
Regular expressions in XDP

IVAN KOVESHNIKOV SERGEY NIZOVTSEV



Regular expressions in XDP

✓ Security and DDoS Protection as a service

✓

✓

✓



Our traditional network design

✓ Hundreds of CDN servers, dozens of standalone

DDoS protection servers

✓ Protection servers only at selected locations

✓ Third-party solution with DPDK

✓ Asynchronous ingress/egress on both CDN

and DDoS protection servers

CDN Servers

Gcore 
Infrastructure

DDoS
Protection

Customer NetworkInternet



Our new distributed network design

✓ Hundreds of CDN servers, each comes with DDoS 

protection

✓ XDP

✓ Multiple network-intensive applications on the same 

nodes

✓ Closer to client end-points (and DDoS generators)

✓ Standalone servers are still used during transition

CDN Servers with integrated
DDoS protection

Gcore 
Infrastructure

Customer NetworkInternet



When we use regular expressions

Mostly game traffic is a subject

for protection by regular expressions

✓ UDP

✓ MTU < 1500

✓ Game protocols: strict format can be verified by REGEX

✓ Reaction to attacks: drop on pattern match

CDN Servers with integrated
DDoS protection

Gcore 
Infrastructure

Customer NetworkInternet



Regular expressions in XDP

✓

✓ XDP pipeline with REGEX

✓

✓



Our XDP pipeline

✓ Cover configuration for thousands of customers

✓ Order of countermeasures may differ

✓ REGEX is one of the countermeasures

✓ Not the first

✓ Not the last

✓ At the end traffic is either processed locally or sent to a customer 

network

Dissector

Find packet headers Extract 5-tuple

Flow Router

Find Policy by 5-tuple

Policy Pipeline

Tail Calls

BPF prog
BPF prog

BPF prog
BPF prog

Verdict

Pass/Drop/TX

Save statistics



REGEX in XDP: runtime

✓ Too big and complex: better to use an existing implementation

✓ Cannot fit eBPF limitations and pass through the verifier

✓ Efficient implementations require vector operations

✓ May have different performance, depending on patterns and traffic

✓ Understanding budgets while processing REGEX is crucial—performance degradation for one customer may 

lead to service degradation for all customers



REGEX runtime: Hyperscan

✓ BSD License

✓ Simultaneous matching of large numbers of regular expressions

✓ DPI as a common usage scenario

✓ Self-contained C runtime for scanning

✓ No memory allocations in hot path

✓ Can process multiple packets in one batch (not supported by XDP)



In-module eBPF helpers 

A kernel module can define an eBPF helper function and dynamically 

extend capabilities of kernel and eBPF.

✓ Work started in version 5.16

✓ It was finalized in 5.18

✓ An eBPF helper cannot be registered for XDP until 5.18

✓ We had version 5.17 :-(



REGEX in XDP: vector operations in runtime

XDP runs in SoftIRQ, FPU is not used there

Need to save and restore FPU state:

✓ Per-packet inside XDP helper OR

✓ NAPI-wide

Other kernel subsystems work with FPU too, now FPU load/store operations 

must also disable interrupts and preemption



eBPF API

struct rex_scan_attr attr = {
.database_id = regex_id,
.handler_flags = REX_SINGLE_SHOT,
.nr_events = 0,
.last_event = {},

};

err = bpf_xdp_scan_bytes(xdp, payload_off, payload_len, &attr);
if (err < 0)

return XDP_ABORTED;

return (attr.nr_events > 0) ? XDP_DROP : XDP_PASS;



REGEX in XDP: configuration

eBPF maps:

✓ All synchronization is already implemented

✓ Fixed entry size

✓ Application-specific

Configfs:

✓ Need to implement synchronization

between management plane and data 

plane

✓ Flexible entry size

✓ More generic



REGEX in XDP: configuration

✓ Create a node using mkdir under /sys/kernel/config/rex

✓ Compile pattern database

echo '101:/foobar/' > patterns.txt
echo '201:/a{3,10}/' >> patterns.txt
build/bin/hscollider -e patterns.txt -ao out/ -n1

✓ Upload compiled regex to the /sys/kernel/config/rex/<node>/database

dd if=$(echo out/``.db) of=/sys/kernel/config/rex/hello/database

✓ Read or set new regex identifier at: /sys/kernel/config/rex/<node>/id

✓ Transfer regex identifier to eBPF program and use as a helper argument



Regular expressions in XDP

✓

✓

✓ Benchmarks

✓



Test Lab

System under test, 1x server with 400G connectivity:

✓ 2x Intel Xeon Gold 6348 @ 2.60GHz

✓ 2x Intel E810-2cqda2 (2x 100G ports)

Traffic generators, 2x servers with 200G connectivity:

✓ 2x Intel Xeon Gold 6242R @ 3.10GHz

✓ 2x Intel E810 (Only one of 2x 100G ports is connected)



Test cases

✓ Base XDP throughput.

✓ Search for a literal inside of a packet payload. Regex: /private/s; Corpus: printable characters

✓ Search with access to the whole payload. Regex /pri.*ate/sH; Corpus: printable characters

✓ Our real-life regular expressions. 10 regexes in parallel, backtracking, search from the payload beginning

✓ Both XDP_DROP and XDP_TX actions tested



Program under test

✓ Dissect packet headers

✓ The flow router is CPU-hungry, disable it

✓ Only REGEX countermeasure is enabled

✓ Verdict is only XDP_TX or XDP_DROP

✓ Collect statistics in XDP

Dissector

Find packet headers Extract 5-tuple

Flow Router

Find Policy by 5-tuple

Policy Pipeline

Tail Calls

BPF prog
BPF prog

BPF prog
BPF prog

Verdict

Pass/Drop/TX

Save statistics



Benchmarks: XDP_DROP



Benchmarks: XDP_TX



Already on production servers

Very first tests (1 Mpps, 1 Gbps) on the real production traffic.
No latency/throughput degradation was found by customers.



Regular expressions in XDP

✓

✓

✓

✓ Collaboration and further work



XDP is golden but still under the DPDK shade

✓ No offloading. XDP Hints to the rescue

✓ NIC vendors have reference benchmarks for DPDK but not for XDP

✓ No configuration tuning guides from NIC vendors

✓ Some NICs require proprietary drivers, some still have no XDP support

But! NIC vendors are always open to help. Special thanks to colleagues 

from Intel: Piotr Raczynski, Michal Swiatkowski, Maciej Fijalkowski.



Further work

✓ Port to newer kernel version (5.18+ have better API for in-module eBPF helpers)

✓ Compare per-packet and NAPI-wide FPU save/restore approach

✓ REGEX budgeting. Automatically react if REGEX evaluation consumes too many CPU time

✓ Limit REGEX on configuration side to deny expressions, that ruin performance (REGEX bombs)



Source code

G-Core/linux-regex-module

https://github.com/G-Core/linux-regex-module


IVAN KOVESHNIKOV

Thank you!
Go Global Faster with Gcore CDN

SERGEY NIZOVTSEV



Extras

✓

✓

✓

✓

✓ Extras



Raw results: XDP_DROP
pkt size Linerate, mpps base, mpps literal, mpps full payload reallife, mpps

1500 32 32 32 32 32

1000 48 48 48 48 48

512 88 88 88 88 88

256 176 162 165 108 161

128 328 307 244 108 208

64 568 430 257 211 220

pkt size Linerate, gbps base, gbps literal, gbps full payload reallife, gbps

1500 384 384 384 384 384

1000 379 379 379 379 379

512 368 349.5 349.5 349.5 349.5

256 356 340 338 220 330

128 346 314 250 110 213

64 304 221 128 108 112



Raw results: XDP_TX
pkt size Linerate, mpps Base, mpps Literal, mpps full payload Reallife, mpps

1500 32 32 32 32 32

1000 48 48 48 48 48

512 88 88 88 80 88

256 176 151 146 95 146

128 328 220 195 98 172

64 568 286 199 176 181

pkt size Linerate, gbps base, gbps literal, gbps full payload reallife, gbps

1500 384 384 384 384 384

1000 379 379 379 379 379

512 368 349.5 349.5 323 349.5

256 356 310 299 196 300

128 346 226 200 100 176

64 304 146 102 89 101



Raw results: CPU usage. DROP vs TX
pkt size base literal full payload scan reallife

1500 6% 14% 33% 15%

1000 8% 20% 48% 22%

512 16% 34% 80% 38%

256 28% 68% 98% 74%

128 51% 98% 98% 98%

64 75% 98% 98% 99%

pkt size base literal full payload scan reallife

1500 10% 19% 40% 18%

1000 12% 28% 56% 26%

512 22% 48% 98% 45%

256 36% 75% 98% 86%

128 53% 98% 98% 99%

64 83% 98% 98% 99%



Flame graphs: XDP_DROP

BPF prog: 75% Hyperscan: 28% FPU load/store: 2.1%



Flame graphs: XDP_TX

BPF prog: 78% Hyperscan: 40% FPU load/store: 1.7%


