
1

NVMeTCP Offload
Implementation and Performance Gains

Shai Malin, Aurelien Aptel
Boris Pismenny, Yoray Zack, Ben Ben-Ishay and Or Gerlitz

Agenda

• The motivation for the NVMeTCP offload

• The challenge

• The offload design and implementation

• Performance

• Debug lessons

2

The Offload Opportunities

• Receive side zero-copy
The data arrives as TCP stream and needs to be
copied into the destination buffers.

• Receive side data CRC validation

• Transmit side data CRC calculation

Data

CRC

Header

NVMeTCP PDU

3

The Motivation

fio --bs=128k --rw=randread --ioengine=libaio --bs=[x] iodepth=128 --numjobs=1 | Without data digest

The Motivation

Rx Data Copy

Saving the Data Copy:

fio --bs=128k --rw=randread --ioengine=libaio --bs=[x] iodepth=128 --numjobs=1 | Without data digest

The Motivation
Saving the Data Copy and the CRC Calculation:

Rx Data Copy

Rx CRC Validation

fio --bs=128k --rw=randread --ioengine=libaio --bs=[x] iodepth=128 --numjobs=1 | With data digest

The Challenge

7

NVMeTCP PDU #1

TCP Segment #1

NVMeTCP PDU vs TCP Segments

8

PDU dataPDU hdr DD

TCP hdr PDU hdr PDU data TCP hdr PDU data TCP hdr PDU data DD

TCP Segment #2 TCP Segment #3

NVMeTCP PDU #1

TCP Segment #1

NVMeTCP PDU vs TCP Segments

9

PDU dataPDU hdr DD

TCP hdr PDU hdr PDU data TCP hdr PDU data TCP hdr PDU data DD

TCP Segment #2 TCP Segment #3

TCP Segment

TCP hdr PDU hdr PDU data PDU hdr PDU dataDD DD

The Challenge

10

• TCP receives data in anonymous unaligned buffers.

• PDU out of order is allowed – the remote side is allowed to reorder the transmitted PDUs.

-> Generic receive zero-copy will not work.

This requires to track the TCP stream and distinguish the

NVMeTCP PDU based on the PDU header CCCID and PLEN.

CCCID – Command Capsule CID

PLEN – Total length of the PDU

PDU hdr

CCCID

PLEN

11

The Offload Design

The Offload Rx Design (in-order)

12

1 2 3
PDU Header

PDU Data

54

PDU 1
DDP+CRC Offload

PDU 2
DDP+CRC Offload

Data Digest

1. Identify the TCP connection based on a 5-tuple steering rule.

2. Track the TCP stream and identify the NVMeTCP PDUs in the stream based on PDU headers which include

command identifier (CCCID) and PDU length (PLEN).

3. In case of Data PDU:

• DDP (Direct Data Placement) – Place the PDU data directly into the end-buffer in the relevant

offset which is based on the TCP sequence.

• CRC Offload - Calculate the start/continuation of the data digest and verify the result at the end of

the PDU.

The Driver SKB Build

NIC driver builds SKBs of packets:

• Packet headers from receive ring

• Storage protocol header from receive ring

• Payload from destination buffers

Storage protocol skips copy
If (src addr == dst addr)

PDU data (part 1)Ethernet / IP / TCP / NVMeTCP

PDU data (part 2)

previous packets

more packets

offload

Received
TCP packet

Receive
ring

Application buffers

NVMe IO
(CID=X)

13

-

PDU data (part 3)

skb_shinfo(skb)

The Offload Rx Design (out-of-order)

14

1. Based on the PDU header DATAL, the HW can anticipate which TCP sequence range is within
the current PDU.

2. If the missing TCP packet is in the middle of the PDU, the HW will continue the direct data
placement of the following packets.

In this case the PDU data digest will be calculated by software.

1 2 3
PDU Header

PDU Data

54

PDU 1 PDU 2Data Digest

The Offload Rx Design (out-of-order)

15

1. Based on the PDU header DATAL, the HW can anticipate which TCP sequence range is within
the current PDU.

2. If the missing TCP packet is in the middle of the PDU, the HW will continue the direct data
placement of the following packets.

In this case the PDU data digest will be calculated by software.

When the missing packet will arrive (out-of-order), the HW will bypass the offload flow.

1 2 3
PDU Header

PDU Data

54

PDU 1
DDP + CRC Offload

PDU 2
Partial DDP,

No CRC Offload

Data Digest

*For more detail -> Netdev 0x15 Autonomous NVMe-TCP Offload

The Offload Rx Design (out-of-order)

3. If the missing TCP packet includes a PDU header:

• The HW will pause the offloading and in the next following packets, the HW will compare the
start of the packet with the magic pattern as optimistic approach, and in case of a match,
the HW will send a resync request to the software.

16

The Offload Rx Design (out-of-order)

3. If the missing TCP packet includes a PDU header:

• The HW will pause the offloading and in the next following packets, the HW will compare the
start of the packet with the magic pattern as optimistic approach, and in case of a match,
the HW will send a resync request to the software.

17

1 2
PDU Header

PDU Data

54

PDU 1 PDU 2Data Digest PDU 3

3

PDU 4

Magic pattern match
The HW will send a resync
request to the SW

The Offload Rx Design (out-of-order)

3. If the missing TCP packet includes a PDU header:

• The HW will pause the offloading and in the next following packets, the HW will compare the
start of the packet with the magic pattern as optimistic approach, and in case of a match,
the HW will send a resync request to the software.

• The HW will continue to track the incoming stream, without performing the DDP, while it is
waiting for the resync response.

18

1 2
PDU Header

PDU Data

54

PDU 1 PDU 2Data Digest PDU 3

3

PDU 4

Magic pattern match
The HW will send a resync
request to the SW

The Offload Rx Design (out-of-order)

3. If the missing TCP packet includes a PDU header:

• The HW will pause the offloading and in the next following packets, the HW will compare the
start of the packet with the magic pattern as optimistic approach, and in case of a match,
the HW will send a resync request to the software.

• The HW will continue to track the incoming stream, without performing the DDP, while it is
waiting for the resync response.

• Once the software resyncs the HW with the new state (confirmation of the magic pattern),
the offload will continue.

19

1 2
PDU Header

PDU Data

54

PDU 1
DDP + CRC Offload

PDU 2
No DDP,

No CRC Offload

Data Digest PDU 3
No DDP,

No CRC Offload

3

PDU 4
DDP + CRC

Offload

Resync response
(confirmation)

The Offload Rx Design (out-of-order)

3. If the missing TCP packet includes a PDU header:

• The HW will pause the offloading and in the next following packets, the HW will compare the
start of the packet with the magic pattern as optimistic approach, and in case of a match,
the HW will send a resync request to the software.

• The HW will continue to track the incoming stream, without performing the DDP, while it is
waiting for the resync response.

• Once the software resyncs the HW with the new state (confirmation of the magic pattern),
the offload will continue.

The resync does not terminate the offload or stop the Rx from receiving the incoming packets.

20
*For more detail -> Netdev 0x15 Autonomous NVMe-TCP Offload

The Offload Tx Design
1. Instead of computing the NVMeTCP PDU data digest by the software layer, the driver marks packets

for data digest offload based on the socket the packet is attached to.

2. The HW identifies the packet as requiring data digest offload handling and performs data digest
calculation of the PDU data. It replaces the PDU data digest and TCP checksum with correct values.

3. Both the device and the driver maintain expected TCP sequence values in order to handle
retransmissions.

4. Retransmission of a packet in the middle of the PDU will not require to be handled by the offload IO
path.

5. If the retransmission includes the PDU data digest, the software will resend the entire PDU to the
HW, which will calculate the data digest but will send to the wire only last segment which includes
the data digest.

21*For more detail -> Netdev 0x15 Autonomous NVMe-TCP Offload

The Offload Flows

1. The offload (DDP and CRC offload) is a net-device capability. When creating a new NVMeTCP queue, the offload
will be enabled if the module param ulp_offload is set and if netdev->features & NETIF_F_HW_ULP_DDP.

2. The offload for IO queues is initialized after the handshake of the NVMe-TCP protocol is finished by calling
nvme_tcp_offload_socket(). This operation sets all relevant hardware contexts in the hardware.

3. On the IO path, per IO:

• The NVMeTCP layer will call nvme_tcp_setup_ddp() to map the IO buffer and to configure the HW for
the specific IO (CCCID, buffer). This flow is opportunistic in order to avoid the waiting for the HW
completions.

• Once the IO has completed by the NVMeTCP layer, but before posting the completion to the upper layer,
the nvme_tcp_teardown_ddp() will invalidate the HW buffer.

4. The resynchronization flow:
• Resync request from the device HW to the SW, regarding a possible location of a PDU header.
• Resync response from the NVMe-TCP driver to the device HW.

22

SKB changes

In order the allow the design, 2 New SKB bits skb->ulp_ddp and skb->ulp_crc

Used similarly to TLS’s skb->decrypted

• On transmit skb->ulp_crc indicates to the HW that CRC offload is expected

• On receive skb->ulp_crc indicates to the driver that no CRC errors in the packets’ payload

skb->ulp_crc==0 triggers software PDU CRC calculation

• On receive skb->ulp_ddp indicates to avoid skb_condense which copies data from destination
buffer back to SKB.

23

Enablement

In order to enable the NVMeTCP offload:

ethtool -K <device> ulp-ddp-offload on

modprobe nvme-tcp ulp_offload=1

Following the enablement, all the NVMeTCP queues/sockets which are running on
the device are offloaded.

24

DDP and Rx CRC Offload
Performance Results

on ConnectX 7

25

The Tests Config

Servers:

Host server: Intel(R) Xeon(R) Platinum 8380 CPU @ 2.30GHz| Kernel: 5.19.0 | HW: ConnectX-7 2x200

Target server Intel(R) Xeon(R) Platinum 8380 CPU @ 2.30GHz | Kernel: 5.19.0 | HW: ConnectX-7 2x200

Target backend: null-device

Topology and Networking:

Back-to-back connectivity, 1x200 Gbps

ipv4, 1500 MSS

Tuning:

Host server offload: not needed.

Host server non-offload (“SW”): aRFS, num combined queues = num fio jobs

Target server (“SW”): aRFS, num combined queues = num fio jobs

Workload:

fio: num fio jobs = fio cpu allowed

26

DDP vs SW
– Bandwidth Comparison

27

Up to 35%
higher BW Up to 48%

higher BW

Up to 55%
higher BW

fio
--rw=randread --ioengine=libaio
--bs=[x] iodepth=128 --numjobs=[x]

DDP (+ CRC Offload) vs SW (+ SW CRC)
– Bandwidth Comparison

28

Up to 53%
higher BW

Up to 85%
higher BW

Up to 138%
higher BW

fio
--rw=randread --ioengine=libaio
--bs=[x] iodepth=128 --numjobs=[x]

DDP (+ CRC Offload) vs SW (+ SW CRC)
– The CPU Cost Comparison

29

The comparison of the CPU utilization,
normalized per 1000 IOs

fio
--rw=randread --ioengine=libaio
--bs=[x] iodepth=128 --numjobs=1

The offload
shows consistent
advantage

Network Congestion

30

The network congestion was simulated using:

tc qdisc add dev eth0 root netem loss []%

fio
--rw=randread --ioengine=libaio
--bs=512k iodepth=128 --numjobs=8

The offload
shows consistent
advantage

DDP vs SW
– Bandwidth Comparison Under Congestion

31

The network congestion was simulated using:

tc qdisc add dev eth0 root netem loss 0.3%

fio
--rw=randread --ioengine=libaio
--bs=[x] iodepth=128 --numjobs=4

The offload
shows consistent
advantageThe overall

performance is lower
(as expected)

DDP (+ CRC Offload) vs SW (+ SW CRC)
– Bandwidth Comparison Under Congestion

32

The network congestion was simulated using:

tc qdisc add dev eth0 root netem loss 0.3%

fio
--rw=randread --ioengine=libaio
--bs=[x] iodepth=128 --numjobs=8

The offload
shows consistent
advantage

The overall
performance is lower
(as expected)

Lessons

33

34

Context Switches are Expensive

A lot of interruptions resulted in a lot of scheduling and context
switching:

• This resulted in a significant overhead.
• Fixed by disabling the notification of UMR completion.
• Because the offload is opportunistic, it doesn’t have to wait

for the completion.

Useful tools to for analysis and debugging:
• Perf(1)
• flamegraphs

perf record -a -g -F 99 -o data.perf -- fio –bs=64k …
perf script -i data.perf > data.txt
./stackcollapse-perf.pl data.txt > collapsed.txt
./flamegraph.pl --title "fio flamegraph" collapsed.txt > graph.svg

35

tcpdump -i $iface -Q in -s 64 -c 2000 -w net.cap

tshark -r net.cap -q -z 'io,stat,0,MIN(frame.len),MAX(frame.len),AVG(frame.len)frame.len'

GRO Impacts Performances a Lot

• GRO is an optimization to coalesce multiple packets together while receiving.
• The initial method used to track the DDP and CRC offload in SKB affected GRO.

• GRO should only group packets which have their CRC computed.
• Initial design used the same bit to track CRC computation and Direct Data placement.
• Packets group would be flushed early and resulted in more processing (worse

performance than non-offloaded).

• Fixed by tracking CRC and DDP independently so as to not split packets early in GRO.

• Useful tools for analysis and debugging
• Tracked average received packet size via tcpdump and wireshark:

Upstream status

36

37

Upstream status

nvme-tcp-receive offload v6 sent last week to:
- net-next
- linux-nvme

Questions

38

