
Merging the Networking Worlds
David Ahern, Shrijeet Mukherjee

October 2022

© 2022 ENFABRICA CORPORATION. ALL RIGHTS RESERVED.



BSD Socket APIs

2© 2022 ENFABRICA CORPORATION. ALL RIGHTS RESERVED.

Simple, easy to use, well understood

Control path:
● socket(), [bind(),] { connect(), listen() + 

accept() }
Data path:

● recvmsg(), sendmsg()

libc provides an application interface to the kernel 
APIs

Relies on OS for network addressing, routing, and 
interaction with H/W



BSD Socket APIs

3© 2022 ENFABRICA CORPORATION. ALL RIGHTS RESERVED.

Simple, easy to use, well understood

Control path:
● socket(), [bind(),] { connect(), listen() + 

accept() }
Data path:

● recvmsg(), sendmsg()

libc provides an application interface to the kernel 
APIs

Well known overhead in the data path affecting 
performance (both throughput and latency) 
and CPU cycles for a packet load



Overhead with Socket APIs and Linux

4© 2022 ENFABRICA CORPORATION. ALL RIGHTS RESERVED.

system calls
● send or receive a message
● poll/select waiting for a message

memcpy on each send and receive
● the biggest limiter to performance

kernel buffer allocation for Tx



Overhead with Socket APIs and Linux

5© 2022 ENFABRICA CORPORATION. ALL RIGHTS RESERVED.

Generic infrastructure hooks in the data path
● GRO packet processing on Rx
● packet sockets
● netfilter, tc, ebpf hooks

L3 - FIB lookup
● where is packet going (local or forward)

Protocol Headers (Network and Transport)
● Tx: create, Rx: validate

Socket lookup (Rx)



Overhead with Socket APIs and Linux

6© 2022 ENFABRICA CORPORATION. ALL RIGHTS RESERVED.

Memory management for receiving packets
● Rx ring needs buffers to land packets

skb management (Rx)
● allocation, payload representation (skb frag)

DMA mapping skb fragments (Tx)

irq latency

CPU cache locality
● CPU processing packets and CPU running 

process



Socket API Overhead

7© 2022 ENFABRICA CORPORATION. ALL RIGHTS RESERVED.

How to keep the good parts of Linux - e.g, established 

protocols, TCP congestion algorithms, well known admin 

tools - but remove overhead from the datapath?



Linux Zerocopy APIs

8© 2022 ENFABRICA CORPORATION. ALL RIGHTS RESERVED.

ZC API’s target memcpy overhead

Tx: fairly easy to use, but has its overhead
● get_user_pages (and variants) plus reaping 

completions (recvmsg syscalls)

Rx: very limited and tricky to use
● Requires a specific MTU size and header split such 

that payloads are exactly PAGE_SIZE

● Side band with memcpy for data less than 
PAGE_SIZE



io_uring

9© 2022 ENFABRICA CORPORATION. ALL RIGHTS RESERVED.

Addresses performance issues at user-kernel interface
● Reduces system calls for datapath (batching 

submissions)

Buffer registration
● Amortize page pinning and reference counts

liburing provides an interface to the kernel APIs

Supports networking APIs - recvmsg/sendmsg invoked 
kernel side with buffers from SQ
● Recent support for Tx ZC API

Still have a lot of overhead in the networking stack and 
hardware interface



XDP Sockets

10© 2022 ENFABRICA CORPORATION. ALL RIGHTS RESERVED.

Full kernel bypass
● All of the data path hooks and networking protocols
● Linux stack used only for setup and data path kicks

Userspace has to implement packet processing (and 
network protocols) of interest

libxdp + libbpf provide an interface to the kernel APIs

User buffers can be used in hardware queues
● Example of ownership of application buffers being 

cycled between H/W and process



RDMA, IB Verbs

11© 2022 ENFABRICA CORPORATION. ALL RIGHTS RESERVED.

Targeted at high performance computing
● High throughput, low latency

RDMA and Infiniband are a separate ecosystem
● Hardware, protocols, software

Allows application to application transfers without OS involvement
● Stated another way: OS is used for control plane setup and then gets out of the way

Existing subsystem in Linux

libibverbs provides an interface to the kernel APIs

RoCE
● RDMA over ethernet; v2 uses UDP and IP/IPv6



RDMA, IB Verbs Concepts

12© 2022 ENFABRICA CORPORATION. ALL RIGHTS RESERVED.

Memory Regions (MR)
● Allows a program to describe a set of contiguous memory (virtual or physical)
● Pages must be pinned to avoid being swapped out and keep virtual-to-physical mapping
● On registration virtual-to-physical conversion is written to hardware
● Set permissions on the MR (local write, remote read, remote write, atomic, bind)

Queue Pairs (QP)
● Set of receive and transmit queues; used to submit work requests

Completion Queue (CQ)
● Notification of completed work entries

Protection Domain (PD)
● used to associate QPs with MRs



RDMA, IB Verbs - S/W Arch

13© 2022 ENFABRICA CORPORATION. ALL RIGHTS RESERVED.

Userspace - H/W queues
● RQ = Receive queue. Application submits work 

queue entries for Rx (e.g., amount of data 
expected to receive in a message)

● SQ = Send queue. Application submits work queue 
entries for Tx (e.g., buffer/message to send)

● CQ = Completion queue. Entries noting completion 
of work request entries in SQ and RQ. Can have 
separate CQ for SQ and RQ



Merging Networking Features

14© 2022 ENFABRICA CORPORATION. ALL RIGHTS RESERVED.

Pull in Memory Region concept
● Page pinning, DMA mapping with hardware in control path
● Reduces overhead managing buffers for connection

User-kernel S/W queues
● Reduce system calls submitting work requests and getting 

completions (CQ can be polled)

Dedicated H/W queues for flow
● Rx with application based buffers - avoids memcpy
● RSS to direct packets for flow to Rx queue

Optionally User-H/W queues



Merging Networking Worlds

15© 2022 ENFABRICA CORPORATION. ALL RIGHTS RESERVED.

Kernel module takes ownership of socket for data path
● Manages process specific H/W queues for QP
● Manages Rx queue and sending data through TCP
● Manages SQ work requests and sending data 

through TCP
● Sends CQEs as Rx and Tx work requests are 

completed

Data path bypasses all of the infra hooks (overhead)

Userspace provider and kernel module from hardware 
vendor allow for better hardware integration

Existing subsystems and code, just a different wiring with 
vendor glue



Application Example

16© 2022 ENFABRICA CORPORATION. ALL RIGHTS 
RESERVED.

Find and open IB device, get supported attributes
● ibv_get_device_list
● ibv_get_device_name
● ibv_open_device
● ibv_query_device
● ibv_query_port

Create a PD for application
● ibv_alloc_pd

Allocate buffers for send and receive
● mmap or malloc

Register buffers with hardware as MRs 
● ibv_reg_mr()

Create CQs
● ibv_create_cq()

Create QP
● ibv_create_qp
● creates hardware queues to handle both Rx and Tx
● creates and maps software queues - SQ to submit 

send requests, RQ to submit receive buffers, WQ to 
submit buffers)

Establish socket connection via typical socket APIs



Application Example

17© 2022 ENFABRICA CORPORATION. ALL RIGHTS 
RESERVED.

Transition QP through states: INIT -> RTR - > RTS
● ibv_modify_qp
● post receive buffers using ibv_post_recv if needed
● socket is handed off to kernel module

Sender posts send requests
● ibv_post_send

Both ends Poll for completion
● ibv_poll_cq
● sender: ack from peer buffer received
● receiver: posted buffer consumed

Cleanup
● ibv_destroy_qp
● ibv_destroy_cq
● ibv_dereg_mr
● ibv_dealloc_pd



Demo

18© 2022 ENFABRICA CORPORATION. ALL RIGHTS RESERVED.



Summary

19© 2022 ENFABRICA CORPORATION. ALL RIGHTS RESERVED.

Keep the socket APIs and Linux IP/TCP stack

Get the OS out of the way in the data path
● Avoids system calls and memory copy
● Avoids infrastructure hooks up and down stack
● Simplify memory management

○ buffers handled by application (it knows best what is available for new packets)

Still have skb management
● Linux stack is skb based
● Local cache of skbs helps here

Hardware features (e.g., LRO) can be managed by H/W specific IB module



Thank You


