
Generic Session Layer to make reliable Sockets more reliable against
ECONNRESET

Alexander Aring
RedHat, Inc.

Ottawa, Canada
aahringo@redhat.com

Abstract

This paper is about the technical background of the talk
“ECONNRESET on a reliable socket and now?” presented at
Netdev Conference 0x15 [8]. It’s about how possible react on
a connection oriented reliable socket if an “ECONNRESET”
error occurs. As experience showed, most users will simple re-
connect and let the data flow going on as nothing happened be-
fore. This requires to close the socket and create a new one to
do the actual reconnect. Reacting on like such way will occur
that the previous existing socket will lose it’s state. Moreover
pending data inside writequeue of the socket will be dropped
which was declared on application layer as successfully trans-
mitted before. Most users forgot about this behaviour and are
not aware about that they leave the world of their reliable con-
nection.

This paper will show why “ECONNRESET” can suddenly oc-
cur and how Distributed Lock Manager (DLM) filled the hole
of reliability if “ECONNRESET” occurs. It was solved by in-
troducing a transparent encapsulation header below the DLM
application layer. This header introduced a session layer to be
sure data has been arrived at the other end. If “ECONNRE-
SET” occurs and a reconnect will be done, DLM will trigger a
retransmit of pending messages again.

Furthermore this paper will discuss about a more generic solu-
tion which avoids application layer changes like it was done for
DLM. DLM can switch in later versions back to such generic
solution but there are other in-kernel candidates who can ben-
efit switching to it.

Keywords
Distributed Lock Manager (DLM), Transmission Control
Protocol (TCP), Stream Control Transmission Protocol
(SCTP), Reliable Sockets, Transport Layer, Session Layer,
CIFS, Samba, Half-Closed Socket, ECONNRESET

Introduction
This section will show the basic knowledge about “ECON-
NRESET” and why it could suddenly occur on your reliable
socket. A quick look into DLM will be done to explain how
“ECONNRESET” can effect the reliability of a DLM socket.

ECONNRESET
The errno “ECONNRESET” is a possible return value of
“sendmsg()”. As the manpage points out it stands for “Con-
nection reset by peer.”. But what does that actually mean?
On a Linux TCP socket it can occur after a “TCP Reset” was
received. If such a situation happens the Linux TCP stack
will purge it’s pending socket writequeue. Usually the socket
becomes unusable and the application will close the socket
and trigger a reconnect to the same peer again. RFC 3360
[3] points that the original reason why “TCP Reset” was in-
troduced comes back to signal it’s peer a receive of a non-
complaint TCP Header. Due malfunction network entities
like “Firewalls” or “Load Balancers” [3] it could be that such
network components trigger a “TCP Reset” to an endpoint.
On the endpoint side the application will then end in the men-
tioned “ECONNRESET” error situation.

Session Layer
A session layer is settled in layer five of the OSI-model. Usu-
ally a session layer is not handled by the Linux kernel, it is
part of the user space application to provide such a function-
ality. Therefore a session layer lifetime is not equal to the
socket lifetime. An example for a session layer could be that
it ensures that the socket communication is reliable as it will
be shown in this paper.

One of the application decision to use a reliable connec-
tion oriented socket such as TCP or SCTP [10] was made to
not drop any network communication to it’s peer. Without
additional handling such as the mentioned example to pro-
vide a session layer a drop can occurred when receiving an
“ECONNRESET” error. If the application holds a peer per
state, like DLM, a drop of any networking data can end in a
cracked situation. A missing additional handling to resolves
the side effects of “ECONNRESET” DLM can end in such
a situation. The application layer was only aware that there
was a problem, if a drop occurred or not is unknown. To know
which data was dropped a session layer can be used to keep
track which data was really received at the endpoint.

TCPkill
TCPkill [2] is a tool to trigger “TCP Resets” for a specific
TCP connection. It collects flow information and uses a raw
socket type to interfere the TCP connection and start to trigger
a “TCP Reset”. During this work TCPkill was used to trigger



“TCP Reset” for a DLM connection so the DLM application
socket will fail with “ECONNRESET” which ends likely in a
drop of DLM data.

Distributed Lock Manager Protocol
The Distributed Lock Manager Protocol is an Linux ker-
nel upstream message based application layer protocol. As
state of written this paper, the protocol implementation sits
in “fs/dlm”. A cluster manager like corosync [1] is required.
One reason is that DLM is used inside the Linux cluster world
to lock distributed resources like shared block devices e.g.
iSCSI [4]. Such shared block devices will not control mutual
access to the resource of all Linux cluster nodes. A cluster
filesystem such as GFS2 [6] or OCFS2 [7] can be used to
operate on such shared resource. One main user of DLM is
GFS2 to control it’s mutual access to the shared block device
resource on all nodes.

It is important that DLM does not drop any of it’s mes-
sages. It depends on the exact message type if DLM could
ends in a cracked situation. However a message could con-
tain an unlock operation to a specific lock, if such message
gets drop a deadlock situation will occur. DLM has a built-
in deadlock detection, but it should be avoided to run in any
deadlock situation.

Cluster Manager
The cluster manager controls the membership of cluster re-
sources, such as DLM. A cluster does usually have several
nodes and can handle different shared resources within the
cluster. In this paper it’s important that every node has the
possibility to do the following operation to the DLM cluster
resource:

Join Membership Clean join of cluster resource

Leave Membership Clean leave of cluster resource

Fence (Close) Usually power off/on machine and rejoin

For DLM it is important that no drop can occur between
“Join” and “Leave” membership cluster event. If a “Fence”
(in this paper also named as “Close” event) occurs a hard
disconnect is required and all current pending data must be
dropped. When a node rejoins the cluster membership a spe-
cial protocol handling will be executed to synchronize with
other cluster nodes again.

Half-Closed Sockets
A special node about half-closed functionality will be men-
tioned in this paper. The reason is that SCTP does not support
the functionality of half-closed sockets. DLM requires half-
closed socket functionality due the fact that a leaving node
from it’s membership can still receive DLM messages up to
the point that the peer receives the leaving event of the node.
As side issue this paper will also solve to provide half-closed
sockets for SCTP.

However during research it seems there are devices (Fire-
walls, NATs, Linux “net.ipv4.tcp fin timeout”, . . . ) out there
which breaks TCP half-closed socket behaviour. Some of the
behaviours are justified to prevent DoS attacks, some other

are related to a buggy implementation. For buggy implemen-
tations e.g. a NAT devince, a connection waits after the first
TCP FIN [5] and will remove the NAT entry. If the NAT entry
is removed the connection will stop working immediately.

Problem Detection
There exists ways about how to detect if your application is
affected to ECONNRESET issues. This section will describe
how an socket application can detect if such issues exists.

ECONNRESET
If an application does on a “sendmsg()” error an reconnect
without additional handling to prevent drops it could be a first
sign that the application is not able to provide reliability if
such scenario occurs. As experience shows with DLM the
easiest way to check if an application can handle it, “tcpkill”
in the background can be run and observing the effects of
large amount of “ECONNRESET” errors. This will probably
not reflect the reality but it will trigger a reconnect at the right
point that the socket write queues will be dropped. In case of
DLM it will soon end in a deadlock.

Half-Closed Sockets
To detect issues with half-closed is more complicated and no
tool such “tcpkill” exists yet. In case of a half-closed socket
requirement and the application can either run on TCP or
SCTP like DLM a problem definitely exists because SCTP
does not support half-closed sockets.

Possible Solutions
This section will show possible solutions which was being
discussed to provide a solution for the observed “ECONNRE-
SET” issue. Also to a possible solution to solve the missing
functionality of half-closed sockets in SCTP will be shown.

Ignore TCP Resets
A simple and harsh solution would be to simple ignore TCP
resets. TCP resets would be only be ignored if the TCP con-
nection is inside the “ESTABLISHED” state. During this
work a fast hack was done to test if it’s possible to just ig-
nore TCP resets with success. However the socket gets not in
a “reset” state in sense that a new TCP connection will be es-
tablished and this is usually what a potential peer like a load
balancer wants to provoke. It is TCP specific only as well.

TCP REPAIR
TCP REPAIR [9] is a technique to store and restore TCP
states in Linux. It was introduced for migrating ongoing TCP
connections to another Virtual Machine or Namespace. The
idea is to use TCP REPAIR to store the TCP state when an
“ECONNRESET” occurs and restore the TCP state after cre-
ating the new socket. If both sides enables such behaviour
the TCP socket can going on again like “ECONNRESET”
was not happened before.

There are several disadvantages of this solution. One is
that this solution is Linux specific only. It is not only Linux
specific, it is Linux TCP specific as well. That means there is



currently no support for SCTP. It is required to add such fea-
ture for SCTP as well. Besides that it is required that the other
peer is aware that such handling is enabled. Another problem
which occurs is that the Linux TCP Stack will purge the write
queue if a TCP reset arrives. At this point it is already too late
to store the socket state. It might be possible to change this
behaviour by introducing another socket option that the write
queue will not be purged at arrival of TCP reset.

Session Layer
To prevents drops during “ECONNRESET” a session layer
between the application and trasnport layer e.g. TCP can be
introduced. This session layer will put the stream data into
a message based structure and confirm that the endpoint re-
ceived it. If a reconnect happens due “ECONNRESET” phase
every non confirmed message will be resend to the peer in or-
der as they was received. To provide such mechanism a sim-
ple sequence number and additional acknowledge message
will be introduced on session layer level. It will guarantee
that at peer side we will retransmit all unacknowledged mes-
sages, the peer can filter out all already received messages
which was not acknowledged by the sender yet.

Half-Closed Sockets
To provide half-closed sockets or solve issues with half-
closed regarding to buggy implementations an additional FIN
message like in TCP [5] can be introduced. The advantage is
that this message is not provided by TCP and common net-
working device (e.g. firewalls or load balancers) will not re-
act on such messages and hopefully will never react on those
in future. In case of SCTP introducing a FIN message on
application layer will provide half-closed socket functional-
ity. The TCP state diagram will therefore changed to pro-
vide only “ESTABLISHED” state until “CLOSED” to pro-
vide FIN state changes. This can also be provided by a ses-
sion layer which takes care of reliability of transmitted mes-
sages.

DLM Solution
This section describes how DLM solved the issue of “ECON-
NRESET” which appeared suddenly. A session layer had
been introduced on the DLM application layer. It acts trans-
parently between TCP and DLM application layer. Each
DLM messages are hold in memory by using a reference
counter until it will be acknowledged from the other end.
In case of reconnect unacknowledged messages will be re-
transmitted in order as transmitted originally. The receiving
side will deliver messages according to their sequence num-
ber which is incremented by each message. If a message is
received twice recognized by the sequence number, it will be
dropped until the next expected message is received.

Figure 1 shows the layer diagram how DLM introduced the
session layer. Important is to mention that the DLM socket
acts underneath the session layer. The next section will dis-
cuss more about how to move the session layer underneath
the socket handling.

For half-closed sockets a new message type “FIN” was in-
troduced and acts like a TCP “FIN”. The difference is that

Figure 1: This figure shows the layer diagram of the DLM
session layer. The application socket handling sits below the
session layer.

the introduced “FIN” message works on top of TCP and is
not part of TCP itself.

Figure 2: This figure shows the state diagramm like TCP for
providing half-closed sockets on the DLM session layer.

Generic Solution
To implement the DLM solution an application layer change
was required which had the effect to increase the DLM proto-
col version. This section will show a generic solution which
does not affect the application layer layer. If it’s being used, it
is required that the other peer supports it as well. It is not be-
ing used, then it doesn’t matter if the other peer supports it or
not which means it is still backwards compatible but not for-
wards compatible. The generic solution therefore will simple
move the session layer below the application socket handling.

Figure 3: This figure shows the generic solution by moving
the session layer below the application layer.



Figure 3 shows the layer diagram of the generic solution.
The session layer becomes completely separated from the ap-
plication layer and existing applications like DLM could eas-
ily switch to it without changing their application layer proto-
col. Such socket can operate on any transport layer, however
it makes sense on reliable sockets only because the session
layer will fix the gap of reliability on a reconnect. A re-
connection because “ECONNRESET” will be handled com-
pletely transparently from the application. All socket related
syscalls will be redirected to the related transport layer han-
dling. It’s an idea of a “redirected socket” type which handles
the session layer for any transport layer underneath.

If an immediately close of the socket is required, such as
in DLM for fencing, the “close()” syscall can be used. Other-
wise syscall “shutdown()” can be used to invoke half-closed
socket behaviour.

Potential Other Users
This section will show potential other users for such proposal
session layer as described previously. As mentioned “ECON-
NRESET” can happened any time and the most users will do
a reconnection and take possible drops as risk. It doesn’t mat-
ter if the user is in user space or kernel.

Checklist
During this work a checklist was developed to indicate possi-
ble users:

1. Join/Leave Events - Session Layer Lifetime

2. Reconnect on Errors

3. Test with tcpkill

The final test for “tcpkill” requires observation of the pro-
tocol behaviours if actually a problem exists.

CIFS
I adapted the Checklist to CIFS. CIFS [11] is a network
filesystem for Windows shares or a Linux based samba server.

1. Mount/Unmount - Session Layer Lifetime

2. Reconnect on Errors

3. Test with tcpkill

The session layer lifetime will be mapped with join/leave
events to mount/unmount calls. During this time no drop
should be occurred. It has the same reliability requirement
like DLM for it’s cluster manager events. Code observation
resulted into that CIFS triggers a reconnect on “sendmsg()”
error. Finally a “tcpkill” test on port sambas default port 445
with a simple file copy with “dd” and “/dev/zero” resulted
into a stuck of the dd user application which was probably re-
solved about 30 minutes. Other filesystem calls like “open()”,
“close()” resulted into “EAGAIN”. Due the fact that most
filesystem applications (means user programs using POSIX
“open()”, “read()”, “write()” and “close()”) doesn’t handle
such error handling correctly a switch to such generic ses-
sion layer should hide such errors and resolve them inside the
session layer. That means that a filesystem application will

not see such errors anymore and reduces the risk of failure in
the user program.

To use the generic session layer it is required on the server
and client side that such transparently handling of “ECON-
NRESET” will be done. If either doesn’t support it the ses-
sion layer will not be invoked and the old behaviour is being
used.

Future Work
The DLM session layer was done and so far no problems was
detected while running “tcpkill”. The state before was most
likely that DLM run into a deadlock state if “tcpkill” was run-
ning in the background. The DLM application layer can still
switch from the existing DLM solution to the generic solu-
tion. To implement such generic solution would be one of
the next steps. Therefore the generic solution with the special
“redirection socket” is needed. Such implementation was not
done yet but how it will act was shown in this paper.

The program “tcpkill” is a good testing tool to check if an
application layer has problems with handling “ECONNRE-
SET”. However it is TCP specific only, but there exists ways
to develop such tool for SCTP as well. The idea would be to
send SCTP heartbeats [10] from another address than it’s peer
as this should end in an “ECONNRESET” error on SCTP.

References
[1] Corosync. Corosync - The Corosync Cluster Engine.

https://corosync.github.io/corosync/.
[2] Dug Song. tcpkill - kill TCP connections on a LAN.

https://www.monkey.org/ dugsong/dsniff/.
[3] Floyd, S. 2002. Inappropriate TCP Resets Considered

Harmful. RFC 3360, RFC Editor.
[4] J. Satran and K. Meth and C. Sapuntzakis and M.

Chadalapaka and E. Zeidner. 2004. Internet Small Com-
puter Systems Interface (iSCSI). RFC 3720, RFC Editor.
http://www.rfc-editor.org/rfc/rfc3720.txt.

[5] Jon Postel. 1981. Transmission Control Protocol. RFC
793, RFC Editor. http://www.rfc-editor.org/rfc/rfc793.txt.

[6] Linux Kernel Documentation. Global File System 2.
https://www.kernel.org/doc/html/latest/filesystems/gfs2.html.

[7] Linux Kernel Documentation. OCFS2 filesystem.
https://www.kernel.org/doc/html/latest/filesystems/ocfs2.html.

[8] NetDev Society. Netdev 0x15 - Home of THE
Technical Conference on Linux Networking.
https://netdevconf.info/0x15.

[9] OpenVZ. Checkpoint/Restore In Userspace.
https://criu.org/Main Page.

[10] R. Stewart. 2007. Stream Control Transmission
Protocol. RFC 4960, RFC Editor. http://www.rfc-
editor.org/rfc/rfc4960.txt.

[11] SAMBA Team. Common Internet File System.
https://www.samba.org/cifs.


