
SONiC and Linux
Guohan Lu (Microsoft)

Kalimuthu Velappan (Broadcom)

Kiran Kella (Broadcom)

Marian Pritzak (Nvidia)

19/11/2020

Agenda

• Motivation

• SONiC Architecture

• Beyond Single ASIC

• Sonic features and linux

• System Scaling

• Full cone NAT

9/11/2020 2

What is SONiC

• Software for Open Networking in the Cloud

• A collection of software components/tools
• Builds on the foundations of SAI

• Provides L2/L3 functionalities targeted for the cloud

• Linux-based switch operating system, looks and feels like Linux

• Community driven, open source effort
• Shared on GitHub, Apache License

• Believe in working code + quick iteration

SONiC Container Architecture – Single ASIC

DHCP

K
er

n
el

U
se

r
Sp

ac
e

Switch State
Service

Network device drivers

netdev
ASIC PCI driver

HW Peripheral drivers

PAL - sysfs

PMON SNMP LLDP BGP TeamD

Database
SyncD

SAI

SystemD Services

Database

SWSS

Syncd

BGP

Teamd

…
…

Switch State Service (SSS)

SAI DB: persist SAI objects

APP DB: persist App objects

DB backend: redis with object
library

SyncD: sync SAI objects between
software and hardware

Orchestration Agent: translation
between apps and SAI objects,
resolution of dependency and
conflict

Key Goal: Evolve components
independently

APP
DB

SAI DB O
b

je
ct

 L
ib

ra
ry

 w
/

R
ed

is
B

ac
ke

n
d

ASIC

SAI

Network
Applications

SyncD

Orchestration Agent

SONiC Software Module

• TEAMD:
https://github.com/jpirko/libteam/tree/ma
ster/teamd

• LLDP:
https://github.com/vincentbernat/lldpd

• BGP: Quagga
• SNMP: Net-SNMP + SNMP subagent

• DHCP Relay: isc dhcp

• Platform: sensors
• DB: redis
• SWSS: switch state service

• Syncd: sairedis + syncd agent

9/11/2020 6

SONiC Base Image

BGP

SWSS

LLDP SNMP

TEAMD

SYNCD

Platform

DHCP
RELAY

DB

ONIE

https://github.com/jpirko/libteam/tree/master/teamd
https://github.com/vincentbernat/lldpd

How Routing Works in SONiC

APP
DB

SAI DB

SyncD

Orchestration Agent

ASIC

Host Intf
netdev

BGP
Neighbor

ZebraBGPd

socket

SAI Route

SAI Redis

fpmsyncd

How LAG Works in SONiC

APP
DB

SAI DB

SyncD

Orchestration Agent

ASIC

Host Intf
netdev

LACP
Neighbor

teamD

socket

SAI lag

teamD
netdev

SAI Redis

teamsyncd

Beyond Single ASIC

9/11/2020 9

Linux Network Namespaces For Multiple ASICs

•SONiC Dockers with Linux Network Namespaces

• Replicate bgp, syncd, swss, teamd, lldp, database
dockers per ASIC

• Different network namespaces for docker instances

Namespace 0 Namespace 1

Namespace 0 Namespace 1 Namespace 2 Namespace 3

SNMP

PMON

Telemetry

SONiC

Teamd

Database

SWSS

Syncd

BGP

LLDP

How routing works?

9/11/2020 12

Marian Pritsak, August 2020

SONIC FEATURES AND
LINUX

14

VNET

Sflow

ACL

NAT

Switch Memory Management

SONiC Virtual Switch

Features

15

VNET

VxLAN routing in SONiC

Connect Bare Metal machines to cloud VMs

Provisioning done by controller

Routes

Neighbors

No VxLAN device created in Linux

Underlay routing is programmed by BGP

As opposed to EVPN design (WIP) that is fully reflected in Linux

16

SFLOW

Psample driver ported
to Linux 4.9

NPU drivers are
required to support
psample

Netlink as host
interface channel for
packets

tc_sample is used for
virtual SONiC switch
testing environment

17

ACL

ACL in SONiC is used for:

Firewalling

Data plane telemetry

Packet mirroring

Enable/Disable NAT

PBR

ACL tables are not programmed in Linux,

Except NAT

SONiC keeps a separate table for control plane ACL

Implemented with iptables

18

NAT

Use cases

DNAT

SNAT

Hairpinning

NAPT

Full cone

All reflected in Linux
with iptables

19

SWITCH MEMORY MANAGEMENT

Comprehensive MMU object model

QoS maps

Shared buffers

Policers

Schedulers

Queueing algorithms

WRED

ECN

Fine tuning for specific use cases

TCP networks

RDMA networks

Programmed directly through SAI

20

SONIC VIRTUAL SWITCH

Virtual SONiC platform for generic feature validation

Two flavors

Docker image

VM

Core forwarding behavior modeled by Linux

Virtual ports for the data plane

L2 forwarding

L3 routing

Sflow

Control plane ACL

Netlink Message Filter

- Kalimuthu Velappan

Introduction

• Netlink messaging Architecture

• System Scaling Issue

• Proposed solution
• BPF – Berkeley Packet Filter

• Q & A

Netlink Messaging Framework

• Network Applications mainly uses the NETLINK_ROUTE family for
receiving the netdevice notifications (Port, Up/Down, MTU, Speed,
etc.)

• Each netdevice notifies the netlink subsystem about the change in its
port-properties

• It is a broadcast domain

• Netlink subsystem posts a netlink message to socket recv-Q of all the
registered applications

• Application then reads the message from the recv-Q

Ex: Ethernet0 is added to 4K Vlans
<<config vlan member range add 2 4094 Ethernet0>>

Application
1 (VLAN mgr)

User
Space

Kernel
Space

NETLINK subsystem

4K Vlans Ethernet0

NetDevices

8190

Application
2(teamd)

8190

Application
3(stpd)

Application
4(udld)

8190 8190

System Scaling Issue

• Every net device has multiple attributes

• Any attribute change will generate a netlink message
notification

• Each application registers for kernel netlink notification

• Application has to receive/process all the messages,
whether it’s interested in them or not

• When 4K VLAN is configured per port, It generates ~8K
netlink messages

• On a scaled system
• More than 1M unnecessary messages can be broadcast across system

• Application is not able to process all the messages during config reload
and system reboot

• Due to this burstiness, important Netlink messages might get
delayed/dropped in kernel(ENOBUFF)

• Dropped Netlink messages can’t be retrieved!!!

Netlink msg send

Netlink msg recv

Proposed Solution – Berkeley Packet Filter

• Filter to drop all unwanted netlink messages in Kernel
using Berkeley Packet Filter(BPF)

• Filter is applied for each application socket in kernel

• Filter is based on the one or more message attributes

• Application will get a notification only when a
requested attribute changes

Application
1(VLAN mgr)

Ethernet0 is added to 4K
Vlans
<< config vlan member range add 2
4094 Ethernet0>>

User
Space

Kernel
Space

NETLINK subsystem

4K Vlans Ethernet0

8190

Application

2 (teamd)

Dropped
8190

Application

3(stpd)
Application

4 (udld)

8190

Dropped
8190

0 0

Application

Netlink Message Filtering Mechanism

• Berkeley Socket Filter (BPF) - Interface to execute Micro ASM
in the kernel as a Minimal VM

• ASM Filter code gets executed for every packet reception

• Return value decides whether to accept/drop the packet

• Gets executed as part of Netlink message sender context

Required Changes

• Kernel patch for nlattr and nestednlattr helper functions.

• Customized eBPF filter logic to drop unnecessary messages
for the application

f d = socket(NETLINIK_ROUTE)

Socket fd
Receive netlink message

Hash MAP

DB

BPF Filter

User

Kernel

Netlink subsystem

KEY /
IFINDEX

VALUE/
Attributes

1 [s:1, f:2, v:3]

64 [s:1, f:3, v:7]

23 [s:1, f:5, v:6]

setsockoption(fd,
SO_ATTACH_BPF..)

recvmsg(fd..)

BPF verif ier

BPF JIT

compiler

BPF Filter Logic

(ASM)

• Filter Logic:
• Entry { KEY: Interface, VALUE { Attr : Value, … } }

• Hash map to store only the required attribute information

• It filters all the NetLink messages except the interested attribute
changes

• Application will get notification only when interested attribute
changes

Support for full cone NAT

- Kiran Kumar Kella

NAT in Linux
• Linux today does NAT based on 5-tuple uniqueness of the translated conntrack

entries

• For example, with an iptables rule, the following 2 traffic flows are subjected to SNAT as
below

• Both flows SNAT to the same external IP + Port (125.56.90.50:1001) as they are 5-tuple unique [Protocol
+ SIP + SPORT + DIP + DPORT]

#iptables -t nat -nvL

Chain POSTROUTING (policy ACCEPT 33097 packets, 2755K bytes)

pkts bytes target prot opt in out source destination

41987 2519K SNAT udp -- * * 192.168.10.0/24 0.0.0.0/0 to:125.56.90.50:1001-2000

SIP/SPORT 192.168.10.1:100
DIP/DPORT 8.8.8.8:200

SIP/SPORT 125.56.90.50:1001
DIP/DPORT 8.8.8.8:200

SIP/SPORT 192.168.10.2:100
DIP/DPORT 9.9.9.9:200

SIP/SPORT 125.56.90.50:1001
DIP/DPORT 9.9.9.9:200

SNAT

SNAT

Support for full cone NAT in Linux
• RFC 3489 says:

Full Cone: A full cone NAT is one where all requests from the same internal

IP address and port are mapped to the same external IP address and port.

Furthermore, any external host can send a packet to the internal host, by

sending a packet to the mapped external address.

• Some switching ASICs that can leverage from Linux NAT feature would need full
cone NAT support in Linux

• In other words, to support full cone NAT would need 3-tuple uniqueness of the
conntrack entries

SIP/SPORT 192.168.10.1:100
DIP/DPORT 8.8.8.8:200

SIP/SPORT 125.56.90.50:1001
DIP/DPORT 8.8.8.8:200

SIP/SPORT 192.168.10.1:100
DIP/DPORT 9.9.9.9:200

SIP/SPORT 125.56.90.50:1001
DIP/DPORT 9.9.9.9:200

SIP/SPORT 192.168.10.2:100
DIP/DPORT 11.11.11.11:200

SIP/SPORT 125.56.90.50:1002
DIP/DPORT 11.11.11.11:200

SNAT

SNAT

SNAT

SIP/SPORT 12.12.12.12:300
DIP/DPORT 192.168.10.1:100

SIP/SPORT 12.12.12.12:300
DIP/DPORT 125.56.90.50:1001

DNAT

• New hash table (nf_nat_by_manip_src) is added as an infra to
support the 3-tuple uniqueness. This table hashes on the 3-tuple
translated source (Protocol + SIP + SPORT)

• Core changes needed in
nf_nat_core.c in the routines

get_unique_tuple() and

nf_nat_l4proto_unique_tuple()

Hash table

nf_nat_by_source Conntrack1 Conntrack2 Conntrack3

New hash table

nf_nat_by_manip_src

Conntrack4 Conntrackx

Changes done in NAT/conntrack modules

• The new hash table is updated during the SNAT to ensure 3-tuple
unique translation (full cone) for a given internal IP + Port.

• The same table is looked up by hashing on the destination IP + Port in
the reverse direction during DNAT to achieve the full cone behavior.

• Enhancement needed in iptables tool to pass the fullcone option to
the kernel

#define NF_NAT_RANGE_FULLCONE (1 << 6)

Changes done in NAT/conntrack modules

#iptables -t nat -nvL

Chain POSTROUTING (policy ACCEPT 33097 packets, 2755K bytes)

pkts bytes target prot opt in out source destination

41987 2519K SNAT udp -- * * 192.168.10.0/24 0.0.0.0/0 to:125.56.90.50:1001-2000 fullcone

Broadcom Proprietary and Confidential. Copyright © 2018 Broadcom. All Rights Reserved. The term “Broadcom” refers to Broadcom Inc. and/or its subsidiaries.

Questions? Thank You

