
Unstoppable Session Layer

USL

Alexander Aring

1

Unstoppable Session Layer

2

What is the Unstoppable Session Layer?

Unstoppable Session Layer

3

Problem is the Connection-oriented Socket Lifetime

● First Priority is Reliability
● E.g. AF_TCP/SCTP
● Cluster Join Resource
● Problem: Socket Lifetime

– Error → Reconnect
– May end into data losses msg

msg

connect()

msg msg

connect()

Connection Cluster Lifetime

Unstoppable Session Layer

4

Retransmit on Reconnect

● Encapsulated Header
● Simple Seq and Ack based
● Acks are Piggybacked on

Messages
● Retransmit non Acked

Messages after Reconnect
msg0msg1

msg0

msg1

Unstoppable Session Layer

5

Why Retransmit on Reconnect?

● Only a Jitter occurs in Hotpath
● No full Application re-synchronization

– Takes too much time, may block
pending Application due re-
synchronize with others

– Only necessary if Application/USL
state got lost, e.g. Power Outage
(Fence)

msg0msg1

msg0

Possible Data-loss
Fast Resolved

msg1

USLify your Application

6

How to transparent USLify your Application?

USLify your Application

7

Idea: Transparent* USLify your Application

● Do you know torsocks1) ?
● Example: `torsocks ssh $DESTINATION`

– Redirects to local SOCKS5 Tor daemon server
– Outgoing traffic will be done through Tor

● Main mechanism is LD_PRELOAD Env
● Torsocks isn’t easy – e.g. DNS resolving

Source:
1) https://gitlab.torproject.org/tpo/core/torsocks/

LD_PRELOAD

8

The LD_PRELOAD Environment Variable

● Idea override the networking related Syscalls
● LD_PRELOAD=libusl.so nc -4t 127.0.0.1 1337
● Hide it in an Script: usl nc -4t 127.0.0.1 1337
● Pass Parameters: usl -foo bar nc -4t 127.0.0.1 1337

Source:
1) https://www.man7.org/linux/man-pages/man8/ld.so.8.html

1)

LD_PRELOAD

9

Problem with just Override everything

● Override send(), recv(), etc? DON’T!
– Difficult to catch all Socket recv()/send()

operation methods...
– We need to Hide Socket Errors
– The Application may not just reconnect

● Solution: Override connect(2)
● Socket Proxy hiding Errors to Application

Socket!

Proxy

Application

Socket

Destination

Can fail/
reconnect

Should
never fail

LD_PRELOAD

10

SOCKS* Example Transparent USL Tunneling
B Local Server

Proxy
A Local Server

Proxy
A Client

usl nc 127...
B Server

nc -l 127...
connect(Proxy Client)

send(Server addr)

connect(Server)

connect(Proxy Server)

send(Server addr)

send(data) send(USL(data)) send(data)

send(USL(data)) send(data)

send(data)
USL

reconnect/
retransmit

USL
retransmit

Hiding
Socket
Errors

Hiding
Socket
Errors

Can break

LD_PRELOAD

11

LD_PRELOAD is difficult to maintain!

● Think about torsocks every time you introduce a
new method to do e.g. connect(2)!

● New Project provide similar functionality in a more
“stable” way?

● It is a nice toy…, we look into other options! But
maybe you got some new ideas. ;-)

Kernel space AF_BAR

User space AF_FOO

Socket Multiplexers

12

Compared to Socket based Solutions
(Multiplexers*)

1 2 3 N

2M 3 1

Logic

1 2 3 N

Multiplexer

AF_RDS

TCP

Reliable Datagram Sockets

Socket Multiplexers

13

● AF_RDS N (Process Independent)
● 100% Reliable like USL (Encapsulated

Header)
● Own Port handling (Multiplexing into One

Socket)
● Needs Adaptation (TCP/RDMA/…)
● Multipath* (not MPTCP) available 1 2 3 N

Multiplexer

AF_RDS

Kernel Connection Multiplexor

Socket Multiplexers

14

● Multiplexer (NxM)
● Message Framing (psock)
● Multiplexor Logic (Load Balancing)

– AF_KCM → Deliver when App blocks in recv()
or use next sk

– IPPROTO_TCP → If congested use next sk
● Where is the Counterpart? Designed for Server

only? No Encapsulated Header!

psock psock psock psock

1 2 3 N

3

Multiplexor

1 2 M

AF_KCM

e

Socket Multiplexers

15

USL could solve a note of AF_KCM kdoc!

Source:
1) https://www.kernel.org/doc/html/latest/networking/kcm.html#error-handling

1)

Moonshot Idea!

Introducing: “Socket Control”
(An approach how to make AF_KCM “programmable”)

Socket Control

16

17

What is a Multiplexer?
Electronic Basics – 2x1 Multiplexer

Switching
Logic

IN IN

OUT

Signal
Line

User defined

Socket Control

Socket Control

18

Multiplexer Logic are just basic AND, NAND, etc. Gates!

A
N

D

N
A

N
D

A
N

D

Signal
Line

Multiplexer and Integrated Circuits

19

In a Multiplexer IC – Logic is static!

Source:
1) By Robert.Baruch - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=63802402

==
1)

● User cannot change Switching Logic
● Multiplexer IC is specific for the Use-Case

Socket Control

20
Source:
1) By Robert.Baruch - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=63802402

The existing Socket Multiplexers are like ICs
Their Logic is static!

Those Multiplexers are specific for a special Use-Case
defined by it’s Authors (and you need to take it)

1)

AF_KCM

Socket Control

21

How to put the static Logic out of IC Multiplexers?
Use Primitives and Wire them together!

Wiring:

A
N

D

N
A

N
D

A
N

D

Constructed
Complex
Logic:

A
N

D

N
A

N
D ...Primitives:

1
1

skb

skb

UAPI/
eBPF

IPPROTO_TCP

psock

eBPF

AF_KCM

Socket Control

22

Simple Example 1x1 – Message Framing only
(AF_KCM can already do that)

Message Length
Field Evaluation

Complex
Framing Logic

Multiplexer Logic
Module

recvmsg()
sendmsg()

recvmsg()
sendmsg()

May App.
specific
use eBPF
to solve it

Socket Control

23

Reuse existing AF_KCM implementation

● AF_KCM is good into defining Multiplexer Sockets
– N AF_KCM Sockets (clone)
– M AF_TCP Sockets (attach/unattach)

● Multiplexer Logic
– Default Logic is the current AF_KCM Logic
– Can be flushed and reprogrammed by User

How this fits with USL?
Socket Control

24

1
1

skb

skb

UAPI/
eBPF

IPPROTO_TCP

USL

AF_KCM

psock
eBPF

1
1

skb

skb

UAPI/
eBPF

IPPROTO_TCP

USL

AF_KCM

psock
eBPF

1x1
Multiplexer1x1

Multiplexer

USL: Redundant Multipath*
Socket Control

25

1

1
skb

UAPI/
eBPF

IPPROTO_TCP

USL

AF_KCM

psock
eBPF

skb mirror
2

skbskb

1x2 (tx only)
Multiplexer

1
1

skb

UAPI/
eBPF

IPPROTO_TCP

USL

AF_KCM

psock
eBPF

2x1 (rx only)
Multiplexer

2

First Come
First Serve

psock
eBPF

USL

tx

rx

skb skb

Future Work

End

26

● Transport Layers? QUIC/MPTCP
● USL existing kind of in “fs/dlm/” (No Multipath)
● I try to move it out from my Application Layer
● Maybe start to look into “programmable”

AF_KCM?
● Update “fs/dlm” to use AF_KCM and program my

needs e.g. psock, USL, ?multipath mirroring?

I hope you enjoyed this talk

End

27

● May the LD_PRELOAD trick was new for you
● You may liked the idea of “Socket Control”
● I missed in my talk… (Sorry)

– Talking about Half-Closed issue
– The Demo using Proxys and Netcat

