
Firewall and Service Tickets (FAST)

Tom Herbert

SiPanda
USA

tom@sipanda.io

Abstract
Emerging network access architectures and technologies offer a
rich array of network services that could greatly benefit end users.
In practice, realizing these benefits has proven difficult. The
problem is a lack of coordination between applications, the host
OS, and the network infrastructure to provide end-to-end services.
Firewall and Service Tickets (FAST) is a solution that facilitates
coordination among the various players in communications. The
basic idea is that applications signal the network for the services
they want applied to packets. This signal is encoded in the form
of a “ticket” that indicates the network services that the network
applies to packets. Applications request tickets from a ticket agent
in the network for the desired services, issued tickets are attached
to packets, and tickets are processed by network elements to
provide the requested services for each packet. FAST enables
hosts and the network to work together to solve end user
problems.

Keywords
QoS, differentiated service, firewalls, Hop-by-Hop Options,

 Introduction
Firewall and Service Tickets (FAST) [1] is a facility to allow an
application to signal to the network requests for admission and
services for a packet. A ticket is data attached to a packet by the
source host that is inspected and processed by intermediate nodes
in a network. Tickets express a grant or right for packets to
traverse a network or have services applied. FAST facilitates
coordination among applications, hosts OSes, and network nodes
for the purposes of providing rich and fine grained network
services for the benefit of users. Heretofore, hosts and networks
haven’t really worked together to solve users problems, and
current solutions for differentiated services and QoS tend to be
limiting and restrictive.

The core idea of FAST is that hosts signal the network for the
services to be applied on a per packet basis. Signals are
information attached to packets that contain requests for service.
In FAST, signals are encoded in tickets. Tickets are data attached
to packets in Hop-by-Hop options. A ticket encapsulates the
granted services in a concise form. An application requests tickets
for admission or services from a ticket agent in their local
network. The agent issues tickets to the application which in turn
attaches these to its packets. In the forwarding path, intermediate
network nodes interpret tickets and apply requested services.

Alternative approaches
This section considers some current techniques and proposals for
signaling the network for services.

Stateful firewalls and proxies are the predominantly deployed
techniques to control access to a network and map packets to
services. They have caused a number of problems:

• They require parsing over transport layer headers .

• They are limited to work only with a handful of
protocols.

• They break multi-homing and multi-path.

• They break end-to-end security. For instance, NAT
breaks the TCP authentication option.

• They are single points of failure and can be bottlenecks.

• Application characteristics need to be inferred from
packets which can be imprecise or incorrect.

PLUS (Path Layer UDP Substrate) [2] proposed a UDP based
protocol to allow applications to explicitly signal a rich set of
characteristics and service requirements to the network. PLUS
had a number of drawbacks:

• It requires UDP, and wouldn’t work with TCP.

• Intermediate nodes parse payloads based on matching
port numbers to applications risking misinterpretation.

• PLUS included stateful flow tracking in the network
which leads to problems similar to those of stateful
firewalls.

• PLUS could leak sensitive application information.

Segment routing [3] is a recently defined technique that proposes
using an IPv6 routing header to source route packets through a
network. This allows “network programming” where packets can
visit various nodes towards the destination, each of which may
apply some Network Function Virtualization (NFV). Segment
routing as a form of network signaling has several drawbacks:

• Segment routing is intended to be confined to a
segment routing domain, not for use over the Internet.

• The protocol is verbose. Each SID is sixteen bytes
which adds up to considerable overhead.

• The segment list is plain text that sensitive internal
information may be leaked.

• Segment routing only conveys routing for the forward
path of the packet and not routing for the return path.

Both IPv4 and IPv6 have specified a field in the IP header for
signaling quality of service (QoS) to the network. In IPv4 this
was referred to as the Type of Service (TOS), and in IPv6 it is
called Traffic Class. These fields have been overloaded in time to
hold differentiated services (diff-serv) values. Differentiated
services provides an IP layer means to classify and manage
traffic, however it is lacking in richness of expression and a
ubiquitous interface that allows applications to request service
with any granularity. Diff-serv is useful in closed networks where
all parties can be trusted, but a general Internet diff-serv lacks
security and uniformity in how it’s being set to be useful.

Some network devices perform Deep Packet Inspection (DPI)
into the application data to classify packets to determine whether
to admit packets or what services to apply. For instance, HTTP is
commonly parsed to determine URL, content type, and other
application related information. DPI is only effective with the
application layer protocols that a device is programmed to parse.
More importantly, application level DPI is being effectively
obsoleted in the network due the pervasive use of Transport Layer
Security (TLS).

Architecture of FAST
FAST allows network providers to offer custom network services
to their users. In particular, FAST does not endeavor to create a
global infrastructure across the Internet to provide or manage
network services. This is motivated by the common dumbbell
topology of end to end communications over the Internet. In the
dumbbell topology, illustrated in Figure 1, two communicating
end hosts connect to the Internet via local provider networks and
provider networks connect to transit networks to communicate
across the Internet.

Within each provider network of the dumbbell topology, network
services may be provided on behalf of the users in the local
network. Referring to Figure 1, Provider A may provide services
and service agreements for users in its network including User 1
and User 2; and likewise, Provider B can provide services to users
in its network including User 3. Transit networks don't typically
provide user specific services or service differentiation, that is
transit networks may be considered the "open Internet".

In FAST, each provider network can issue tickets to local hosts in
its network. The network that issued a ticket is called the origin
network for the ticket, and an origin ticket is one that was issued
by the network processing a ticket. Tickets are scoped so that
only the network nodes in the origin network of a ticket interpret
it and apply requested services.

In Figure 1, User 1 and User 2 reside in the same provider
network; each can request tickets for network services to be
provided in communication between the two users. User 1 and
User 3 are in different provider networks. User 1 and User 3 can
each request tickets from their local network to be applied in the
forward path. When User 1 sends packets to User 3, tickets can
be used for services while packets are in Provider A’s network;
and likewise when User 3 sends packets to User 1, tickets can be
used for services while packets transit Provider B’s network.

Figure 1. Example of a dumbbell network topology

Figure 2. End to end ticket flow with reflection

In order to apply services in the return path, tickets may be
reflected (Figure 2). For instance, when User 3 receives a packet
with a an origin ticket sent by User 1, it can reflect the ticket and
send it back to User 1; when the reflected ticket enters Provider
A’s network it can be interpreted and services applied to the
packet for the rest of its journey to User 1. Ticket reflection is
symmetric so that User 1 could reflect origin tickets sent by User
3 and services are applied to packets in the return path to User 3
as packets traverse Provider B’s network. The end to end flow of
a ticket with reflection is illustrated in Figure 2.

Ticket properties
A ticket is scoped such that only particular on-path nodes in its
origin network process and act on the ticket. The scope can be
enforced by encrypting the ticket so that only authorized network
nodes are able to decode it. Encryption serves as a security
mechanism to limit the exposure of ticket data and to minimize
the plain text in packets. Encryption, in combination with ticket
authentication, prevents forgery and modification, hides details
about requested services, hides information about applications
and users, and enforces non-transferable tickets.

Tickets may include an expiration time such that they are only
useful for some period of time. For instance, if a ticket is
attached to the packets of a flow for the purpose of requesting
network services, an associated expiration time would allow the
infrastructure to limit the use of the ticket for a certain period of
time and prevent unlimited reuse of the ticket.

An important property of tickets is that they are stateless inside
the network; this facilitates multi-homing where routers in
different paths for a flow would be able to decode and process
host to network signals in packets associated with a flow. While
tickets do not directly convey connection state, they may still be
associated with a transport layer flow. For instance, a host may
request tickets from a ticket agent to attach to packets of a
particular flow. When an on-path element processes the ticket, it
applies the services without regard to transport layer state.

Host to network signals are inherently uni-directional. In order
for a source host to affect services on the return path of a flow,
"signal” reflection" may be employed. The idea is that a signal
can be sent with a "reflect" attribute. At a peer host, the signal
can be reflected in reply packets to affect services for packets in
the return path.

Tickets are sent in IPv6 Hop-by-Hop Options. The benefit of
Hop-by-Hop Options is that tickets can be used with any transport
protocol. There are some known drawbacks with Hop-by-Hop
Options, migrations for these are discussed below.

A ticket should be obfuscated or encrypted for privacy so that
only the local network can interpret it. It should be resistant to
spoofing so that an attacker cannot illegitimately get service by
applying a ticket seen on other flows.

Example use: Network services in 5G
5G, the mobile standard being developed by the 3rd Generation
Public Partnership (3GPP) [4], provides a good example of
applying FAST to enable use of network services.

A key feature introduced by 5G is network slicing [5]. A network
slice is an overlay virtualized network run over a physical
network with its own operational characteristics. In combination
with Network Function Virtualization (NFV) [6], network slices
provide the foundation for a rich set of network services for low
latency, high throughput, optimized mobile routing, etc. To fully
apply network services to packets, network nodes need to deduce
the service characteristics of an application based on the packets
observed and apply appropriate services. This process is called
service mapping. Service mapping happens today, however the
techniques used are ad hoc, imprecise, and inferred.

In FAST, applications explicitly request services to be applied to
the application’s packets. In a 5G network, this would entail that
applications running in UEs (User Equipment) indicate desired
services to be provided by the RAN (Radio Access Network) and
core network. An example of using FAST in a 5G network is
illustrated in Figure 3. Figure 4 illustrates the processing flow of
of tickets in a 5G network.

Figure 3. Example FAST path processing and topology in a 5G network

Figure 4. Example of using FAST in a 5G network for optimizing video chat

Referring to the Figure 3, suppose a user starts a video chat
application that connects to a server on the Internet. The video
chat application might request a ticket from the local ticket agent
for network services for the video chat. The request might be for
a service class like “video chat service”, or could specify service
characteristics such as expected latency, jitter requirements, or
video frame rate. The issued ticket is attached to packets for the
video chat and services are applied while the packet is in the local
network (the orange arrow of the path). In this example, the first
hop router of the UE may route packets over a network slice that
provides the requested services. When packets exit the provider
network into the Internet, services are no longer applied but the
ticket is still attached to packets (the red arrow in Figure 2).

At the server, packets are received and the attached ticket is saved
in the context for the connection. When packets are sent back to
the client, the server reflects the ticket by setting it in packets.
Packets traverse the Internet without services being applied (the
green arrow in Figure 2) When the packet enters the RAN
network, the ingress router processes the reflected ticket and
routes the packet over a network slice for the services. The packet
traverses the provider network with the services applied (the
purple arrow in Figure 2)

Protocol and operation
This section describes the protocol for FAST and ticket
operations.

Hop-by-Hop option format
Tickets are encoded in IPv6 Hop-by-Hop options [7] as illustrated
in Figure 5.

Figure 5. Format of a ticket in a Hop-by-Hop option

The fields of the Hop-by-Hop option containing a ticket are:
• Option Type: Type of Hop-by-Hop option. There are

two possible types for FAST ticket options: an
unmodifiable and a modifiable variant.

• Opt Data Len: Length of the option data field. The
option data is comprised of the Pr, Ticket Type, and
Ticket Data fields.

• Pr: Indicates the origin and reflection properties of the
ticket. Possible values are:

• 0x0: Origin ticket not reflected. Don't reflect at
the destination host.

• 0x1: Origin ticket to be reflected. Ticket is
requested to be reflected by the destination host.

• 0x2: Reflected ticket. The ticket was reflected
by a destination host and is being returned to the
origin source host.

• 0x3: Reserved
• Ticket Type: The type and format of the ticket. This

value is used by nodes in the origin network to interpret
the rest of the ticket data. Values for this field are
specific to the network that issues the ticket. The type
is an IANA managed number space. A type of 0
indicates a "null" ticket that isn't to be processed by
receivers.

• Ticket Data: Contains the ticket data that describes the
services applied. The format and semantics of the data
are determined by the Ticket Type.

Ticket Data
It is expected that tickets are encrypted and each ticket has an
expiration time (Figure 6). For instance, a ticket may be created
by encrypting the ticket data with an expiration time and using
the source address, destination address, and a shared key as the
key for encryption. The operative part of the ticket that describes
the service may have different types of data. For instance, a set of
flags could be used, a list of service values, or a profile index into
a table that describes a set of services. A ticket with an expiration
time and service profile index might have the format shown in
Figure 7.

Figure 6. Format of a ticket with an expiration time. Ticket Data is variable length
with a format determined by the ticket type

Figure 7. Format of a ticket with an expiration time with a service profile index. The
service profile index could be a 32 bit number used to index a service parameters
table

Operation
Existing client applications can be modified to request tickets and
set them in packets. It is also possible for the OS to set FAST
tickets on behalf of an application that can’t be changed or
recompiled. The kernel may need some small changes or
configuration to enable an application to specify the FAST Hop-
by-Hop option for its packets (see section below). In BSD sockets
this can be done by a setsockopt system call or in ancillary data of
the sendmsg system call.

An application that wishes to use network services first requests
tickets from a ticket agent. The request could be in the form of an
XML structure with canonical elements. A request could be sent
via a web service using RESTful APIs [8]. Internally in the host,
the ticket agent might be accessed through a library that interfaces
to a ticket daemon that in turn arbitrates requests between
applications and a ticket agent in the network.

Service mappers need to parse and process tickets in the fast data-
path. This entails an implementation that does efficient IPv6
header processing. Tickets need to be parsed, validated or
decrypted, looked up, and interpreted quickly.

To perform ticket reflection, servers must be updated. In the case
of a connected socket (TCP, SCTP, or a connected UDP socket)
this is a relatively minor change to the kernel networking stack
which would be transparent to applications. For unconnected
UDP, an application could use ancillary data in recvmsg and
sendmsg to receive and reflect tickets.

Tickets facilitate fine grained policies and “per use charging” of
services. There are three points at which policy and charging can
be applied: 1) at ticket request time, 2) when a client sends a
packet with a ticket, and 3) when a network ingress node receives
a packet with a reflected ticket

At ticket request time, policy can be applied to determine if the
network can or should provide the services being requested.
Ticket requests are authenticated and the requestor's identity is
known. A database can be maintained that holds the per user
policies, resource limits, and current resource utilization as input
to a policy decision for issuing a ticket.

Each time a ticket is seen on the network it can be accounted for.
The two cases, when a ticket is sent from a client or a ticket is
reflected by a server, should be accounted for separately since the
tickets sent directly from the client are a bit more trustworthy. A
rogue peer, for instance, could attempt a narrow Denial of Service
(DOS) attack by flooding the flow with fake packets using the
same ticket.

Per use accounting is done at the service mappers. Each
occurrence bumps a counter. Aggregated counts are periodically
sent to a centralized accounting system that correlates the use of
tickets across the service mappers. Based on the resulting data,
users can be charged precisely for the services they actually used.

Hop-by-Hop Options drops
RFC2460 [9] required that all intermediate nodes in a path
process Hop-by-Hop Options. Some routers deferred processing
of Hop-by-Hop Options to the software slow path, others ignored
them, and still others elected to summarily drop all packets
containing Hop-by-Hop Options. A related issue was that the
number of Hop-by-Hop Options in a packet was only limited by
the MTU for the packet. The lack of limits, combined with the
requirement that nodes must skip over unknown options (when
two high order bits in the option type aren’t set), creates an
opportunity for DOS attacks by sending long lists of unknown
Hop-by-Hop options. These issues have severely impeded the
deployment of Hop-by-Hop Options on the Internet ([10], [11).

There is ongoing work to fix, or at least mitigate, the
deployability problems of Hop-by-Hop options:

• RFC8200 [7] specifies that intermediate nodes MAY
ignore Hop-by-Hop options. There is no concept of a
Hop-by-Hop option that must be processed by all
nodes, the current assumption in defining any option is
that it may be processed by only some nodes in the
path, or even none at all. Allowing nodes to ignore
options they're not interested in, instead of just
dropping the packets, preserves the usability of Hop-by-
Hop across the whole path.

• Internet Draft ietf-6man-hbh-processing [12] modifies
the processing of Hop-by-Hop options described in
[RFC8200] to make processing of the IPv6 Hop-by-
Hop Options header practical. In particular, this
clarifies the expectation that Hop-by-Hop Options
should not be processed in the slow path and that new
Hop-by-Hop options are designed to always be
processed in the fast path.

• Internet Draft ietf-6man-eh-limits [13] specifies that
intermediate nodes that process Hop-by-Hop Options
may set and apply configurable limits on Hop-by-Hop
Options processing. For instance, one limit is for the
number of options that are processed; if the limit is
exceeded then options processing is terminated and the
packet is forwarded without any ill-effects. The use of
limits is optional and while specific default limits are
recommended, there are no specific "hard" limits that
must be enforced.

• Internet Draft herbert-eh-inflight-removal [14]
describes a protocol to remove Hop-by-Hop Options
headers from packets in flight. This could be applied in
host to network signaling by arranging that the last
router that processes a signal in a Hop-by-Hop option
removes the Hop-by-Hop Options header from the
packet. Removing the Hop-by-Hop Options headers
increases the probability that a packet won’t be dropped
without substantial loss of functionality.

Linux kernel support
The Linux kernel needs some changes to support extension
headers and Hop-by-Hop options for FAST. A draft patch set was
posted to Netdev mailing list [15].

 The functionality of these patches includes:

1. Allow modules to register support for Hop-by-Hop and
Destination options. This is useful for development and
deployment of new options.

2. Allow non-privileged users to set Hop-by-Hop and
Destination options for their packets or connections.
This is especially useful for options like Path MTU and
IOAM options where the information in the options is
both sourced and consumed by the application.

3. In conjunction with #2, validation of the options being
set by an application is done. The validation for non-
privileged users is purposely strict, but even in the case
of a privileged user, validation is useful to disallow
allow application from sending ill-formed packets (for
instance now a TLV could be created with a length
exceeding the bound of the extension header)

4. Consolidate various TLV mechanisms. Segment routing
should be able to use the same TLV parsing function, as
should UDP options when they come into the kernel.

5. Use a TLV type lookup table to make option lookup on
receive is O(1) instead of list scan (O(N)).

6. Allow setting specific Hop-by-Hop and Destination
options on a socket. This would also allow some
options to be set by application and some might be set
by kernel.

7. Allow options processing to be done in the context of a
socket. This will be useful for FAST and Path MTU
(PMTU) options.

8. Allow experimental IPv6 options in the same way that
experimental TCP options are allowed.

9. Support a robust means of extension header insertion.
Extension header insertion is a controversial
mechanism that some router vendors are insisting upon.
The way they are currently doing it breaks the stack
(particularly ICMP and the way networks are
debugged). With proper support we can at least mitigate
the effects of the problems being created by extension
header insertion.

10. Support IPv4 extension headers. This allows Hop-by-
Hop Options and other extension headers to be used
with IPv4 with the same semantics of their use in IPv6.

Conclusion
Firewall And Service Tickets is a facility that allows hosts to
signal the network for requesting services and admission of
packets. FAST promotes the end-to-end principle, net neutrality,
and clean protocol layering. It also leverages forward looking
features of the IPv6 protocol. The ultimate goal is to spur
innovation in network services to benefit users.

Acknowledgments
The author would like to thank the Netdev Society board,
Netdev community, and IETF for facilitating this work.

References
1. Herbert, T., "Firewall and Service Tickets", Work in
Progress, Internet-Draft, draft-herbert-fast-07, 7 October
2023
https://datatracker.ietf.org/doc/html/draft-herbert-fast-07.

2. Tramell, B. and M. Kuehlewind, "Path Layer UDP
Substrate Specification", December 2016,
https://datatracker.ietf.org/doc/draft-trammell-plus-spec/00/.

3. Filsfils, C., Ed., Previdi, S., Ed., Ginsberg, L., Decraene,
B., Litkowski, S., and R. Shakir, "Segment Routing
Architecture", RFC 8402, DOI 10.17487/RFC8402,
July 2018, <https://www.rfc-editor.org/info/rfc8402>.

4. "5G; System Architecture for the 5G System",
September 2018,
https://www.etsi.org/deliver/etsi_ts/123500_123599/12351
/15.03.00_60/ts_123501v150300p.pdf.

5. Wikipedia, "5G network slicing",
https://en.wikipedia.org/wiki/5G_network_slicing.

6. Wikipedia, "Network function virtualization",
https://en.wikipedia.org/wiki/Network_function_virtualization.

7. Deering, S. and R. Hinden, "Internet Protocol, Version 6
(IPv6) Specification", RFC 2460, DOI 10.17487/RFC2460,
December 1998, https://www.rfc-editor.org/info/rfc2460.

8. RedHat, "What is a REST API", May 2020,
 https://www.redhat.com/en/topics/api/what-is-a-rest-api.

9. Deering, S. and R. Hinden, "Internet Protocol, Version 6
(IPv6) Specification", RFC 2460, DOI 10.17487/RFC2460,
December 1998, https://www.rfc-editor.org/info/rfc2460.

10. Gont, F., Hilliard, N., Doering, G., Kumari, W.,
Huston, G., and W. Liu, "Operational Implications of IPv6
Packets with Extension Headers", RFC 9098, DOI
10.17487/RFC9098, September 2021, https://www.rfc-
editor.org/info/rfc9098.

11. Huston, G., "IPv6 Extension headers revisited",
October 2022, https://blog.apnic.net/2022/10/13/ipv6-
extension-headers-revisited/.12. Hinden, R. M. and G.
Fairhurst, "IPv6 Hop-by-Hop Option Processing
Procedures", Work in Progress, Internet-Draft,
draft-ietf-6man-hbh-processing-12, 21 November 2023,
https://datatracker.ietf.org/doc/html/draft-ietf-6man-hbh-
processing-12.

13. Herbert, T., "Limits on Sending and Processing IPv6
Extension Headers", Work in Progress, Internet-Draft,
draft-ietf-6man-eh-limits-10, 23 November 2023,
https://datatracker.ietf.org/api/v1/doc/document/draft-ietf-6man-
eh-limits/>.

14. Herbert, T., "Infight Removal of IPv6 Hop-by-Hop and
Routing Headers", Work in Progress, Internet-Draft, draft-
herbert-eh-inflight-removal-01, 2 October 2023,
https://datatracker.ietf.org/doc/html/draft-herbert-eh-inflight-
removal-01.

15. Herbert, T., "ipv6: Extension header infrastructure",
https://lkml.kernel.org/netdev/1570139884-20183-1-git-send-
email-tom@herbertland.com/.

https://datatracker.ietf.org/doc/html/draft-herbert-fast-07
https://lkml.kernel.org/netdev/1570139884-20183-1-git-send-email-tom@herbertland.com/
https://lkml.kernel.org/netdev/1570139884-20183-1-git-send-email-tom@herbertland.com/
https://datatracker.ietf.org/doc/html/draft-herbert-eh-inflight-removal-01
https://datatracker.ietf.org/doc/html/draft-herbert-eh-inflight-removal-01
https://datatracker.ietf.org/api/v1/doc/document/draft-ietf-6man-eh-limits/
https://datatracker.ietf.org/api/v1/doc/document/draft-ietf-6man-eh-limits/
https://datatracker.ietf.org/doc/html/draft-ietf-6man-hbh-processing-12
https://datatracker.ietf.org/doc/html/draft-ietf-6man-hbh-processing-12
https://www.rfc-editor.org/info/rfc9098
https://www.rfc-editor.org/info/rfc9098
https://www.rfc-editor.org/info/rfc2460
https://www.redhat.com/en/topics/api/what-is-a-rest-api
https://www.rfc-editor.org/info/rfc2460
https://en.wikipedia.org/wiki/Network_function_virtualization
https://en.wikipedia.org/wiki/5G_network_slicing
https://www.rfc-editor.org/info/rfc8402
https://datatracker.ietf.org/doc/draft-trammell-plus-spec/00/

	Introduction
	Alternative approaches

	Architecture of FAST
	Ticket properties
	Example use: Network services in 5G
	Protocol and operation
	Hop-by-Hop option format
	Ticket Data
	Operation

	Hop-by-Hop Options drops
	Linux kernel support
	Conclusion
	Acknowledgments
	References

