
Oz Shlomo – ozsh@nvidia.com

Paul Blakey – paulb@nvidia.com

TC CONNECTION
TRACKING

mailto:ozsh@nvidia.com

2

COMMUNITY CREDITS

Bi-weekly synch meetings lead by Aaron Conole from RH

Participations from RH, Mellanox, Netronome, Intel and Broadcom

Guest appearances by David Miller

Marcelo Ricardo Leitner supporting the development and review

Jiri Pirko for TC integration

Pablo Neira Ayuso for nf flow table hardware offload

Connection tracking offload is available since Kernel 5.7

3

Connection tracking overview

Offloading established connections

Connection tracking hardware model

AGENDA

4

CONNECTION TRACKING

Building block for stateful packet filtering

Finds the connection in DB or creates a new entry

Associates a CT state – new, established, related

Initializes user defined mark and label value

Performs NAT – flagged with snat/dnat ct state

Validates the packets – controlled with tcp_liberal flag

Used by multiple user-space applications

iptables, nft and openvswitch

5

CONNECTION TRACKING IN TC

TC action ct looks up the connection’s CT state

Uses netfilter conntrack module

Performs NAT

Sets the ct_state, mark, label

Flower classifier matching

Fields: zone, ct_state, mark, label

Introduced in kernel 5.3

net/sched: Introduce tc connection tracking series

Classifier and action

https://patchwork.ozlabs.org/project/netdev/cover/1562657451-20819-1-git-send-email-paulb@mellanox.com/

6

CONNECTION TRACKING USE CASE USING TC
Allow ingress traffic on tcp dst port 80

NIC with embedded hardware switch

Linux Kernel

PF

VF1VF0 Uplink_repVf1_rep vf0_rep

VMWeb Server VM

OVS

tc filter add dev uplink_rep ingress prio 1 chain 1 proto ip flower ct_state -trk ip_proto tcp dst_port 80 action ct pipe action goto chain 2
tc filter add dev uplink_rep ingress chain 1 prio 1 proto ip flower ct_state +new+trk action ct commit pipe action mirred egress redirect dev vf0_rep
tc filter add dev uplink_rep ingress chain 1 prio 1 proto ip flower ct_state -new+est+trk action mirred egress redirect dev vf0_rep

tc filter add dev vf0_rep ingress prio 1 chain 1 proto ip flower ct_state -trk ip_proto tcp src_port 80 action ct pipe action goto chain 2
tc filter add dev vf0_rep ingress chain 1 prio 1 proto ip flower ct_state +est+trk action mirred egress redirect dev uplink_rep
tc filter add dev vf0_rep ingress chain 1 prio 1 proto ip flower ct_state +new+trk action drop

7

CONNECTION TRACKING OFFLOAD

Connection setup and teardown is handled by software

Connection aging is managed by the software

Established connections are offloaded

Offloading only established connections

8

OFFLOADING ESTABLISHED CONNECTIONS

Possible entry points for offloading established events

From nf conntrack

From act_ct

Using nf flowtable – available since kernel 4.16

Integrates with nf conntrack

nf flowtable owns the connection and manages its aging

Can be accelerated in hardware

Common platform to serve both nft and tc hardware offload

Design alternatives

9

OFFLOADING ESTABLISHED CONNECTIONS

Manage the established connections in a netfilter flow table

Lookup a <ct_zone, ip proto, src ip, dst ip, src port, dst port>6-tuple

On hit – set the ct_state, mark, label and performs NAT

Delete aged connections

netfilter flow tables

Action CT

nf flow table nf conntrack

nf_flow_offload_lookup Set ctinfo on skb nf_conntrack_in Set ctinfo on skb

1 2

10

OFFLOADING ESTABLISHED CONNECTIONS

Manage the established connections in a netfilter flow table

Lookup a <ct_zone, ip proto, src ip, dst ip, src port, dst port>6-tuple

On hit – set the ct_state, mark, label and performs NAT

Delete aged connections

netfilter flow tables

Action CT

nf flow table nf conntrack

nf_flow_offload_lookup Set ctinfo on skb nf_conntrack_in Set ctinfo on skb

1 2

The table we wish to

offload

11

MANAGING FLOW TABLES

Flow tables are created per zone

Shared (referenced counted) by all CT action instances

Flow tables are deleted on the last action reference

act_ct module reference is incremented per flow table

Flows are added when connections are in established state

5-tuple for both directions, NAT indication, nf_conn instance

Nf flow tables owns the flow

Aging is managed by nf flow tables

Introduced in kernel 5.6

act_ct: Software offload of conntrack_in

Act CT implementation

https://patchwork.ozlabs.org/project/netdev/cover/1583251072-10396-1-git-send-email-paulb@mellanox.com/

12

OFFLOADING ESTABLISHED CONNECTIONS

Flow offload instance is added to the flow table

Match parameters: zone, 5-tuple

Action parameters: CT metadata parameters (ct_state, mark, label) , NAT header rewrites

Tuples that are offloaded by act_ct perform the following actions

(new) meta action – mark, label, reference to nf_ct_conn object

NAT mangle action (src/dst ip, src/dst port)

Hardware offload input parameters

13

OFFLOADING ESTABLISHED CONNECTIONS

Nf flow table callbacks registration is managed by the driver

Act CT is not aware of the net devices

Nf flow table is not aware of the devices

Tc is not aware of nf flow table

Nf flow table exports nf_flow_table_offload_add_cb/nf_flow_table_offload_del_cb methods

FT instance is passed as act_ct flow offload parameter while offloading the filter

Managed using flow_block_cb object

Driver manages its registration by ref counting offloaded act_ct actions

Mellanox driver implementation was introduced in kernel 5.7

Introduce connection tracking series

Driver notification

https://patchwork.ozlabs.org/project/netdev/cover/1584008597-15875-1-git-send-email-paulb@mellanox.com/

14

OFFLOADING ESTABLISHED CONNECTIONS

Current tc filter offload infrastructure does not provide a mechanism for offloading established flows

Act CT is partially processed by hardware (only established flows)

Established connections are added to nf flow table instances

Software offload – bypassing nf conntrack

Hardware offload – notifying drivers of established connections

Connection setup and teardown is managed by software

Aging is managed by nf flow table

Hardware stats are retrieved using stats cb method

Summary

15

MONITORING OFFLOADED CONNECTIONS

nf_conntrack procfs output

OFFLOAD – Connection is owned by nf flow table (software offload)

HW_OFFOAD – Connection is in hardware

sudo cat /proc/net/nf_conntrack

ipv4 2 tcp 6 src=5.5.5.5 dst=5.5.5.9 sport=41460 dport=5201 src=5.5.5.9 dst=5.5.5.5 sport=5201 dport=41460 [OFFLOAD/HW_OFFLOAD] mark=0 zone=0 use=3

ipv4 2 tcp 6 src=5.5.5.5 dst=5.5.5.9 sport=41462 dport=5201 src=5.5.5.9 dst=5.5.5.5 sport=5201 dport=41462 [OFFLOAD/ HW_OFFLOAD] mark=0 zone=0 use=3

HW_OFFLOAD flag was added to kernel 5.7

netfilter: nf_conntrack, add IPS_HW_OFFLOAD status bit

https://patchwork.ozlabs.org/project/netfilter-devel/patch/20200421150416.19151-1-bodong@mellanox.com/

16

CONNECTION TRACKING HARDWARE MODEL

tc filter add dev uplink_rep ingress chain 0 prio 1 proto ip flower ct_state -trk ip_proto tcp dst_port 80 action ct pipe action goto chain 2

tc filter add dev uplink_rep ingress chain 2 prio 1 proto ip flower ct_state +new+trk action ct commit pipe action mirred egress redirect dev vf0_rep

tc filter add dev uplink_rep ingress chain 2 prio 1 proto ip flower ct_state -new+est+trk action mirred egress redirect dev vf0_rep

Hardware offload follows the software model

Tc <chain, prio> tuple is mapped to a hw table

Nf flow table is mapped to a hardware table

Chain 0 prio 1 table

Match Action

ip, tcp,

dst_port 80

(decap)

Jump to ct table

CT table

Match Action

Chain 2 prio 1 table

Match Action

17

CONNECTION TRACKING HARDWARE MODEL

tc filter add dev uplink_rep ingress chain 0 prio 1 proto ip flower ct_state -trk ip_proto tcp dst_port 80 action ct pipe action goto chain 2

tc filter add dev uplink_rep ingress chain 2 prio 1 proto ip flower ct_state +new+trk action ct commit pipe action mirred egress redirect dev vf0_rep

tc filter add dev uplink_rep ingress chain 2 prio 1 proto ip flower ct_state -new+est+trk action mirred egress redirect dev vf0_rep

Hardware offload follows the software model

Tc <chain, prio> tuple is mapped to a hw table

Nf flow table is mapped to a hardware table

Chain 0 prio 1 table

Match Action

ip, tcp,

dst_port 80

(decap)

Jump to ct table

CT table

Match Action

Chain 2 prio 1 table

Match Action

18

CONNECTION TRACKING HARDWARE MODEL

tc filter add dev uplink_rep ingress chain 0 prio 1 proto ip flower ct_state -trk ip_proto tcp dst_port 80 action ct pipe action goto chain 2

tc filter add dev uplink_rep ingress chain 2 prio 1 proto ip flower ct_state +new+trk action ct commit pipe action mirred egress redirect dev vf0_rep

tc filter add dev uplink_rep ingress chain 2 prio 1 proto ip flower ct_state -new+est+trk action mirred egress redirect dev vf0_rep

Hardware offload follows the software model

Tc <chain, prio> tuple is mapped to a hw table

Nf flow table is mapped to a hardware table

Chain 0 prio 1 table

Match Action

ip, tcp,

dst_port 80

(decap)

Jump to ct table

CT table

Match Action

Chain 2 prio 1 table

Match Action

ip, ct_state Forward to vport1

19

CONNECTION TRACKING HARDWARE MODEL

tc filter add dev uplink_rep ingress chain 0 prio 1 proto ip flower ct_state -trk ip_proto tcp dst_port 80 action ct pipe action goto chain 2

tc filter add dev uplink_rep ingress chain 2 prio 1 proto ip flower ct_state +new+trk action ct commit pipe action mirred egress redirect dev vf0_rep

tc filter add dev uplink_rep ingress chain 2 prio 1 proto ip flower ct_state -new+est+trk action mirred egress redirect dev vf0_rep

Hardware offload follows the software model

Tc <chain, prio> tuple is mapped to a hw table

Nf flow table is mapped to a hardware table – established flow callback

Chain 0 prio 1 table

Match Action

ip, tcp,

dst_port 80

(decap)

Jump to ct table

CT table

Match Action

Zone, 5-tuple Set_ct_state

Jump to <chain 2,

prio 1> table

Chain 2 prio 1 table

Match Action

ip, ct_state Forward to vport1

20

CONNECTION TRACKING HARDWARE MODEL

Software should continue where the hardware left off

Stats and packet mangling was executed by hardware

Driver sets the chain that missed on (new) tc skb extension

Driver restores the skb->tun_info structure

Hardware misses

Continue in sw from chain 2
Restore tunnel info
Restore CT state

Continue in sw from chain 0
Restore tunnel info

21

CONNECTION TRACKING OFFLOAD

tc is processed before the openvswitch rx handler

Openvswitch should continue where tc left off

OVS recirc id is directly mapped to tc chain

The tc skb extension for hw miss is reused to convey the tc chain that missed

Added in kernel 5.3 - net: openvswitch: Set OvS recirc_id from tc chain index

Openvswitch integration – handling tc misses

TC
Chain 0 prio 1

Openvswitch

Goto chain 1

Continue from recirculation 1

https://patchwork.ozlabs.org/project/netdev/patch/1567605397-14060-2-git-send-email-paulb@mellanox.com/

22

SUMMARY

net/sched: Introduce tc connection tracking

net: openvswitch: Set OvS recirc_id from tc chain index

netfilter flowtable hardware offload

act_ct: Software offload of conntrack_in

netfilter: nf_conntrack, add IPS_HW_OFFLOAD status bit

Introduce connection tracking offload – Mellanox driver implementation

Submitted patches

https://patchwork.ozlabs.org/project/netdev/cover/1562657451-20819-1-git-send-email-paulb@mellanox.com/
https://patchwork.ozlabs.org/project/netdev/patch/1567605397-14060-2-git-send-email-paulb@mellanox.com/
http://patchwork.ozlabs.org/project/netfilter-devel/cover/20191111232956.24898-1-pablo@netfilter.org/
https://patchwork.ozlabs.org/project/netdev/cover/1583251072-10396-1-git-send-email-paulb@mellanox.com/
https://patchwork.ozlabs.org/project/netfilter-devel/patch/20200421150416.19151-1-bodong@mellanox.com/
https://patchwork.ozlabs.org/project/netdev/cover/1583422468-8456-1-git-send-email-paulb@mellanox.com/

