Network wide visibility with Linux networking

and sFlow

Neil McKee, Peter Phaal, Roopa Prabhu, Andy Roulin, Ido Schimmel

InMon Corp, NVIDIA
San Francisco, Santa Clara, USA
neil.mckee@inmon.com, peter.phaal@inmon.com, roopa@nvidia.com, aroulin@nvidia.com, idosch@nvidia.com

Abstract
Support for network switch ASICs in the Linux kernel exposes
hardware dataplane measurements through standard Linux APIs.
The open source Host sFlow agent makes use of the Linux APIs
to gather and export telemetry using the industry standard sFlow
protocol for network-wide visibility into packet flows.

Keywords

analytics, DDoS, Linux, metrics, switchdev, sFlow, telemetry,
ASIC

Introduction

Network traffic control requires real-time traffic
monitoring, analysis, anomaly detection and response.
There are many real time network analytics tools available
on Linux and networking hardware today. In this paper we
talk about sFlow, an industry standard for real-time
network monitoring. We will look at how sFlow can be
used to monitor a data center fabric consisting of
networking hardware running Linux (switches and routers)
and Linux virtual nodes. We will dive into the details of
sflow integration into the Linux stack, Linux kernel,
ecosystem and oss software.

sFlow is supported by most networking hardware
vendors. Linux native support for packet sampling was
introduced in the kernel followed by integrations into
hardware support for packet sampling [1,2]. We will look
at sFlow data formats, recent extensions to include drops,
latency and queue depth and use these to detect and
respond to events in the network fabric.

Real-time sFlow analytics can be used to rapidly detect
DDoS attacks and filter them (e.g. with BGP FlowSpec or
tc rules) before they even ramp up. Buffer-depth and
transit-delay as measurements more commonly associated
with in-band telemetry, are now also available out-of-band
in standard sFlow.

Switch ASICs and Linux

The Linux kernel has a very rich dataplane that is capable
of bridging, routing, tunneling and ACLs, among other
things. In recent years, Linux gained support for hardware
offload of these network functions by programming
forwarding entries (e.g., FDBs, routes) to switch ASICs.

These switch ASICs are capable of forwarding billions

of packets per-second and at switching capacities of
several terabits per-second, representing a significant
improvement over traditional general purpose CPUs.

While offloading of the dataplane from CPUs to switch
ASICs results in substantial performance gains, it also
results in significant degradation in visibility, as forwarded
and dropped packets are invisible to the CPU. The next
two sections will describe how this degradation in visibility
can be mitigated using recent advances in switch ASIC
observability under Linux.

Packet sampling

tcpdump (8) [20] is a common tool for inspecting
network traffic flowing through an interface. However,
when used on interfaces (i.e., Linux net devices) that
correspond to the switch ASIC’s front panel ports (e.g.,
swpl), only a very small subset of the traffic flowing
through the interface is visible. This traffic usually consists
of control packets such as ARPs and exception packets
such as those that hit an unresolved neighbour in the switch
ASIC during routing. The majority of the traffic that is
forwarded correctly through the interface is invisible to the
CPU.

Trapping all the forwarded traffic to the CPU for
inspection is suboptimal for several reasons. First, it will
result in a severe degradation of the switching capacity, as
the host CPU is usually only able to forward a few millions
of packets per-second compared to the few billions of
packets per-second that can be forwarded by the switch
ASIC.

Second, the bus connecting the switch ASIC to the host
CPU (normally, PCle) has a limited bandwidth which is
several orders of magnitude lower than the switching
capacity of the switch ASIC. This will result in a random
and constantly changing sampling rate due to congestion
on the ASIC end of the bus.

Third, injecting the trapped packets to the kernel receive
path via netif receive skb () only so that they are
visible to packet taps, will result in wasted CPU cycles. If
traffic is mirrored to the host CPU instead of being trapped,
duplicated packets will appear on the wire due to the
packets being forwarded by both the software and
hardware dataplanes.

Fourth, packets sampled from the hardware dataplane
will usually have extra metadata [9][21] associated with
them, such as the egress port, egress queue, egress queue
depth and transit delay. Netlink [22] is an ideal TLV-based
protocol that can be used to communicate sampled packets
along with their associated metadata to user space.

For above mentioned reasons, in version 4.11 the Linux
kernel was extended with the ability to sample packets
from the dataplane (offloaded or not) to user space [23].

Packet sampling support in Linux consists of two main
kernel modules. The first, act sample, is a tc [24]
action that configures the sampling and can be attached to
various tc classifiers such as cls flower and
cls matchall. The module facilitates the control plane
of the sampling operation. For example, the following filter
will configure sampling of a specific flow from the egress
of swpl:

tc gdisc add dev swpl clsact

tc filter add dev swpl egress pref 10
proto ip flower skip sw dst ip
198.51.100.2 action sample group 3 rate
300

The skip sw keyword instructs the kernel to only
configure sampling in hardware. If omitted, sampling is
configured in both the software and hardware dataplanes.

The second module, psample, registers a new generic
netlink family called “psample” through which sampled
packets from the dataplane are notified to user space along
with associated metadata. These netlink packets contain
various TLV attributes such as PSAMPLE ATTR DATA
and PSAMPLE ATTR LATENCY that encode the payload
of the packet (potentially truncated) and its transit latency,
respectively.

Sampled packets are passed from the act sample
module to the psample module by invoking the
psample sample packet () function. When
sampling is performed in hardware, the switch ASIC
device driver is expected to invoke the function directly.

In user space, the sampled packets can then be dissected
using a Wireshark [25][26] dissector for the “psample”
generic netlink family:

psample -w - | tshark -r - -V

An alternative to packet sampling to the host CPU is to
mirror packets directly from the hardware dataplane to a
monitoring server that is capable of processing a much
higher rate of traffic compared to the host CPU attached to
the switch ASIC. However, this approach results in limited
observability, as there is no industry standard dictating the
format of the metadata in the mirrored packets. Therefore,
operators are left with a choice: Mirror packets without
metadata (limited observability) or encode metadata in a
vendor-specific way (vendor lock-in).

Packet drops monitoring

Packets are dropped by the kernel by invoking the
kfree skb () function. This is in contrast to packets
that are freed as part of normal operation by invoking the

consume_skb () function. In order to allow users and
developers to debug packet drops in the kernel, the
kfree skb () function includes a tracepoint called
skb:kfree skb. This tracepoint can be used to
generate a stack trace whenever a packet is dropped, in
order to see the path the packet took inside the kernel
before being dropped. For example:

perf record -a -g -e skb:kfree skb --
sleep 5
perf report --stdio

Another option to consume information about dropped
packets is to use the popular dropwatch utility from the
DropWatch package [27]. This utility opens a netlink
socket and registers to multicast notifications about
dropped packets from the “NET _DM” generic netlink
family. These notifications are generated by a kernel
module called drop monitor that registers its own
probe on the skb:kfree skb tracepoint in order to be
alerted whenever a packet is dropped.

Since kernel 5.4, in addition to the instruction pointer
where packets were dropped, the drop_monitor module
can also be instructed to generate notifications with the
payload of the dropped packets (potentially truncated) and
with various metadata [28], in a similar fashion to the
previously described psample module. These
notifications - netlink packets - can then be dissected in
user space using a Wireshark [29] dissector for
“NET_DM?” generic netlink family:

dwdump -w - | tshark -r - -V

When the dataplane is offloaded to hardware, all the
instrumentation around the skb:kfree skb tracepoint
loses its value as packets are no longer dropped by the
kernel, but silently by the hardware. In order to allow users
and developers to have visibility into hardware originated
drops, capable devices can be instructed to trap dropped
packets to the host CPU [11][30]. For example, to trap
packets that were dropped due to a blackhole route:

devlink trap set pci/0000:01:00.0
trap blackhole route action trap

To avoid wasting CPU cycles, these packet traps are
disabled by default. To disable them, instruct the device to
silent drop such packets:

devlink trap set pci/0000:01:00.0
trap blackhole route action drop

Packet traps can also be rate-limited to avoid
overwhelming the host CPU:

devlink trap policer set
pci/0000:01:00.0 policer 1 rate 1024
burst 256

When reaching the host CPU from the device, these
packets trigger the devlink:devlink trap report
tracepoint, which serves as the hardware counterpart of the
skb:kfree skb tracepoint for hardware originated
drops.

Since kernel 5.4, the drop monitor module can be
used to also trace hardware originated drops by registering
its probe function on the
devlink:devlink trap report tracepoint. In a
similar fashion to software originated drops, the netlink
notifications contain the packet payload and various
metadata such as the drop reason (e.g., “blackhole_route™).

The devlink:devlink trap report tracepoint
can also be used as a hook point for a BPF program that
maintains aggregated per-{trap, flow} statistics in a BPF
map [31]. The statistics can then be exported to a time
series database (TSDB) such as Prometheus [32] and
visualized using Grafana [33].

Linux sFlow

Figure 1 illustrates the overall architecture of sFlow
monitoring. Agents embedded within network, host, virtual
network, container, and application instances stream
standard measurements in real-time to an sFlow analyzer.
The analyzer converts the raw measurements into useful
metrics that can be used to drive orchestration, operations,
and controller applications.

The open source Host sFlow agent makes use of Linux
instrumentation to stream standard sFlow telemetry from
Linux hosts and switches to the central sFlow analyzer [3].

Counters

The Host sFlow agent periodically queries
/proc/net/dev to discover switch ports and
periodically retrieve port counters. Additional hardware

Memcached \

Apache/PHP

Applications

Virtual Hosts
Containers

counters and pluggable optics metrics are obtained using
ethtool.

Each set of counters is encoded as an External Data
Representation (XDR) structure and immediately sent in a
UDP datagram to the sFlow analyzer [4,5,6,7]. sFlow is
designed for real-time monitoring. UDP transport is used
for low latency, and the sFlow protocol is designed to be
tolerant of packet loss.

14M

Bytes per Second
®
=

0 |

12:40:00 12:41:00 12:42:00 12:43:00 12:44:00

Figure 2: Trending value calculated from interface counters

Figure 2 shows a chart created by the browse-metrics
application [8]. The chart trends the volume of traffic on a
switch port computed from counters. The chart shows a
spike in traffic, but also reveals a limitation of counters
based metrics. Additional detail is needed, such as the
source, destination, location, and type of traffic, in order to
take action. Obtaining this detail from a network ASIC
capable of forwarding billions of packets per second
requires a different type of measurement.

Randomly sampled packets

To provide detail, sFlow also defines a mechanism for
random sampling of network packet headers annotated
with meta-data such as the ingress and egress ports, egress
queue depth, transit delay and routing decision [5,9].

openstack ‘&

kubernetes
Orchestration

MESOS

VaVaAY

#InfluxDB

i logstash Grafana

Telemetry -Q-Prometheus

+ Real-time DevOps
+ Scaleable

+ Programmable

. OPEN

Network

\ oMo

SDN Controllers

Figure 1: sFlow architecture

Support for sFlow’s sampling mechanism is built into
network switch ASICs. The switchdev driver exposes this
hardware capability as part of the t ¢ subsystem [2].

Packet sampling is configured for each switch port using
a tc matchall filter to select ingress and/or egress
packets. For example, the following filter enables ingress
packet sampling on port swp1l.

tc filter add dev swpl ingress \
pref 1 matchall skip sw \

action sample rate 10000 group 1 \
trunc 128 continue

The skip sw flag pushed the configuration to the
ASIC. Randomly sampled packet headers and associated
metadata from the ASIC are directected to the psample
netlink channel where they are received by the Host sFlow
agent and immediately streamed along with the counters to
the sFlow analyzer.

ipsource
35M | [172.17.01 172.17.0.2 61416
W 17217.04 192.168.65.2 53626

i
2

B
=2

[0192.168.65.2 172.17.04 5201
W 17217.02 1721701 5201
W 172.17.03 172.17.0.1 0
W 172.17.01 172.17.03 24
W 1721701 1721702 614
172.17.02 172.17.0.1 2

o
3
1]
]
1%

@
8
£

2

=

=

@
8
]
3
=
=]
5]

N

R

=
@
S
S}
=
i
S
=3

@
o
B
2

2]
2
2
=
=]

»
3
£

|
|

Bytes per Second
@
K

=
£

a
=

0
12:40:00 12:41:00 12:42:00 (12:43:02 12:44:0

Figure 3: Trending flows calculated from packet samples

Figure 3 shows a chart created by the browse-flows
application [10]. The chart provides an up to the second
view of traffic flows, identifying the source, destination
and protocol for each flow.

An interesting point to note when comparing Figures 1
and 2 is that packet sample metrics provide an immediate
signal of traffic, while counters lag in proportion to the
configured polling interval.

Packet-sampling is very effective for understanding
network traffic flows. But what about network issues that
prevent traffic from flowing?

Dropped packets

To troubleshoot packet-forwarding failures, sFlow also
defines a mechanism to report dropped packets annotated
with meta-data such as the drop-reason. Support for this
mechanism is built into some current-generation network
switch ASICs.

Packet drop monitoring is enabled by opening the
netlink drop monitor channel [11]. The Host sFlow
agent listens for dropped packet notification and
immediately forwards the packet header of the dropped
packet along with associated metadata and drop reason.

ipsource ipdestination reason agent inputifindex
[192.168.1.46 192.168.2.47 acl 10.31.234.137 4

Frames per Second
°
2

1005:00 10:06:00 10:07:00

Figure 4. Trending discards calculated from drop events.

Figure 4 shows a chart created by the browse-drops
application [13]. The application allows selected packet
features and metadata to be trended an a chart that updates
every second. In this case the source and destination
addresses, drop reason, and drop location (ingress switch
port) for a blocked TCP connection are shown. The
exponential backoff pattern of TCP syn retries is clearly
visible in the chart.

Packet drop notifications are useful for detecting and
characterizing failure conditions such as black-hole routes,
microburst buffer overruns, and MTU mismatches.

Configuration

Each Host sFlow agent requires minimal configuration.
The following example shows typical settings from the
configuration file, /etc/hsflowd.conf:

sflow {

collector{ 1ip=172.20.20.1 }

systemd { }

psample { group=1 egress=on }

dropmon { group=1l start=on sw=off hw=on }
dent { sw=o0ff switchport=swp.* }

}

The same configuration is used for every switch in the
network, reducing the operational complexity of
configuring sFlow monitoring.

Table 1: Default Host sFlow switch port settings

Link Speed Sampling Rate | Polling Interval
1G 1-in-1,000 30 seconds
2.5G 1-in-2,500 30 seconds
5G 1-in-5,000 30 seconds
10G 1-in-10,000 30 seconds
25G 1-in-25,000 30 seconds
40G 1-in-40,000 30 seconds
50G 1-in-50,000 30 seconds
100G 1-in-100,000 30 seconds

400G 1-in-400,000 30 seconds

The default switch port settings shown in Table 1 ensure
that large flows (defined as consuming 10% of port
bandwidth) are detected within approximately 1 second.
Counter polling and packet sampling are enabled on every
port on every device for data center wide visibility.

DDoS mitigation

Distributed denial of service (DDoS) attack detection and
mitigation is a common use case for sFlow telemetry. For
example, the DDoS controller can be programmed to
detect UDP amplification attacks based on sFlow packet
samples.

40K

\ 4

Controller
enabled

30K

20K

Threshold ||

w: I

12:55:00 12:56:00 12:57:00 12:58:00 12:59:00

Figure 5: DDoS mitigation using tc filter

When an attack is detected, specific attributes of the
attack such as the target IP and UDP service are used to
create a mitigation filter which is immediately installed on
the switch. Figure 5 shows two attacks, The first is not
mitigated. With the second attack, the instant that traffic
matching the attack signature crosses the threshold, a
control is triggered that filters the attack traffic. Real-time
mitigation ensures that the full force of the attack never
reaches the target.

tc filter

The article, DDoS mitigation using a Linux switch,
describes how to use tc to filter denial of service attacks
[14].

When an attack is detected, the controller makes use of a
simple REST API to install a filter on the switch [15]. For
example, the following filter is installed to block a DNS
amplification attack against host 203.0.113.10.

tc filter add dev swpl ingress \
protocol ip pref 14 flower skip sw \
ip proto udp dst ip 203.0.113.10
src_port 53 \

action drop

References

1. sFlow Industry Consortium, https://sflow.org

2. Ethernet switch device driver model (switchdev),
https://www.kernel.org/doc/html/latest/networking/switchd
ev.html

3. Host sFlow, GitHub, https://github.com/sflow/host-sflow

In this case, the skip sw flag in the filter instructs the
switchev driver to offload the filter to hardware for line
rate filtering of the attack traffic.

BGP RTBH/Flowspec

In production networks, BGP is the expected control-plane
protocol. The controller peers with the router and can push
remotely triggered blackhole (RTBH) routes or FlowSpec
filters to mitigate attack traffic [17, 18]. The open source
DDoS Protect controller is an example [16].

udp_amplification

Target Group Port
W 192.0.2.129 site dns(53)

N
S
=

@
=

@
=

Packets per Second
2
X

0 T T T
23:29:00 23:30:00 23:31:00 23:32:00 2323:33:08

Figure 6: DDoS Protect

FRRouter is a widely-adopted open-source routing
application [19]. Currently FRRouter propagates black
hole routes as expected, but FlowSpec filters do not yet
take advantage of the switchdev offload capability.

Conclusion

Native support for switch ASICs in the Linux kernel opens
networking devices to Linux developers:
e Freedom to run any Linux distribution on switch
e Use standard Linux, tools, monitoring, and
automation solutions
e Reduce complexity (and failures) by eliminating
unnecessary services
e Opens up network hardware for developers to
customize switches by adding measurement and
control agents using standard Linux APIs
e Develop and test software on virtual machines /
containers before pushing into production
e Large developer community (e.g. Stack Overflow,
GitHub, etc.)

Support for ASIC counters, packet sampling, and
dropped packet monitoring in the switchdev driver
provides detailed visibility into hardware packet
forwarding.

Streaming standard data plane measurements using
sFlow integrates Linux switches into the existing sFlow
analytics ecosystem where real-time network wide
measurements support troubleshooting, reporting, and
automation.

4. M. Eisler, Ed., XDR: External Data Representation
Standard, IETF, May 2006,

https://www.ietf org/rfc/rfc4506.txt

5. Phaal, P. and Levine, M., sFlow Version 5, sFlow.org,
July 2004, https://stflow.org/sflow_version_5.txt

https://sflow.org/
https://www.kernel.org/doc/html/latest/networking/switchdev.html
https://www.kernel.org/doc/html/latest/networking/switchdev.html
https://github.com/sflow/host-sflow
https://www.ietf.org/rfc/rfc4506.txt
https://sflow.org/sflow_version_5.txt

6. Byford, J. Peterson, M., Joiner, S., and Phaal, P., sFlow
Optical Interface Structures, sFlow.org, August 2016,
https://stflow.org/sflow_optics.txt

7. Phaal, P. and Jordan, R., sFlow Host Structures,
sFlow.org, July 2010, https://sflow.org/sflow_host.txt

8. Browse metrics, GitHub,
https://github.com/sflow-rt/browse-metrics

9. Rozenbaum, C. and Phaal, P., sFlow Transit Delay
Structures, sFlow.org, March 2021,
https://sflow.org/sflow_transit.txt

10. Browse flows, GitHub,
https://github.com/sflow-rt/browse-flows

11. Devlink Trap,
https://www.kernel.org/doc/html/latest/networking/devlink/

devlink-trap.html
12. Schimmel, I., Roulin, A., and Phaal, P., sFlow Dropped

Packet Notification Structures, sFlow.org, October 2020,
https://sflow.org/sflow_drops.txt

13. Browse drops, GitHub,
https://github.com/sflow-rt/browse-drops

14. sFlow Blog, DDoS mitigation using a Linux switch,
June 15, 2021,
https://blog.sflow.com/2021/06/ddos-mitigation-using-linu
x-switch.html

15. tc_server, GitHub, https://github.com/sflow-rt/tc_server

22.J. Salim, H. Khosravi, A. Kleen, A. Kuznetsov, Linux
Netlink as an IP Services Protocol, July 2003,
https://datatracker.ietf.org/doc/html/rfc3549

23. sFlow Blog, Linux 4.11 kernel extends packet sampling
support, July 13, 2017,
https://blog.sflow.com/2017/07/linux-411-kernel-extends-p
acket.html

24. man 8 tc

25. libpsample, GitHub,
https://github.com/Mellanox/libpsample

26. Wireshark, GitLab,
https://gitlab.com/wireshark/wireshark/-/commit/14657888
9¢18da2f7b5d5dd680c5038bc87e2453

27. DropWatch, GitHub,
https://github.com/nhorman/dropwatch

28. sFlow Blog, Visibility into dropped packets, July 16,
2020,
https://blog.sflow.com/2020/07/visibility-into-dropped-pac
kets.html

29. Wireshark, GitLab,
https://gitlab.com/wireshark/wireshark/-/commit/a94a860¢c
0644ec3b8al29fd243674a2e376¢celc8

30. man 8 devlink-trap

31. mlxsw, GitHub,
https://github.com/Mellanox/milxsw/blob/master/Debuggin

16. DDoS Protect, GitHub,
https://github.com/sflow-rt/ddos-protect

17. Turk, D., Configuring BGP to Block Denial-of-Service
Attacks, IETF, September 2004,
https://www.ietf.org/rfc/rfc3882.txt

18. Loibl, C., Hares, S., Raszuk, R., McPherson, D., and
Bacher, M., Dissemination of Flow Specification Rules,
IETF, December 2020, https://www.ietf.org/rfc/rfc8955.txt
19. FFRouting Project, https://frrouting.org/

20. man 8 tcpdump

21. sFlow Blog, Transit delay and queueing, March 17,
2021,

https://blog.sflow.com/2021/03/transit-delay-and-queuing.h
tml

g/libbpf-tools/src/trapagg_example.txt
32. Prometheus, https://prometheus.io/

33. Grafana, https://grafana.com/

https://sflow.org/sflow_optics.txt
https://sflow.org/sflow_host.txt
https://github.com/sflow-rt/browse-metrics
https://sflow.org/sflow_transit.txt
https://github.com/sflow-rt/browse-flows
https://www.kernel.org/doc/html/latest/networking/devlink/devlink-trap.html
https://www.kernel.org/doc/html/latest/networking/devlink/devlink-trap.html
https://sflow.org/sflow_drops.txt
https://github.com/sflow-rt/browse-drops
https://blog.sflow.com/2021/06/ddos-mitigation-using-linux-switch.html
https://blog.sflow.com/2021/06/ddos-mitigation-using-linux-switch.html
https://github.com/sflow-rt/tc_server
https://github.com/sflow-rt/ddos-protect
https://www.ietf.org/rfc/rfc3882.txt
https://www.ietf.org/rfc/rfc8955.txt
https://frrouting.org/
https://blog.sflow.com/2021/03/transit-delay-and-queuing.html
https://blog.sflow.com/2021/03/transit-delay-and-queuing.html
https://datatracker.ietf.org/doc/html/rfc3549
https://blog.sflow.com/2017/07/linux-411-kernel-extends-packet.html
https://blog.sflow.com/2017/07/linux-411-kernel-extends-packet.html
https://github.com/Mellanox/libpsample
https://gitlab.com/wireshark/wireshark/-/commit/146578889e18da2f7b5d5dd680c5038bc87e2453
https://gitlab.com/wireshark/wireshark/-/commit/146578889e18da2f7b5d5dd680c5038bc87e2453
https://github.com/nhorman/dropwatch
https://blog.sflow.com/2020/07/visibility-into-dropped-packets.html
https://blog.sflow.com/2020/07/visibility-into-dropped-packets.html
https://gitlab.com/wireshark/wireshark/-/commit/a94a860c0644ec3b8a129fd243674a2e376ce1c8
https://gitlab.com/wireshark/wireshark/-/commit/a94a860c0644ec3b8a129fd243674a2e376ce1c8
https://github.com/Mellanox/mlxsw/blob/master/Debugging/libbpf-tools/src/trapagg_example.txt
https://github.com/Mellanox/mlxsw/blob/master/Debugging/libbpf-tools/src/trapagg_example.txt
https://prometheus.io/
https://grafana.com/

