
XDP Scaling Updates
From the Field
One small step for your server, one giant leap for your distributed network

Gcore, 2023
Ivan Koveshnikov



Is scaling really an issue
for XDP/eBPF?

• Community-recommended XDP/eBPF approach – skeleton – streamlines 
the delivery and management of eBPF programs. And libxdp allows to 
manage program.

• CO-RE addresses most version-specific kernel issues when adopting 
eBPF.

• XDP provides a generic interface on top of all NICs.

• XDP/eBPF performance is constrained when operating on a single server. 
Isn't scaling just about a deployment across multiple nodes?

So, is there still anything to talk about?



This XDP is just 100 
lines of code!
A small eBPF/XDP core gives 80% of the value.

The remaining 80% of the work happens in the 
user space. It is rarely discussed in talks or articles, 
as it's thought to be generic enough for all 
distributed systems. Extra 80% of work is required 
to support the operations.

Let's delve into the main criteria for employing 
XDP/eBPF in networking
and identify key considerations for your design.



The life of XDP/eBPF
in distributed service provider networks

The answer depends on the nature of yours eBPF
application.

• Kernel compatibility: A very limited range of kernel 
versions and only 1-2 target operating systems

• Fast configuration updates

• Runtime code updates

• Zero downtime and no session drops

• Resource isolation

• Network visibility

• Monitoring

• CI and test automation

• Vendor lock-ins



The basis of a scalable XDP application: 
configuration and reloading mechanisms

Configuration:

• eBPF maps are a strong asset, offering atomic 
modifications, lockable entries, and automatic
memory management.

• Problems arise when EBPF maps start to depend 
on one another.

• Multiple strategies are possible to overcome these 
challenges.

Reloading:

• Hot code reloading: eBPF code must be updated 
without interruptingthe service.

• Some state information must be preserved 
between reloads.

• Different code often means a different type system.



Base configuration strategy: 
entry-by-entry modification

• The most obvious approach, dictated by eBPF structure

• A very fast and efficient way to apply small changes

• Inefficient on major updates

• Some maps may become inconsistent until all the changes are 
applied

• Sharing maps between different configuration entities may cause 
resource concurrency

• More complicated user space code as analysis is required to 
transition from current to new configuration



Base configuration strategy: 
map hot swap

• Large single shot updates: maps of maps

• A very fast and efficient method for bulky changes

• Inefficient on minor updates

• Dependencies between maps may result in system inconsistencies

• As map of maps is already in use, it can serve as a resource isolation 
mechanism

• Different approach to user space: no need to analyse the changes, 
but need to create, pin, and use new map instances



Base configuration strategy: 
program hot swap

• More «UNIX way» approach

• The king of bulky updates: update several maps with a single 
operation

• Code update as a bonus

• Some configuration can be pushed into read-only section

• Inefficient on minor updates

• Ideal for partial reloads; particularly beneficial when updating 
sections of complex eBPF programs, which are inherently modular

• Less manipulation on maps content, more manipulation on 
programs and pipeline



XDP code reload
• Update code with zero downtime and no session drops

• Split configuration data and state data; reconfigure the first, reuse 
the latter

• BTF information may not be always useful for state maps

• To switch processing from one program to another, atomically 
overrwrite XDP attachments or use libxdp-like chained programs

• Free features: test new configurations, quick rollbacks, partial 
switches

• Use metadata to identify instances of your application

• A custom eBPF loader is essential due to the complex logic of pins, 
attachments, and configuration updates

• Don't forget to reload the user space code!



Challenges in 
eBPF functionality: 
what's missing?

bpf_map_lookup_or_update()

Frequently, a map entry is created in a hot path 
and requires immediate access.



Challenges in 
eBPF functionality: 
what's missing?

Map entry lifespan for LRU: invalidate stale entries.

While BPF maps handle memory management 
effectively, entry lifetime may depend on 
application. Generic solution can be complicated. 
This is primarily due to the need for spinlocks and 
atomic operations on individual map elements.



Brief eBPF code of 100 lines?
Sure, but massive user space code!

• The more complicated the configuration model, the more sophisticated the user space.

• When using hot code reload, be aware that multiple instances of the same eBPF program could be loaded and 
pinned. user space code should be designed to account for this.

• There are no high-level libraries specifically designed to handle hot reloads or manage program pins and attaches. 
Typically, this functionality is missing, and developers have to build it with low-level libbpf.

• The user space must be able not only to configure the hot path but also read the current configuration.

• Different configuration strategies look almost the same in eBPF, but totally different in the user space.

And this is just the beginning!



Configuration delivery

• Configuration must be delivered within short and predictable 
amount of time.

• It may be applied unsuccessfully. How to recover from faulty 
state and not propagate the error?

• Versioning and backward compatibility is a must.

This question matters only on scale and on complex 
configurations with frequent changes.



Tracing in hot path

You have tuned an XDP code to maximise performance? 
Time to bloat the code!

• XDP_DROP and XDP_PASS are too generic. How 
many real verdicts your program has?

• What was the sub-program that dropped the packet 
in your complex pipeline?

• What is the statistics per configuration entry?

• How to debug certain traffic flows? Dumping via 
Xdp_dump is too generic.



Monitoring and network observability

• Health monitoring: periodic maintenance of some maps requires ongoing usage monitoring. Is the map size 
adequate?

• Different entities may store resources in shared maps and will end up competing for resources

• A map entry may still be present, but its lifetime may be expired

• Insertion rate may differ from usage delta

• Map monitoring must consider the configuration

• Observability can be a valuable product in its own right, especially in the context of service providers.

• Observability may work as a feedback for traffic processing.

• What will happen with observability counters during reloads?



You can’t hide
from your hardware

• Do packet drops happen due to lack of CPU time
or due to pipeline implementation inside NICs hw/fw/drivers?

• Different approaches to NIC counters are well-known issues that 
exacerbate difficulties in monitoring and alerting. High-level 
monitoring suites often unify counters based on their own 
interpretations, causing ambiguity when different NICs are involved.

• Understanding how to configure the NIC pipeline
is key. Configuration options may be available via firmware, often in 
an undocumented manner.

• Performance tuning and NIC monitoring may become new parts of 
your user space code.

• Tune NIC first and then attach or vice versa?

XDP is not NIC-agnostic!



A battle of load balancers

Know your network and layers of load balancing:

• Network

• NIC

• Yours XDP/eBPF

• Next application

How to trick balancers to minimize the latency overhead?



Test automation

• bpf_run_prog is super handy... for small programs.

• Big eBPF programs' behaviour may vary depending on timers, 
packet sequence, observability counters, and entry lifetime.

• Functional-like tests that emulate traffic flows and all the user space 
daemons are preferred. These tests necessitate the loading of eBPF
code into the kernel for a more realistic evaluation.

• Dedicated performance tests are a must!

• CI environments may have more limitations than production servers, 
such as reduced memory and lower performance. Adapting eBPF
code to different hardware specifications on-the-fly becomes 
essential.



Disabling optimisation is an 
optimisation

If there is worst scenario, it will happen.

• Using an LRU hash table as a cache? What will happen when it will 
get full?

• NO_COMMON_LRU vs no common table?

• High insertion rate into tables



Summary

• eBPF/XDP program must be reloadable and easy configurable

• Large user space code base for lifetime management

• Significant efforts for operations



Thank you!
Go global faster with Gcore CDN

gcore.com

https://gcore.com/

	Slide 1: XDP Scaling Updates From the Field
	Slide 2: Is scaling really an issue for XDP/eBPF?
	Slide 3: This XDP is just 100 lines of code!
	Slide 4: The life of XDP/eBPF in distributed service provider networks
	Slide 5: The basis of a scalable XDP application: configuration and reloading mechanisms
	Slide 6: Base configuration strategy: entry-by-entry modification
	Slide 7: Base configuration strategy: map hot swap
	Slide 8: Base configuration strategy: program hot swap
	Slide 9: XDP code reload
	Slide 10: Challenges in eBPF functionality: what's missing?
	Slide 11: Challenges in eBPF functionality: what's missing?
	Slide 12: Brief eBPF code of 100 lines? Sure, but massive user space code!
	Slide 13: Configuration delivery
	Slide 14: Tracing in hot path
	Slide 15: Monitoring and network observability
	Slide 16: You can’t hide from your hardware
	Slide 17: A battle of load balancers
	Slide 18: Test automation
	Slide 19: Disabling optimisation is an optimisation
	Slide 20: Summary
	Slide 21: Thank you!

