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What is the Unstoppable Session Layer?
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Problem is the Connection-oriented Socket Lifetime

● First Priority is Reliability
● E.g. AF_TCP/SCTP
● Cluster Join Resource
● Problem: Socket Lifetime

– Error → Reconnect
– May end into data losses msg

msg

connect()

msg msg

connect()

Connection Cluster Lifetime
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Retransmit on Reconnect

● Encapsulated Header
● Simple Seq and Ack based
● Acks are Piggybacked on 

Messages
● Retransmit non Acked 

Messages after Reconnect
msg0msg1

msg0

msg1
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Why Retransmit on Reconnect?

● Only a Jitter occurs in Hotpath
● No full Application re-synchronization

– Takes too much time, may block 
pending Application due re-
synchronize with others

– Only necessary if Application/USL 
state got lost, e.g. Power Outage 
(Fence)

msg0msg1

msg0

Possible Data-loss 
Fast Resolved

msg1
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How to transparent USLify your Application?
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Idea: Transparent* USLify your Application

● Do you know torsocks1) ?
● Example: `torsocks ssh $DESTINATION`

– Redirects to local SOCKS5 Tor daemon server 
– Outgoing traffic will be done through Tor

● Main mechanism is LD_PRELOAD Env
● Torsocks isn’t easy – e.g. DNS resolving 

Source:
1) https://gitlab.torproject.org/tpo/core/torsocks/
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The LD_PRELOAD Environment Variable

● Idea override the networking related Syscalls
● LD_PRELOAD=libusl.so nc -4t 127.0.0.1 1337
● Hide it in an Script: usl nc -4t 127.0.0.1 1337
● Pass Parameters: usl -foo bar nc -4t 127.0.0.1 1337

Source:
1) https://www.man7.org/linux/man-pages/man8/ld.so.8.html

1)
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Problem with just Override everything

● Override send(), recv(), etc? DON’T!
– Difficult to catch all Socket recv()/send() 

operation methods...
– We need to Hide Socket Errors
– The Application may not just reconnect

● Solution: Override connect(2)
● Socket Proxy hiding Errors to Application 

Socket!

Proxy

Application

Socket

Destination

Can fail/
reconnect

Should 
never fail
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SOCKS* Example Transparent USL Tunneling
B Local Server

Proxy
A Local Server

Proxy
A Client

usl nc 127...
B Server

nc -l 127...
connect(Proxy Client)

send(Server addr)

connect(Server)

connect(Proxy Server)

send(Server addr)

send(data) send(USL(data)) send(data)

send(USL(data)) send(data)

send(data)
USL

reconnect/
retransmit

USL
retransmit

Hiding 
Socket 
Errors

Hiding 
Socket 
Errors

Can break
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LD_PRELOAD is difficult to maintain!

● Think about torsocks every time you introduce a 
new method to do e.g. connect(2)!

● New Project provide similar functionality in a more 
“stable” way?

● It is a nice toy…, we look into other options! But 
maybe you got some new ideas. ;-)



Kernel space AF_BAR

User space AF_FOO

Socket Multiplexers
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Compared to Socket based Solutions
(Multiplexers*)

1 2 3 N

2M 3 1

Logic



1 2 3 N

Multiplexer

AF_RDS

TCP

Reliable Datagram Sockets

Socket Multiplexers
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● AF_RDS N (Process Independent)
● 100% Reliable like USL (Encapsulated 

Header)
● Own Port handling (Multiplexing into One 

Socket)
● Needs Adaptation (TCP/RDMA/…)
● Multipath* (not MPTCP) available 1 2 3 N

Multiplexer

AF_RDS



Kernel Connection Multiplexor
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● Multiplexer (NxM)
● Message Framing (psock)
● Multiplexor Logic (Load Balancing)

– AF_KCM → Deliver when App blocks in recv() 
or use next sk

– IPPROTO_TCP → If congested use next sk
● Where is the Counterpart? Designed for Server 

only? No Encapsulated Header!

psock psock psock psock

1 2 3 N

3

Multiplexor

1 2 M

AF_KCM

e
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USL could solve a note of AF_KCM kdoc!

Source:
1) https://www.kernel.org/doc/html/latest/networking/kcm.html#error-handling

1)



Moonshot Idea!

Introducing: “Socket Control”
(An approach how to make AF_KCM “programmable”)

Socket Control

16



17

What is a Multiplexer?
Electronic Basics – 2x1 Multiplexer

Switching
Logic

IN IN

OUT

Signal
Line

User defined

Socket Control
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Multiplexer Logic are just basic AND, NAND, etc. Gates!

A
N

D

N
A

N
D

A
N

D

Signal
Line
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In a Multiplexer IC – Logic is static!

Source:
1) By Robert.Baruch - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=63802402

==
1)

● User cannot change Switching Logic
● Multiplexer IC is specific for the Use-Case
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Source:
1) By Robert.Baruch - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=63802402

The existing Socket Multiplexers are like ICs
Their Logic is static!

Those Multiplexers are specific for a special Use-Case
defined by it’s Authors (and you need to take it)

1)

AF_KCM
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How to put the static Logic out of IC Multiplexers?
Use Primitives and Wire them together!

Wiring:

A
N

D

N
A

N
D

A
N

D

Constructed
Complex 
Logic:

A
N

D

N
A

N
D ...Primitives:



1
1

skb

skb

UAPI/
eBPF

IPPROTO_TCP

psock

eBPF

AF_KCM

Socket Control
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Simple Example 1x1 – Message Framing only
(AF_KCM can already do that)

Message Length 
Field Evaluation

Complex 
Framing Logic

Multiplexer Logic
Module

recvmsg()
sendmsg()

recvmsg()
sendmsg()

May App. 
specific 
use eBPF 
to solve it
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Reuse existing AF_KCM implementation

● AF_KCM is good into defining Multiplexer Sockets
– N AF_KCM Sockets (clone)
– M AF_TCP Sockets (attach/unattach)

● Multiplexer Logic
– Default Logic is the current AF_KCM Logic
– Can be flushed and reprogrammed by User



How this fits with USL?
Socket Control
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1
1

skb

skb

UAPI/
eBPF

IPPROTO_TCP

USL

AF_KCM

psock
eBPF

1
1

skb

skb

UAPI/
eBPF

IPPROTO_TCP

USL

AF_KCM

psock
eBPF

1x1 
Multiplexer1x1 

Multiplexer



USL: Redundant Multipath*
Socket Control
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1

1
skb

UAPI/
eBPF

IPPROTO_TCP

USL

AF_KCM

psock
eBPF

skb mirror
2

skbskb

1x2 (tx only) 
Multiplexer

1
1

skb

UAPI/
eBPF

IPPROTO_TCP

USL

AF_KCM

psock
eBPF

2x1 (rx only) 
Multiplexer

2

First Come
First Serve

psock
eBPF

USL

tx

rx

skb skb



Future Work

End
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● Transport Layers? QUIC/MPTCP
● USL existing kind of in “fs/dlm/” (No Multipath)
● I try to move it out from my Application Layer
● Maybe start to look into “programmable” 

AF_KCM?
● Update “fs/dlm” to use AF_KCM and program my 

needs e.g. psock, USL, ?multipath mirroring?



I hope you enjoyed this talk

End
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● May the LD_PRELOAD trick was new for you
● You may liked the idea of “Socket Control”
● I missed in my talk… (Sorry)

– Talking about Half-Closed issue
– The Demo using Proxys and Netcat 


