
Mat Martineau and Ossama Othman
August 21, 2020
Netdev 0x14

2

Disclaimer

Linux® is a registered trademark of Linux Torvalds in the U.S. and other
countries.

Wi-Fi® is a registered trademark of the Wi-Fi Alliance.

Other trademarks and trade names are those of their respective owners.

Introduction

3

4

Multipath TCP is Now Upstream!

Linux v5.8 MPTCP Features

§ Establish MPTCPv1 connections

§ Create multiple subflows

§ In-kernel path management

§ inet_diag support

Collaborative Effort

§ Contributors from Red Hat, Tessares,
Apple, and Intel.

§ Community is growing

§ Shortcut to GitHub project
– https://is.gd/mptcp_upstream

Over 150 commits as of July 2020

https://is.gd/mptcp_upstream

5

What is Multipath TCP?

2001:db8:1::1
(Wi-Fi)

2001:db8:2::2
(Cellular)

2001:db8:3::3

M
PTC

P M
PT

C
P

App:
Send "ABCD"

on MPTCP
socket

Service:
Receive "ABCD"

on MPTCP
socket

D
A

B

C B

TCP Subflow 1

TCP Subflow 2

6

What is Multipath TCP?

§ A protocol layer above (and intermingled with) TCP

§ Starts out looking similar to a normal TCP connection
– Extra TCP options during the handshake allow multiple paths later

– This is the initial "subflow"

§ Peers share information about additional available IP addresses using TCP
options

§ Additional TCP subflows can be "joined" to the logical connection

7

What is Multipath TCP?

§ Sender chooses to send data on one or more subflows
– The subflow streams may carry out-of-order or redundant data

§ TCP options carry an additional layer of sequence numbers for data packets
– Maps a range of TCP sequence numbers to the MPTCP sequence space
– Includes a MPTCP-level ACK

§ Receiver reassembles the MPTCP-level data stream and acknowledges

8

MPTCP Use Cases

Steering

§ Use the best network

§ Move data flow
between a low
latency or high
bandwidth link

Switching

§ Seamless handover
between mobile and
Wi-Fi networks

Splitting

§ Use combined
bandwidth of multiple
interfaces

§ Hybrid Access:
DSL+LTE

MPTCP is used in the 5G Access Traffic Steering, Switching, and Splitting
(ATSSS) standard for all these purposes

9

Versions and Specifications

§ Experimental RFC 6824: MPTCP v0
– Initial draft May 2009, published January 2013
– In use by most current deployments

§ RFC 8684: MPTCP v1
– Initial draft October 2013, published March 2020
– Upstream Linux only supports MPTCPv1

– Addresses issues seen in v0 deployments
– Not reverse-compatible

10

Key changes between MPTCP v0 and v1

§ Different (and incompatible) connection handshake
– Change made to better support TCP Fast Open
– A connection will proceed as regular TCP if the listener does not support the

requested MPTCP version

§ Moves to SHA256

§ Reliable exchange of additional addresses

§ MPTCP-level fast close using TCP RST

11

MPTCP Support in Linux Releases

§ 5.6
– Single subflow

§ 5.7
– Multiple subflow
– In-kernel path management and related generic netlink interface
– inet_diag support

§ 5.8
– Improved performance and reliability
– Better receive window handling

Upstreaming Lessons

12

13

MPTCP's Upstreaming Journey

§ Project characteristics:
– Significant new functionality that doesn't fit in the drivers/staging tree
– Close coupling with or modifications to critical existing kernel code
– Multiple organizations involved

§ Upstreaming paradox

– Maintainers need patch sets of reviewable size
– Hard to propose an initial patch set without investing a lot of work up front

What can similar projects learn from our experience?

14

Cautionary Tales

§ Trying to upstream a new framework first did not work out
– Extensible TCP options framework and TCP-MD5 refactor was rejected

§ Don't spend a lot of time guessing what maintainers do and don't want
– RFC patch sets can help a lot

§ Avoid spending a lot of time churning with prototype code

– Make sure you're getting value out of prototype work

15

What We Recommend

Building your upstream community

§ Make your project known early! Reach out on mailing lists and propose
a conference talk. You may be surprised at who gets involved or cheers
you on.

§ Build a team that includes experts for the new feature, experts on the
existing code, communicators, and automation builders.

§ Weekly meetings helped strengthen community and accountability

§ Face-to-face meetings, even once or twice a year, are valuable

16

What We Recommend

Various tips

§ 'topgit' is handy for revising patch sets and rebasing on the upstream
tree

§ Have a variety of ways to coordinate: Mailing list, IRC, issue tracker

§ CI running kselftests, syzkaller, and other checks has been extremely
valuable

17

What We Recommend

Patch set partitioning

1. Upstream any independent building blocks
– See: skb_ext functionality in skbuff.h

2. Send any prerequisite changes to existing code
– Changes to TCP and the networking core

3. Foundational code
– Single subflow MPTCP

4. Meaningful baseline functionality

– Multiple subflows!

Note: Keep each patch set
to a maximum of 12-20
patches of reasonable size

Using MPTCP

18

19

Kernel Build-time Configuration

§ Main options
– CONFIG_MPTCP
– CONFIG_MPTCP_IPV6 is optional

– Note: not compatible with CONFIG_IPV6=m

§ MPTCP self test support
– CONFIG_VETH

– CONFIG_NET_SCH_NETEM

20

Using an MPTCP Socket

MPTCP is selected when creating the socket

socket(AF_INET6, SOCK_STREAM, IPPROTO_MPTCP)

§ After the socket is created, use connect/bind/listen/accept and send/recv
functions as you would for TCP.

§ Differences from TCP
– Advanced features like zerocopy are not supported (yet?)
– Socket options may require attention

21

Socket Options

§ Supporting TCP options on an MPTCP connection is complex
– Option settings for TCP subflows might interfere with MPTCP operation
– Subflows may be added or removed over life of a MPTCP socket

§ MPTCP sockets do not currently support TCP socket options
– Exception: Connections in "TCP fallback" do have TCP socket option support

§ Linux v5.9 will handle SO_REUSEPORT and SO_REUSEADDR

§ Planning for advanced MPTCP control via socket options in future kernels

22

System-level Runtime Configuration

§ Per-network-namespace sysctl: net.mptcp.enabled (on by default)

§ Default behavior: Additional subflows are not initiated or accepted

§ Using multiple subflows requires configuration from userspace

§ Long-term: Userspace path management with mptcpd or similar

§ Today: 'ip mptcp' command
– Version iproute2-ss200602 or later
– Commands set systemwide MPTCP behavior

23

System-level Runtime Configuration

Using the 'ip mptcp' command

§ Allow peers to add new subflows
– sudo ip mptcp limits set subflow 4

– This would allow four additional subflows to join each MPTCP connection if
requested by the peer

§ Example use case: MPTCP-capable server communicating with mobile device
peers. The mobile devices initiate connections and subflows over Wi-Fi and
cellular, with NAT on one or both interfaces.

24

System-level Runtime Configuration

Using the 'ip mptcp' command

§ Initiate new subflows
– sudo ip mptcp limits set subflow 2

– sudo ip mptcp endpoint add 192.0.2.10 subflow

– Each existing MPTCP connection will try to create an additional subflow with
192.0.2.10 as the source address. The destination address will be the one used for
the initial connection.

§ Example use case: MPTCP-capable device connecting to a server with a
public IP address.

Userspace Path Management

25

26

MPTCP Path Management In Userspace
Advantages

§ Platform integration

– Mobile platforms

– Carrier integration

– Persistent database of good and bad endpoints

§ Simpler kernel-side code

– Network interface and address tracking in userspace

§ Per-application policy integration

§ Per-connection path management

Disadvantages (server side)

§ Bottleneck under heavy connection load

Path Manager

Kernel

MPTCP Stack

Path Manager

Userspace

27

In-kernel path management may be more
suitable for server side

§ Advantages
– Generally improved performance due to

less overhead

§ Disadvantages
– Kernel module based path management

is more complex
– Increased maintenance burden, e.g. tied

to a specific kernel version
– Bugs generally have a greater impact on

system stability

– Global path management configuration

MPTCP Path Management In-Kernel

Path Manager

Kernel

MPTCP Stack

Path Manager

Userspace

28

Events triggered during specific MPTCP connection operations

§ New connection, connection closed, new subflow, etc

§ Userspace handles path management events as needed

Commands may be issued from userspace to alter connection

§ Announce new addresses, create subflows, change priority, etc

API found in include/uapi/linux/mptcp.h

§ Could be used by NetworkManager, wicd, ConnMan, or others

MPTCP Generic Netlink API

29

Multipath TCP Daemon – mptcpd

Reference implementation for userspace MPTCP path management

§ Extensible MPTCP path management framework

§ Network interface and address monitoring

§ Not intended to replace existing network managers like NetworkManager

§ Leverages MPTCP path management generic netlink API
– Dispatches events to path management plugins
– Exposes an API that plugins may use to send commands to the kernel

§ https://github.com/intel/mptcpd/

https://github.com/intel/mptcpd/

30

Multipath TCP Daemon – Plugins

Path management implemented through plugins

§ Plugins implement callbacks that correspond to network monitoring and
MPTCP generic netlink events

§ Plugin API header: <mptcpd/plugin.h>

§ Network monitoring API header: <mptcpd/network_monitor.h>

mptcpd library (libmptcpd)

§ Plugins send MPTCP generic netlink commands to the kernel through
functions found in libmptcpd

§ Command API header: <mptcpd/path_manager.h>

Multipath TCP Daemon – Event Handling

MPTCP_EVENT_SUB_ESTABLISHED(1)

new_subflow(1)

MPTCP_EVENT_ESTABLISHED

MPTCP_EVENT_CREATED

new_connection()

connection_established()

MPTCP_EVENT_SUB_ESTABLISHED(2)
new_subflow(2)

application kernel path manager

connect()

plugin server

SYN + MP_CAPABLE

SYN-ACK + MP_CAPABLE

ACK + MP_CAPABLE

SYN + MP_JOIN

SYN-ACK + MP_JOIN

ACK + MP_JOIN

31

Multipath TCP Daemon – Network Monitor

network monitor path manager plugin

new_address()

new_local_address()

kernel

RTNLGRP_IPV4_ADDR
RTM_NEW ADDR

mptcpd_pm_send_addr()

MPTCP_PM_CMD_ADD_ADDR

32

Multipath TCP Daemon – Deployment
Required capabilities

§ CAP_NET_ADMIN

Systemd integration

§ mptcpd installs a systemd unit file if detected at build time

§ Dynamic user support for improved security

Configuration file installed in system configuration directory

• For example, “/etc/mptcpd”

Plugins installed in package library directory, e.g. “/usr/lib/mptcpd”

§ mptcpd ships with single-subflow-per-interface “sspi” reference plugin

33

Closing

35

Summary

§ Programs can begin using IPPROTO_MPTCP with Linux v5.7
and later

§ MPTCP is ready for some handover-based server use cases in
Linux v5.8 and later

§ Userspace path managers will add MPTCP functionality to
Linux PCs and mobile devices

36

Ongoing work

§ Continue adding features from RFC 8684

§ Netlink interface for userspace path management

§ Better utilization of multiple subflows

§ SYN cookie support

§ Support more TCP socket options

§ TCP Fast Open

§ Configurable packet scheduler (for choosing subflows to send data)

§ Improve performance

37

Contacts

§ Github project: https://github.com/multipath-tcp/mptcp_net-next

§ Mailing List: mptcp@lists.01.org
– Subscribe at https://lists.01.org/postorius/lists/mptcp.lists.01.org/

§ IRC: #MPTCPUpstream on freenode.net

§ Mat Martineau: mathew.j.martineau@linux.intel.com

§ Ossama Othman: ossama.othman@intel.com

https://github.com/multipath-tcp/mptcp_net-next
https://lists.01.org/postorius/lists/mptcp.lists.01.org/

38

Resources

§ Previous talks
– Netdev 0x12: https://netdevconf.info/0x12/session.html?how-hard-can-it-be-adding-

multipath-tcp-to-the-upstream-kernel

– Netdev 0x13: https://netdevconf.info/0x13/session.html?skb-meta-data-extensions
– Linux Plumbers 2019: https://www.linuxplumbersconf.org/event/4/contributions/435/
– DevConf.CZ 2020: https://devconfcz2020a.sched.com/event/YOx8/how-to-not-

implement-a-not-so-new-net-protocol

§ RFC 8684 / MPTCP v1: https://www.rfc-editor.org/rfc/rfc8684.html

https://netdevconf.info/0x12/session.html?how-hard-can-it-be-adding-multipath-tcp-to-the-upstream-kernel
https://netdevconf.info/0x13/session.html?skb-meta-data-extensions
https://www.linuxplumbersconf.org/event/4/contributions/435/
https://devconfcz2020a.sched.com/event/YOx8/how-to-not-implement-a-not-so-new-net-protocol
https://www.rfc-editor.org/rfc/rfc8684.html

