
FW centric devices,
NIC customization

Firmware Centrict Device
Configurable Firmware

•Modern devices are complex
• More functionality <> More HW units and engines
• More Processing power <> More capabilities
• More NVM capacity <> More Configuration options !

•Modern Device <> FW centric device
• Some Modern Devices have ARM cores and can run entire Linux OS.
• Even some early NICs had MIPs cores running Linux OS

Customization Nightmare
Configurable Firmware

Multitude of features
•Multi port
•Multi function
•E-switch
•Virtualization
•Traffic shaping and rate limiting
•Multi protocol/stack (ethernet, rdma, vdpa, virtio, nvme, etc ..)
•Standard offloads (Checksum, GRO, TSO, etc ..)
•Modes of operation: eBPF, XDP, XSK, HDS, RDMA.
•Crypto offloads engines (TLS, IPSec, MACsec)
•TC offloads, tunneling and full pipeline offloads.
•Vendor specific optimizations

•These features simply don’t work in harmony magically out of the box.
•User specific demands per feature

ConnecTX (4 and later)
Some Stats

• 500K Lines of “core” code.
• ~600 NV config parameters
• Forward compatible devices
• FW/driver backward compatible

.

Highly configurable
Yet Not Flexible

• Sadly, although highly configurable, these devices aren’t as flexible.

• Human intervention is required, and recommended :).
• Exact combination of features to boot with
•Most efficient configuration
• Vendor specific optimizations and parameters.
• ConnectX device has ~600 NV Firmware parameters
• ~25% growth year over year.

• standardization can only go so far.

Vendor Specific Toolbox :’(
I don’t like them too!

• To address some of the issues vendors had to extend their basic Firmware and NVM tools

• Require direct user space access to PCI
• Require proprietary kernel modules and long list of toolchain

• Not welcome in production
• Long turnaround cycles
• Secure boot and secure kernel, no solution !

Real life stories :

- How do I increase your HW GRO timeout ?

- Booting to other OS to make configuration
changes

- Personal Laptop i2c on production machines

- Forgetting a debug fw running in production

- down time due to bad custom fw, just to
enable a simple flag !

Types of dials and knobs

• Functionality <> enable/disable/select.
• Performance <> parameters values, and rangers.
• Verbosity/Debugability (RAS feature) <> tirgger, monitor, capture, report

Categorization:

1) non-volatile device configuration and firmware update - static and preserved across reboots
2) Volatile device global firmware configuration – runtime.
3) Volatile per-function firmware configuration (PF/VF/SF) – runtime.
4) RAS features for FW - capture crash/fault data, read back logs, trigger device diagnostic modes,

report device diagnostic data, device attestation

upstream APIs
Mainstream utilities (Devlink)

https://man7.org/linux/man-pages/man8/devlink-dev.8.html
• devlink goal was always to provide a healthy mix of standards based multi-vendor APIs side by side

• Devlink [vendor specific] params
• Devlink health
• Devlink resource
• Devlink port functions *

https://man7.org/linux/man-pages/man8/devlink-dev.8.html

(1 & 2) Non-Volatile and Volatile NIC customization

https://www.kernel.org/doc/html/latest/networking/devlink/devlink-params.html
• SET:
• devlink dev param set DEV name PARAMETER value VALUE cmode { runtime | driverinit | permanent }

• READ:
• devlink dev param show

• Reload driver:
• devlink dev reload pci/0000:01:00.0

• Vendor Specific params are marked
• driver-specific

• Problems:
• very hard to agree what’s driver-specific what’s generic
• Almost everything starts as driver-specific
• Only a small subset of NIC FW customization exist today

in devlink !

Devlink parameters

https://www.kernel.org/doc/html/latest/networking/devlink/devlink-params.html

(3) Volatile Per function configuration (PF/VF/SF)

• Virtualization environments where physical, virtual and synthetic functions are spawned on demand
• VFs are created via sriov sub-system
• SFs are managed by eswitch

• These functions, are represented via function ports
(port flavor) in devlink

• VF/SF customization required and life cycle managment
• High scale HW resource limitations
• Missing devlink params infrastructure

 per function port

Devlink port functions
Virtualization mess

RAS feature for FW
Trigger, monitor, capture, report

• Devlink provides many mechanisms but still the picture is incomplete !

• Devlink DPIPE – very specific to the offloading pipeline !
• Devlink health – very specific to driver faulty flows, although very rich in terms of RAS
• Devlink region – dump the whole configuration space or pre-defined registers
• Devlink resource – control limits of driver-registered HW resources

• Not really utilized or implemented by many drivers
• All of the above is READ only, the NIC debug state is immutable, without any external tools !
• Missing set-ability to enable disable hw dumps tracing and diagnostic mechanism

Vendor extensions
Dynamic approach

• High configurability issues isn’t specific to NICs and already had been addressed in many products

• Ethtool module eeprom and register dump* vendor specific parsing

• Nvme-cli : https://man.archlinux.org/man/nvme.1
• Nvme-fw-log(1), nvme-smart-log(1) , nvme-fw-activate(1), nvme-fw-commit(1)
• Plugins/Vendor extension commands:
• nvme-intel-xyz

• Kubernetes: Container Network Interface (CNI) Specification plugins
• plugin is a program that applies a specified network configuration.
• https://github.com/containernetworking/cni/blob/spec-v1.0.0/SPEC.md#summary

• OpenStack
• “OpenStack SDK is implemented as an extensible core, upon which vendor extensions can be plugged in”

• Libvirt ?

https://man.archlinux.org/man/nvme.1
https://github.com/containernetworking/cni/blob/spec-v1.0.0/SPEC.md#summary

• NIC attestation is still immature even with all the
existing mainstream tools

• Embargo on devlink parameters should be lifted !
it’s an unpopulated wonderland !

●• Kernel Admins, developers, testers, and curious HW
explorers will welcome such ability to easily customize
the HW !

To summarize

Questions ?

	Slide1
	Slide550145001
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide550144977

