
“We’ve got realtime networking at home” – why many systems are
moving to TSN so slowly

Johannes Zink

Pengutronix e.K.
Hildesheim, Germany
j.zink@pengutronix.de

Abstract
Since several years many companies have tried to deliver realtime
data e.g. audio, video or industrial control commands over the
network for a variety of applications. Often, the implementations
failed to deliver the promised performance under circumstances
such as heavily loaded networks or were incompatible with
regular network protocols. While TSN fixes most of these issues,
brownfield development and migration is a challenge. This paper
will look into a variety of system design approaches, into
promises kept and broken and into the consequences of different
system design choices. It will also propose how to move towards
modern implementations and discuss the role of the Linux kernel
in this process.

Keywords
Realtime Networks, TSN, QoS, PTP, Resource Management,
Implementation, Brownfield Deployment

 Introduction
Even before TSN introduced bandwidth reservation and
guaranteed bound end-to-end transmit latencies in
Ethernet networks, manufacturers decided to move the
transport layer of their realtime critical communication to
Ethernet, mostly due to widespread availability and low
cost of Ethernet hardware components.

Application Requirements for Realtime Networks
The most obvious use cases for distributing realtime data
over networks include audio and video transmission and
industrial control applications. Both have strong
requirements with respect to clock synchronization,
quality of service, end-to-end-latency, though aspects like
network management (i.e. stream setup) may differ. While
engineered network setups (i.e. setups with carefully
designed topology, selected components and calculated
bandwidth requirements) may be acceptable for industrial
control, especially live audio and video transmission
should work out-of-the-box with a wide variety of gear and
topologies.

In general, the requirements can be analyzed with respect
to

• time synchronization
• bounded transmission latency
• quality of service

Some applications may also require additional features
such as physical layer redundancy.

Legacy Implementation Approaches
Most legacy implementations aim to improve determinism
by segregating realtime from non-realtime traffic, while
using as low as possible load on the realtime network
segments. This way, no interfering traffic has to be taken
into account when designing the network setup. Of course,
these approaches do not integrate well into current
converged network setups.

The most common implementations either split these
domains into separate physical connections, or use
VLANs. Additionally, some implementations employ QoS
mechanisms such as DSCP in order to prioritize the more
timing critical parts of their realtime traffic over the less
critical parts and over in-band management traffic.

Since most applications do not require traffic to be routed,
some implementations use non-standard Layer 3 and
higher protocols instead of standard IP.

Time Synchronization
Many different time synchronization mechanisms have
been deployed in the field. Nevertheless, most of them rely
on variants of IEEE1588 PTP, though some use layer 2
implementations, mostly using FPGAs to implement daisy-
chained Ethernet Links with clock recovery from the
bitstream, exist.

For improving timing precision, transparent and boundary
clocks are used in PTP, but since this usually requires
support by the switch firmware, most legacy
implementations, which do use only subsets of standard
PTP, cannot take advantage of this possibility.

Bounded Transmission Latency
Most legacy implementations cannot guarantee bounded
transmission latency, but often engineered networks
massively overprovision bandwidth and usually try to
avoid any interfering non-realtime traffic. Some
implementations try to improve on this by using QoS
mechanisms.

mailto:j.zink@pengutronix.de

Quality of Service
Since there are no means of reserving bandwidth or
transmission time slots in non-TSN ethernet, the only way
of lowering end-to-end transmission latency and therefore
lowering the risk of not delivering packets in time is to
employ QoS mechanisms such as DSCP. These
mechanisms will cause resources, namely bandwidth, to be
scheduled preferably to realtime traffic. Since the
underlying hardware may or may not support these means
without signaling the possible lack of support, replacing
parts of the network setup can result in deteriorated
realtime performance.

Network Management
Most implementations use proprietary network
management, especially for configuration of data streams
and for resource management.

For most implementations, setup is performed before
starting realtime operation. Often additional inband
signaling is used for this, but most implementations switch
off or at least reduce configuration options at run time,
since this could interfere with the realtime operation.

Advantages and shortcomings of legacy
implementations

Since the systems deployed in the field have been designed
long before TSN or even AVB standards were available,
they usually do not rely on additional features that go
beyond standard ethernet operation. This allows to operate
said systems even on legacy hardware, often without much
specific hardware acceleration or support for modern
standards such as TSN. While this does not seem as an
advantage, it is sometimes regarded as such, since it often
has lower requirements on networking equipment which
results in lower installation cost. This comes of course with
the obvious disadvantage of no realtime guarantees and
therefore impeded operational stability, especially under
load or unusual operating conditions. To account for this,
and since retransmission is, due to timing constraints,
usually not feasible, most implementations provide
different coping mechanisms for packet or even link loss.
Besides special constraints, like entering a safe state upon
packet loss, e.g. in industrial control applications, most
implementations use either redundant physical
transmission paths with packet duplication at the sender
and deduplication at the receiver, or transmit overlapping
jitterbuffer and interpolation upon single lost packets.
Nevertheless, the networks deployed are usually kept
segregated and most of the time highly engineered,
converged networks or ad-hoc setups without planning and
testing are often strongly discouraged my manufacturers.

TSN – a general solution to all problems?
The TSN standard set provides solution approaches for
most of the issues described. gPTP offers a very tight and
precise way of clock synchronization, while traffic shaping
and stream reservation provide a good solution for
guaranteed bandwidth and guaranteed quality of service.
Nevertheless, these standards only lay the groundwork for
building tech stacks, and often existing protocols are only a
mediocre fit for making well-generalized realtime capable
solutions from legacy implementations. Also, TSN does
not cover all requirements, e.g. only basic redundancy
schemes can be implemented with the 802.1Qca and
802.1CB extensions. Nevertheless, TSN provides a
standardized way for making ethernet traffic realtime
capable under very generalized conditions.

Pushing TSN to the brownfield
As mentioned earlier, lots of highly specialized and
creatively engineered solutions have been deployed in the
field throughout the years. Often, these solutions were
complex and expensive. While more recent technologies
were iteratively pushed to the market, often adaption in the
field was rather slow. With TSN, the same issue can be
observed. Not only has availability for hardware support,
which is required especially for gPTP and for traffic
shaping, been limited for several years, but also the
frequent changes in standards on the transition from AVB
to TSN made it difficult not only for hardware vendors, but
also for network stack to provide stable interfaces, APIs
and documentation to developers building upon this
technology. While these issues are now mostly solved
thanks to mainline support for all important features in the
network stack, moving application stacks and system
design towards the new frontiers still proves to be difficult.
Highly complex stacks that often require deep
understanding of the respective standards are slowing
development efforts, while incompatibilities to existing
legacy hardware in the field block incremental migration
with continuous upgrades, since the entire networked
application can only be run at the lowest commonly
supported set of standards, which often means that
coexistence of TSN and legacy solutions is partially
feasible, but interconnection between them is only very
seldom possible.

Migration Strategies
So far, the most successful strategy for migration towards
the technically superior TSN based approaches is to
replace single subsystems and to implement gateways to
legacy systems. While this comes at an extra cost, it
provides a well-controllable and scalable approach and
allows for partial replacement. While this might still be an
interim solution and will still require new standards and
tech stacks to be developed such that they can take better
advantage of the realtime guarantees, it is a viable way for
getting devices in the field and moving on.

How the Linux kernel can help move things
forward

Since the Linux kernel not only implements the support
required for TSN and also provides driver support for most
modern processors and switches with hardware support,
but also is a very open and approachable implementation, it
is the ideal basis for implementing such gateway systems
and bringing deterministic networking endpoints and
bridges to the field. While the basic infrastructure is
available, often the rest of the tech stack involved (i.e. user
space daemons, management services) is still incomplete.
Reference implementations and working minimal
examples can make these stacks more approachable to
application engineers, who often focus more on the
application requirements than on details of network stacks
and realtime standards. Open application stacks like
open62541 or OpenAvnu provide a good starting point for
application development based on deterministic
networking. [1] [2]

While open source stacks provide an insight and an
learning opportunities into the interdependencies of
different standards and substandards, evaluation of system
designs is often difficult due to the numerous parameters
that have to be taken into account. Adding tooling for
testing an implementation can lower the effort for
evaluation of the system design significantly and adds a
tremendous additional value.

Careful userspace API design and documentation will ease
the implementation and improve the use of proper and
stable interfaces. While some of the requirements will need

to add DetNet (Deterministic Networking, a set of RFCs
authored by the IETF DetNet Working Group with focus
on deterministic datapaths that operate over layer 2 and
layer 3 networks) on top of TSN, this approach will lay the
groundwork for moving forward. [3]

Technical requirements in the field will require
intermediate solutions, since standardization is a slowly
moving process, but nevertheless moving towards the
standardized solution should be encouraged as they
become available.

References

1. open62541 github page, accessed September 6, 2022,
https://github.com/open62541/open62541

2. OpenAvnu github page, accessed September 6, 2022,
https://github.com/Avnu/OpenAvnu

3. IETF DetNet working group landing Page, accessed
September 6, 2022, https://datatracker.ietf.org/wg/detnet/

Author Biography
Before joining the Pengutronix kernel team in 2022,
Johannes worked as a software engineer for a manufacturer
of professional audio equipment, where he co-authored
several networking standards, and as a systems engineer at
a manufacturer of industrial and mobile PLC systems,
where he migrated several proprietary legacy networking
systems to open source realtime solutions.

	Introduction
	Application Requirements for Realtime Networks

	Legacy Implementation Approaches
	Time Synchronization
	Bounded Transmission Latency
	Quality of Service
	Network Management
	Advantages and shortcomings of legacy implementations

	TSN – a general solution to all problems?
	Pushing TSN to the brownfield
	Migration Strategies

	How the Linux kernel can help move things forward
	References
	Author Biography

