, it has the following
interesting features:

• It leverages COTS x86/ARM servers and physical NICs
(Intel, Mellanox etc) for high scale.

• Can support Linux driver or virtual (e.g. virtio/veth) for
low scale with advanced features (PF PACKET)

• It can serve both stateless and stateful traffic generation.
tcp stack for stateful traffic and emulation layer to simulate
L7 applications.

• It outperforms all of iperf, netperf and kernel pktgen:

– It can generate upto 200gbps/100mpps advance complex
patterns and millions of real world tcp/udp flows.

– High connection rate - order of Millions of Connection/s
(CPS).

• It is extensible:

– Can emulate L7 application (on top of TCP/IP), e.g.
HTTP/HTTPS/Citrix using a DSL programmable lan-
guage described in Python

– Ability to change fields in the L7 application - for exam-
ple, change HTTP User-Agent field

• Support routing protocols like BGP/OSPF/RIP using
BIRD [4]

• Support high scale clients simulation protocols like
arp,ipv6-nd,dhcp4,dhcp6,802.1x,icmp,igmp,mld using a
new process written in golang

Although TRex is implemented on top of DPDK, a lot of the
issues we had to deal with when writing the tool apply equally
to scaling Linux networking; we share our experiences in
that regard and hope to inspire some of the techniques to be
adopted in Linux.

Software design high level

Figure 1: Architecture

Figure 1 presents the main processes. TRex server (*1)
is a multi-threaded process, each thread is pinned to a core

and works in event driven fashion using a user-space sched-
uler with a few levels of hierarchy. There is one control-
plane (CP) thread that handles the RPC over ZMQ requests
and maintenance tasks. The RX thread is responsible for ac-
curate latency measurement. This thread usually consumes
very low CPU utilization. The DP threads generate the traf-
fic using DPDK to transmit/receive traffic via PMD queues.
The number of DP threads can be scaled up to the num-
ber of available Tx/Rx queues. There is almost no memory
sharing data structure and no locks to achieve the best per-
formance. Almost all the information between the threads
is exchanged using a messaging bus which is composed of
shared rings (DP→CP, CP→DP, Rx→DP, Rx→CP). The sys-
tem calls to the kernel are kept at minimum(only when re-
quired for example with PF PACKET/AF XDP driver) (*4)
is a Python wrapper to the JSON-RPC2 API over ZMQ to
supply easy automation (e.g. load a profile, get statistics
etc). On top of Python API there is a Console that can sim-
plify the way to work with the API. (*5) is the GUI writ-
ten in Java that works directly with the JSON-RPC2 and
supports only the stateless mode. (*2) is a BIRD [4] pro-
cess that works inside a Linux namespace and connects to
TRex via a programmable veths. Inside TRex’s RX thread
there is a Switch that forwards packets to/from the veth re-
lated to the Linux namespace. BIRD is used to simulate
routing protocols like BGP/OSPF/RIP. (*6) and (*3) is used
for simulating clients slow-path protocols like ARP/IPV6-
ND/IGMP/MLD/802.1x/DHCP/DHCPv6 while TRex server
is for the fast-path high speed TCP/UDP

Dataplane scheduler

Figure 2: Dataplane Scheduler

Figure 2 presents the schedulers in each DP thread. The
priority queue is the low level scheduler that can schedule
events at nsec resolution. In addition there are two timer
wheels for lower resolution events. The first timer wheel has
a resolution of 20usec with 1024 buckets for maximum of

2msec time. The second timer wheel has resolution of 1msec
with 1024 buckets and maximum of 1sec which cover most
of the timer duration needed. Each event in the second level
is spread each 20usec tick to reduce processing spikes. The
DPs transmit/receive messages from the shared rings using
events. This design achieves linear scale with a performance
about 4-20MPPS/core and 200gbps for one COGS server.

Figure 3: emix

Operation modes
From the functionality point of view TRex has two main op-
eration modes: stateful and stateless.

Stateful is meant for testing L7 services that care about
clients/flows/L7 application like DPI/NAT/Firewall, Figure 3
is an example of a mix of traffic that can be generated using
this mode.

Stateless is meant for testing Switch/Filters/ACL/QoS ser-
vices and has no flow/client state context.

Stateless mode
Stateless mode is meant to test networking gear/feature that
does not manage any state per flow (instead operating on a per
packet basis). This is usually done by injecting customized
packet streams to the device under test.

Figure 4: Stateless main objects

Figure 4 shows the model of a profile. Each interface sup-
ports one or more traffic profiles in parallel. Each traffic pro-
file supports one or more streams. Each stream includes the
following main properties:

• Packet: Packet template up to 9 KB

• Field Engine: A program that determines which field to
change and how to change

• Mode: Specifies how to send packets {Continuous, Burst,
Multi-burst}

• Rx Stats: Which statistics to collect for each stream

• Rate: Rate (pps or bps)

• Action: Specifies stream to follow when the current stream
is complete (valid for Continuous or Burst modes)

Figure 5: Stateless profile example

Figure 5 shows an example of a profile with three streams.
Stream 1 has a rate of 10pps stream 2 has a rate of 20 pps and
streams 3 has rate of 40 pps. All are configured for continuous
mode.

Listing 1 shows a simplified profile that matches Figure
5. The mode is Continuous. It uses Scapy for building the
template packet. This profile is converted to json and sent to
the TRex server for processing.

Stateless Features
• Large scale - Supports about 10-22 million packets per sec-

ond (mpps) per core, scalable with the number of cores

• Support for 1, 10, 25, 40, and 100 Gb/sec interfaces with
DPDK or PF PACKET.

• Support for multiple stateless traffic profiles per interface
each profile supports multiple streams.

• Programmable Field Engine to change any field inside the
packet template i.e.

src_ip=10.0.0.1 - 10.0.0.255

• Ability to change the packet size

• API,Console, GUI

• Statistics, per interface,per stream

• Latency and jitter per stream

• Multi-user support

Multi stream profile example
Figure 6 shows two streams. Stream 0 is a burst that activates
a multi-burst Stream 1 (With 5 burst of 4 packets). Listing 2
shows the Python script to create this profile.

class STLS1(object):

def __init__ (self):

self.fsize =64; # the size of the packet

def create_stream (self):

Create base packet and pad it to size

size = self.fsize - 4; # HW will add FCS

base_pkt = Ether()/

IP(src="16.0.0.1",dst="48.0.0.1")/

UDP(dport=12,sport=1025)

pad = max(0, size - len(base_pkt)) * 'x'

return STLProfile(

[STLStream(isg = 1.0, # start in delay in usec

packet=STLPktBuilder(pkt=base_pkt/pad),

mode=STLTXCont(pps=10),

),

STLStream(isg = 2.0,

packet= STLPktBuilder(pkt=base_pkt/pad),

mode= STLTXCont(pps=20),

),

STLStream(isg = 3.0,

packet = STLPktBuilder(pkt=base_pkt/pad),

mode = STLTXCont(pps=40))

]).get_streams()

Listing 1: Profile with one continues UDP stream

Figure 6: Multi stream profile

Field Engine

The field engine (FE) is a programmable engine that can
change any field in the packet and is part of the profile and
compiled into bytecode in the TRex server. The challenge
was to provide an engine that can change packet fields on a
number of cores in parallel but as a black-box it behaves as if
it runs on a single core (hardware like). FE works on stateless
mode only. Let us provide an example of a syn-attack profile
with a simple field engine program and explain it:

Listing 3 shows a FE program that generates a syn-attack
using one stream. Each stream object has a context for FE
variables. In this example there are two variables, ip src for
the range of the source IPv4 ips and the source port for
the range of the source tcp ports. Those variables are written
to the right offset in the packet and the checksum is fixed
accordingly (using hardware assist if possible).

def create_stream (self):

create a base packet and pad it to size

size = self.fsize - 4 # no FCS

base_pkt = Ether()/

IP(src="16.0.0.1",dst="48.0.0.1")/

UDP(dport=12,sport=1025)

base_pkt1 = Ether()/

IP(src="16.0.0.2",dst="48.0.0.1")/

UDP(dport=12,sport=1025)

pad = max(0, size - len(base_pkt)) * 'x'

return STLProfile(

[STLStream(isg = 10.0, # start in delay 1

name ='S0',

packet = STLPktBuilder(pkt=base_pkt/pad),

mode = STLTXSingleBurst(pps=10,

total_pkts=self.burst_size),

next = 'S1'), # run s1 after s0

stream is disabled. Enabled by S0

STLStream(self_start = False,

name ='S1',

packet = STLPktBuilder(pkt=base_pkt1/pad),

mode = STLTXMultiBurst(pps = 1000,

pkts_per_burst = 4,

ibg = 1000000.0,

count = 5)

)

]).get_streams()

Listing 2: Multi profile example

Automation using Python API
Listing 4 shows a simple script to automate TRex. It is self-
explanatory.

Stateless Performance
Figure 7 [5] shows the measured performance on a Cisco
UCS server with dual socket CPU E5-2667 v3@3.20GHz
8cores/per socket and two Intel XL710 NICS (4 ports total
of 4x40gbps)

In Figure 7 IMIX refers to a mix of packets size see [7]
with an average packet size of 364 bytes. In case of 64B
packet size the maximum L1 utilization is only 52% due to
XL710 chip limitation and not CPU/software.

Stateful mode
The stateful model’s objective is to simulate realistic L7 ap-
plications on top of a TCP/UDP stack at high scale. A fork
of a BSD TCP module running in a user space is used for this
purpose. The scale could reach millions of flows and around
100k clients/servers up to 200gbps for one server. It is im-
portant to test stateful features using realistic traffic scenarios
because this is the only way to estimate accurate performance
metrics and identify bottlenecks in the design.

The high level features are:

• Realistic traffic at high scale (flows, bandwidth, connection
per second)

class STLS1(object):

""" attack 48.0.0.1 at port 80

"""

def create_stream (self):

TCP SYN

base_pkt = Ether()/

IP(dst="48.0.0.1")/

TCP(dport=80,flags="S")

create an empty program (VM)

vm = STLVM()

define two vars

vm.var(name = "ip_src",

min_value = "16.0.0.0",

max_value = "18.0.0.254",

size = 4,

op = "random")

vm.var(name = "src_port",

min_value = 1025,

max_value = 65000,

size = 2,

op = "random")

write src IP and fix checksum

vm.write(fv_name = "ip_src",

pkt_offset = "IP.src")

vm.fix_chksum()

write TCP source port

vm.write(fv_name = "src_port",

pkt_offset = "TCP.sport")

create the packet

pkt = STLPktBuilder(pkt = base_pkt, vm = vm)

return STLStream(packet = pkt,

random_seed = 0x1234,

mode = STLTXCont())

Listing 3: FE syn-attack on 48.0.0.1 server

• Measure latency/jitter/drop in high rate

• Emulate L7 application, e.g. HTTP/HTTPS/Citrix- there is
no need to implement the exact application.

• TCP implementation

• Automation Python API

• TCP/UDP/Application statistics (per client side/per tem-
plate)

Figure 8 presents the main objects in stateful mode
Each profile includes:

• Client pool: Range of clients with a distribution model
(e.g. random,seq). A profile can include a few pools.

• Server pool: Range of servers, profile can include a few
pools.

c = STLClient(username="itay",

server = "10.0.0.10",

verbose_level = "error")

try:

connect to server

c.connect()

prepare our ports

c.reset(ports = [0, 1])

add both streams to ports

c.add_streams(s1, ports = [0])

clear the stats before injecting

c.clear_stats()

c.start(ports = [0, 1],

mult = "5mpps",

duration = 10)

block until done

c.wait_on_traffic(ports = [0, 1])

check for any warnings

if c.get_warnings():

handle warnings here

pass

finally:

c.disconnect()

Listing 4: Stateless automation example

• Template: A model that describes an application on top of
TCP/UDP. Each template could be associated with a dif-
ferent pool of clients/servers. The L7 data can be extracted
from a pcap file and converted to an emulation program
– CPS: How many connections per second to generate for

this template.
– Program: Emulation instructions to simulate the L7 ap-

plication e.g. HTTP e.g. writeBuffer/readBuffer
– Client/Server pool name: Associated with one of the

pools
– Statistics pool: The index of the TCP/UDP statistic

counters pool. Good for QoS scenarios; each template
could be associated with different pool of counters

Figure 9 presents the traffic generation model.
In this mode, each core has its own context of TCP/UDP

stack with no memory sharing and no locks. It works on top
of the scheduler hierarchy shown in Figure 2. The most sig-
nificant changes to the BSD stack were:
• Each stack has a context per thread. No memory sharing,

no locks. GRO/LRO/TSO is supported.
• Tx works in pool mode (it builds the packets only when

required) and saves a reference to the template data. This
saves three orders of magnitude of memory resource.
Figure 10 shows the stack of the programmable application

emulation layer. This module is responsible to simulate ap-

Figure 7: Stateless performance with Intel XL710

Figure 8: Stateful main objects

plications on top of the TCP/UDP stack. The program is part
of a template. Some possible instructions are:

• Start write of buffer
• Continue write
• End Write
• Wait for buffer/timeout
• OnConnect/OnReset/OnClose

Stateful Profile Example
Listing 5 shows a simple profile with one pool of clients

(16.0.0.1-16.0.0.254) and one pool of servers
(48.0.0.1-48.0.255.254). The pcap file is parsed
and the L7 data is converted to instructions on top of the TCP
stack.

Emulation layer instructions
Listing 6 shows a simple example of low level instructions of
the emulation layer. In this example the client sends a request
and waits for the response while the server waits for the re-
quest and sends a response. Listing 7 and Listing 8 shows the

Figure 9: Stateful model

Figure 10: Stateful stack

pseudo user-space code that is executed for each flow for List-
ing 6 emulation program to better understand how it works
internally.

Automation example
Listing 9 shows an example of a Python script to automate a
stateful profile and read the port and the TCP statistics.

Stateful optimization

Figure 11: One Flow Tx Ring

Most TCP stacks have an API that allow the user to provide
a buffer (write operation). The TCP module stores the buffer
until the data is acknowledged by the remote side. With big
TCP windows (required with high RTT) and many flows this
could create a memory scale issue. Figure 11 shows one TCP
flow Tx queue and Figure 12 shows the Rx side of the same
flow. For 1M active flows with a 64K Tx buffer the worst case
memory requirement is 1M · 64K · mbufs = 128GB The
mbuf resource is expensive and needs to be allocated ahead

from trex.astf.api import *

class Prof1():

def get_profile(self):

clients pool range and distribution type

ip_gen_c = ASTFIPGenDist(

ip_range=["16.0.0.1", "16.0.0.254"],

distribution="seq")

servers pool range and distribution type

ip_gen_s = ASTFIPGenDist(

ip_range=["48.0.0.1", "48.0.255.254"],

distribution="seq")

pool definition for both clients and servers

ip_gen =

ASTFIPGen(

glob=ASTFIPGenGlobal(ip_offset="1.0.0.0"),

dist_client=ip_gen_c,

dist_server=ip_gen_s)

Parse the pcap file and convert to instructions

cps is 1 flows/sec

return ASTFProfile(default_ip_gen=ip_gen,

cap_list=[ASTFCapInfo(

file="../avl/delay_10_http_browsing_0.pcap"

cps=1)

])

Listing 5: Stateful profile

client side HTTP program

prog_c = ASTFProgram()

prog_c.send(http_req)

prog_c.recv(len(http_response))

server side HTTP program

prog_s = ASTFProgram()

prog_s.recv(len(http_req))

prog_s.send(http_response)

Listing 6: Emulation layer instructions

of time (because it is shared with the NIC and translation vir-
tual/physical need to be known). The chosen solution for this
problem is to change the API to be a poll API, meaning the
TCP Tx queue will just save a reference to the constant traffic
and offset. The packets will be assembled with a reference to
a constant mbufs only when packets need to be sent (lazy).
Now because most of the traffic is almost constant in traf-
fic generation cases (per template) and known ahead of time
it was possible to implement and save most of the memory.
The same idea happens in the Rx side with reassembly. 1

Benchmark TRex vs Linux kernel
To evaluate the performance and memory scale of TRex and
compare it against standard Linux tools the following was
done: Linux nginx as a server were compared to TRex for
stressing a device under test.

1This will not work for TLS streams

for better understand how TRex works,

this pseudo code is the linux version of the emulation

layer (client side)

template = choose_template()

src_ip,dest_ip,src_port = generate from pool of client

dst_port = template.get_dest_port()

s = socket.socket(socket.AF_INET,

socket.SOCK_STREAM)

s.connect(dest_ip,dst_port)

program

s.write(template.request)

GET /3384 HTTP/1.1

Host: 22.0.0.3

Connection: Keep-Alive

User-Agent: Mozilla/4.0

Accept: */*
Accept-Language: en-us

Accept-Encoding: gzip, deflate, compress

s.read(template.request_size)

#HTTP/1.1 200 OK

#Server: Microsoft-IIS/6.0

#Content-Type: text/html

#Content-Length: 32000

body ..

s.close();

Listing 7: Client pseudo code

Figure 12: One Flow Rx Ring

The benchmark setup was designed to take a popular event-
driven Linux server application and to test using a TRex
client. TRex client requests the pages. Figure 13 shows
the topology in this case. TRex is in a different server con-
nected to the nginx server with 10gbps fiber. nginx is
installed on another server. TRex generates requests using
one DP core/thread and exercises the whole 16 cores of the
nginx/Linux server. After some trial and error, it was deter-
mined that it is more difficult to separate Linux kernel/IRQ
contexts events from user space process CPU, so it was cho-
sen to give the nginx all the server resources, and monitor to
determine the limiting factor. The objective is to create a new
TCP flow for each HTTP request/response session instead of
keeping the same TCP flow opened and just generate a new
request/response. This might be the main difference between
nginx’s benchmark configuration and this document’s con-
figuration.

To provide a baseline benchmark, the nginx server was

for better understand how TRex works,

this pseudo code is the linux version of the emulation

layer (server side)

if this is SYN for flow that already exist,

let TCP handle it

if (flow_table.lookup(pkt) == False) :

first SYN in the right direction with no flow

compare (pkt.src_ip/dst_ip to the generator ranges)

check that it is in the range or

valid server IP (src_ip,dest_ip)

#get template for the dest_port

template= lookup_template(pkt.dest_port)

create a socket for TCP server

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) 1

bind to the port

s.bind(pkt.dst_ip, pkt.dst_port)

s.listen(1)

#program of the template 2

s.read(template.request_size)

GET /3384 HTTP/1.1

Host: 22.0.0.3

Connection: Keep-Alive

User-Agent: Mozilla/4.0 ..

Accept: */*
Accept-Language: en-us

Accept-Encoding: gzip, deflate, compress

s.write(template.response)

#HTTP/1.1 200 OK

#Server: Microsoft-IIS/6.0

#Content-Type: text/html

#Content-Length: 32000

body ..

s.close()

Listing 8: Server pseudo code

replaced with a TRex server with one DP core, using an
XL710 NIC (40Gb). see Figure 14. In this case there was
need for a faster NIC so XL710 NIC was used (40gbps) in-
stead of X710 (10gbps)

Benchmark traffic profile
Typically, web servers are tested with a constant number of
active flows that are opened ahead of time. In the nginx
benchmark blog, only 50 TCP constant connections are used
with many requests/responses For each TCP connection see
here [6]. In our traffic generation use case, each HTTP re-
quest/response (for each new TCP connection) requires open-
ing a new TCP connection. A simple HTTP flow with a re-
quest of 100B and a response of 32KB (about 32 packets/flow
with initwnd=2) was used. We used this profile because it is
part of our EMIX profile.

c = ASTFClient(server = server)

c.connect()

try:

c.reset()

c.load_profile(profile_path)

c.clear_stats()

c.start(mult = mult,

duration = duration,

nc = True)

c.wait_on_traffic()

stats = c.get_stats()

pprint.pprint(stats)

if c.get_warnings():

for w in c.get_warnings():

print(w)

except TRexError as e:

print(e)

except AssertionError as e:

print(e)

finally:

c.disconnect()

Listing 9: Stateful automation example

Benchmark Limitations
The comparison is not perfect, as TRex merely emulates
HTTP traffic. It is not a real-world web server or HTTP
client. For example, currently the TRex client does not
parse the HTTP response for the Length field. TRex sim-
ply waits for a specific data size (32KB) over TCP. How-
ever the TCP layer is a fully featured TCP (e.g. delay-
ack/Retransmission/Reassembly/timers) . The benchmark’s
objective is to compare traffic generation capabilities for
stressing network gears and not to replace nginx servers.

Benchmark results
Comparing 1 DP core running TRex to nginx running on
16 cores with a kernel that can interrupt any nginx pro-
cess with IRQ. Figure 15 shows the performance of one DP
TRex. m stands for multiplier of the baseline profile. It
can scale to about 25Gb/sec of download of HTTP (total of
3MPPS/90KCPS/60k active flows for one core).
nginx cannot handle more than 20K new flows/sec, due to

the kernel TCP software IRQ interrupts processing. The limi-
tation is the kernel and not nginx’s user space process. With
more NICs and optimized distribution, the number of flows

Figure 13: TRex,NGINX server Performance Testing

Figure 14: TRex Client Server

could be increased times two, but not more than that. The to-
tal number of packets was approximately 600KPPS (Tx+Rx).
The number of active flows was 12K.

TRex with one core could scale to about 25Gb/sec, 3MPPS
of the same HTTP profile. The main issue with nginx and
Linux setup is the tunning (this might be improved with more
sophisticated tunning). It is very hard to let the hardware uti-
lize the full server resource (half of the server was idle in this
case and still experienced a lot of drop). TRex is not perfect
too, we couldn’t reach 100% CPU utilization without a drop
(CPU was 84%). To achieve 100gbps with this profile on the
server side requires 4 cores for TRex, vs. 20x16 cores for
nginx servers. TRex is faster by a factor of 80. In this im-
plementation, each flow requires approximately 1K bytes of
memory (regardless of Tx/Rx rings because of TRex archi-
tecture). In the kernel, with a real-world server, TRex opti-
mization can’t be applied and each TCP connection must save
memory in Tx/Rx rings. For about 5Gb/sec traffic with this
profile, approximately 10GB of memory was required (both
nginx and Kernel). For 100Gb/sec traffic, approximately
200GB is required (extrapolation) With a TRex optimized im-
plementation, approximately 100MB is required. TRex thus
provides an improvement by a factor or 2000 in the use of
memory resources.

Routing protocol using BIRD
Bird Internet Routing Daemon [4] is a project aimed to de-
velop a fully functional Linux dynamic IP routing daemon for
BGP/OSPF/RIP and more. It was integrated into TRex to run
alongside in order to exploit its features together with Python
automation API using Linux network namespace and veth. In
this case the Linux TCP stack is used (e.g. BGP) and packets
from the veth is moved from/to to the physical ports. Figure
17 shows the integration with TRex server. The pyBird server
is a daemon that receives JSON-RPC2 over ZMQ RPC com-
mands from one side and interact with BIRD daemon using
ssh/text protocol. The BIRD automation API interacts with
both BIRD and TRex to set the right filters and configure the
veth/. Using the API, one can push 1M of BGP routes in a
few seconds to the DUT.

Figure 15: TRex 1 DP core

Figure 16: NGINX 16 cores

Figure 18 show a simple example of configuration with 2
ports. BIRD has 2 veth’s in the same subnet of TRex ports.
Listing 10 shows a sample profile to push 11 BGP routes
42.42.42.0-10/32 via 1.1.1.3

Acknowledgments
This project was incubated inside Cisco Systems with a small
team: Lior Katzri, Itay Marom, Ido Barnea and Yaroslav
Brustinov. Today there are many contributers but I would
like to mention Gwangmoon Kim team from Ericsson for the
discussions, suggestions and contribution of many complex
features.

Figure 17: BIRD TRex integration

Figure 18: BIRD Simple Example

References
[1] Cisco systems: “TRex realistic traffic generator”,

https://trex-tgn.cisco.com/trex/doc/

[2] Cisco systems, “TRex Stateless”,,
https://trex-tgn.cisco.com/trex/doc/trex stateless.html

[3] Cisco systems, “TRex Stateful ASTF”,,
https://trex-tgn.cisco.com/trex/doc/trex astf.html

[4] BIRD, Faculty of Math and Physics, Charles University
Prague
https://bird.network.cz/

[5] Cisco systems, “TRex STL benchmark”,,
https://trex-tgn.cisco.com/trex/doc/trex stateless bench.html

[6] NGINX performance
https://www.nginx.com/blog/testing-the-performance-of-nginx-and-nginx-plus-web-servers/

[7] IMIX
https://en.wikipedia.org/wiki/Internet Mix

router id 100.100.100.100;

protocol device {

scan time 1;

}

protocol bgp my_bgp1 {

put your local ip and as number here

local 1.1.1.3 as 65000;

put your dut ip and as number here

neighbor 1.1.1.1 as 65000;

ipv4 {

import all;

export all;

};

}

using a second interface

protocol bgp my_bgp2 {

same for the second interface

local 1.1.2.3 as 65000;

neighbor 1.1.2.1 as 65000;

ipv4 {

import all;

export all;

};

}

protocol static {

ipv4 {

import all;

export all;

};

route 42.42.42.0/32 via 1.1.1.3;

route 42.42.42.1/32 via 1.1.1.3;

route 42.42.42.2/32 via 1.1.1.3;

route 42.42.42.3/32 via 1.1.1.3;

route 42.42.42.4/32 via 1.1.1.3;

route 42.42.42.5/32 via 1.1.1.3;

route 42.42.42.6/32 via 1.1.1.3;

route 42.42.42.7/32 via 1.1.1.3;

route 42.42.42.8/32 via 1.1.1.3;

route 42.42.42.9/32 via 1.1.1.3;

route 42.42.42.10/32 via 1.1.1.3;

}

Listing 10: BIRD configuration

