
Genetic Algorithm based PI controller tuning with stability analysis for
Linux ptp4l optimization

Milena Olech
Intel Technology Poland

Gdańsk, Poland
milena.olech@intel.com

Marta A Plantykow
Synopsys

Gdańsk, Poland
pmarta@synopsys.com

Maciej Machnikowski
Nvidia

Gdańsk, Poland
maciej@machnikowski.net

Abstract

This paper presents the research results of ptp4l
Proportional-Integral (PI) controller tuning using a Ge-
netic Algorithm. Furthermore, it describes recent ad-
vancements in the PTP-optimization framework.
PI controller optimization is required to meet the strict
phase synchronization industry standards introduced by
the LTE E-ULTRA TDD, 5G, and O-RAN technologies.
The ptp4l is a part of the Linux PTP project and im-
plements Precision Time Protocol (PTP) according to
IEEE 1588 standard for Linux. The tool implements a
PI controller and an API to tune its Proportional (Kp)
and Integral Ki) terms.
The developed framework implements the Genetic Al-
gorithm (GA), a stochastic algorithm used in Artificial
Intelligence (AI), to optimize the parameters of the PI
controller. Stability condition checks are incorporated
into the framework to accelerate the discovery of optimal
and stable outcomes.
The enhancements resulting from utilizing the tool are
presented in the article.
This paper continues research for tuning the Proportional-
Integral (PI) controller configurable in the phc2sys appli-
cation using the Genetic Algorithm presented on Netdev
0x15.

Introduction
Precision Time Protocol is a high-accuracy method for
clock synchronization over a network, allowing for precise
timekeeping across distributed systems. It is defined by
the IEEE 1588 standard and is implemented in Linux
OS by the linuxptp toolset, which consists of four main
tools: ptp4l, ts2phc, phc2sys, and pmc.

The linuxptp toolset implements the PI controller that
continuously measures system output and produces a con-
trol signal that aims to minimize the difference between
the actual output of the system at a given point in time
and the system’s desired set-point.

The characteristic of the system under control deter-
mines the effect of each of the terms on the response.
Kp, Ki, and Kd gains shall be adjusted to fine-tune the
overall system’s performance.

PTP-optimization framework implements a Genetic
Algorithm (GA), a stochastic algorithm used in Artificial

Intelligence (AI), to optimize the parameters of the PI
controller.

Improvements in the PTP-Optimization framework are
presented in this work. This paper also covers the evalua-
tion of the influence of the PTP-Optimization framework
on ptp4l.

The paper is divided into four subsections.
The Related work section describes the basics of Pre-

cision Time Protocol and PTP on Linux implementa-
tions. It also introduces Proportional-Integral-Derivative
controllers, PID Tuning, control system, control system
stability, and the Linux PTP Control system stability. At
the end of this section, possible Data evaluation methods
are described.

The second section describes the improvements in the
developed framework, such as new methods for usage,
stability verification, new applications for tests (ptp4l),
changes in the workflow, and logging.

The third section describes the research Results.
Finally, the last section describes the Future Work.

Related work
Precision Time Protocol
The IEEE 1588 standard defines a method for precise
computer synchronization over a Local Area Network
(LAN), also known as Precision Time Protocol. This
solution can synchronize clocks to less than 100 nanosec-
onds in a network designed according to the standard.
(PTP)

PTP Synchronization messages, such as Sync, Fol-
lowUp, DelayReq, and DelayResp, are exchanged between
the Grandmaster or a timeTransmitter and instance syn-
chronizing to the provider (timeReceiver). Exactly one
Grandmaster and at least one timeReceiver are required
for LAN clock synchronization.

The timeTransmitter broadcasts the Sync message,
which, upon arrival, is timestamped on the timeReceiver’s
end. Next, the timeTransmitter optionally sends a mes-
sage that contains the timestamp representing the time
when the previous message left the timeTransmitter (Fol-
lowUp message). Based on that, the timeReceiver calcu-
lates the offset between its timer and the timeTransmit-
ter’s.

In the next step, the timeReceiver sends a DelayReq
message to the timeTransmitter to calculate the path
delay, saving the transmission time. Upon arrival, the
timeTransmitter timestamps the message and sends it
back to the timeReceiver as a DelayResp message, where
the path delay is calculated.

Based on all four timestamps, the timeReceiver cal-
culates path delay compensation, which is crucial for
synchronization. (Pla21)

Figure 1: PTP Timestamps
(PTP)

Linux PTP (Pla21)
The Linux PTP project provides an implementation of
1588 on Linux. It implements five main tools:
• ptp4l that can synchronize the PTP Hardware Clock

(PHC) in the NIC Network Interface Card to the time-
Transmitter time in a hardware-accelerated case. For
SW usage, the application synchronizes the system
clock to the time obtained from the Grandmaster.

• ts2phc that is used to synchronize PHC clocks to the
external events coming from external sources, such
as a 1PPS signal from the GNSS (Global Navigation
Satelite System) receiver.

• phc2sys that synchronizes two (or more) POSIX clocks
of choice. For example, it can synchronize the system
clock to the PHC.

• pmc - PTP Management Client - that implements
a PTP management client according to IEEE 1588
protocol and allows configuring ptp4l in a run-time.

• phc_ctl - is a program that can directly control a PHC
clock device (man).

ptp4l
ptp4l is a command-line tool that implements PTP pro-
tocol according to the IEEE 1588. The tool generates
PTP traffic and controls the timeReceiver’s clock, such

as a PTP Hardware Clock (PHC), setting its time and
frequency to follow the timeTransmitter.

It can be used to synchronize multiple clocks and can
be considered both a source (timeTransmitter or Grand-
master clock) and the consumer (timeReceiver clock) of
the time packets.

If the underlying hardware supports it, hardware times-
tamping is used by default.

When the connection between the timeTransmitter and
the timeReceiver is established, the application provides
the output with thorough precision tracking.

To connect the timeTransmitter and the timeReceiver,
the ptp4l application must be initiated on each system,
with the timeReceiver optionally activating the clientOnly
mode by appending the -s option. The tool can operate
under various network transport modes, namely L2, IPv4,
and IPv6. The L2 mode elects the IEEE 802.3 network
transport. The -4 option enables UDP IPv4 network
transport, while the -6 option is used for UDP IPv6.

The s0, s1, s2, and s3 values represent the different
states of the clock servo: s0 is unlocked, s1 is the clock
step, s2 is locked, and s3 is locked within the predefined
range. If the servo is locked, the clock will not be stepped
but slowly adjusted by changing its frequency.

The path delay value shows the estimated delay of the
synchronization messages sent from the timeTransmitter
(expressed in nanoseconds).

The freq value indicates the frequency adjustment of
the clock (the currency is part per billion, ppb).

Proportional-Integral-Derivative controllers
(Ins)
Proportional-Integral (PI) and Proportional-Integral-
Derivative (PID) controllers are the most adopted con-
trollers in the whole industry. As of 2012, in process
control applications, more than 95% of the controllers
were PI or PID type. (Vil12)

This type of controller continuously measures and ad-
justs the system’s output to match the desired set point.
Without prior knowledge of the system, the PI(D) con-
troller produces a control signal to minimize the difference
between the system’s output at a given time and the sys-
tem’s desired set point.

Figure 2 presents a schematic representation of a
general PID control loop in its most general form.

In a continuous feedback loop, the comparator block
subtracts system output y(t) from the system set-point
r(t) and provides error signal value e(t) (difference be-
tween desired and actual value) to the Loop Filter block
(Proportional, Integral, Derivative sub-blocks), where
the error signal is used to calculate the control signal
u(t). The control signal u(t) is then applied to the sys-
tem (controlled object), causing a change in the system’s
output.

The control system shall consider not only the current
error value e(t) but also its accumulation over time (the
integral sub-block represents that) and its future tendency
(represented by the derivative at time t), as shown in 3.

Figure 2: Schematic representation of a general PID
control loop

Figure 3: Example error function in time with highlighted
contributions of each of the sub-blocks

The following equation represents the complete control
function in its most general form:

u(t) = up(t)+ui(t)+ud(t) = kpe(t)+Ki

∫ t

0

e(τ)+Kd
d

dt
e(t)

(1)
Each of the PID controllers sub-block has a different

role:
• Proportional term - Brings the output to the set point

by applying correction proportional to the error am-
plitude. It can not nullify the error as it requires a
non-zero error to generate its output.

• Integral term - Applies correction proportional to the
error’s time integral (history). It can not nullify the
error even under a zero-error condition at present. This
term enables the controller to bring the system precisely
to the required set point.

• Differential term - By applying a correction propor-
tional to the time derivative of the error, this term
provides control over the error tendency. The deriva-
tive term can be omitted in real-world applications
of PIDs, as if the reference value changes rapidly, the
derivative of the error becomes very large and causes
the PID controller to undergo an abrupt change that
can result in instabilities or oscillations in the control
loop.
Figures 4, 5 and 6 present the influence of each PID

controller term on the system under control behavior.

Figure 4: P term influence on the system’s behavior

As Figure 4 shows, the proportional term part of the
control signal u(t) value is directly proportional to the
error signal value e(t). Increasing the Kp gain reduces
the rise time, but the error never approaches zero. The
system’s output may oscillate if the Kp gain is too high.

As Figure 5 shows, the integral term part of the con-
trol signal u(t) value is proportional to the time integral
of the error. Increasing the Ki parameter increases the

Figure 5: I term influence on the system’s behavior

contribution of the accumulated error over time to the
control signal and, as a result, reduces the error elimi-
nation time. The system’s output may oscillate around
the set point or lead to an overshoot if the Ki gain is too
high.

Figure 6: D term influence on the system’s behavior

As Figure 6 shows, the derivative term part controls
the error tendency. This term aims to anticipate the
changes in the error signal: if the error shows an upward
trend, the derivative action tries to compensate without
waiting for the error to become significant (proportional
action) or for it to persist for some time (integral action).

The characteristic of the system under control deter-
mines the effect of each of the terms on the response.
Kp, Ki, and Kd gains shall be adjusted to fine-tune the
overall system’s performance.

Some systems may perform better with only one of
two of the three sub-blocks of the PID controller. PI
controller, for example, is common for applications prior-
itizing steady-state error elimination and stability over
fast response times.

PID tuning
As described in the previous subsection, each PID con-
troller term significantly influences the system’s response.
PID tuning manipulates the Kp, Ki, and Kd gains to
achieve satisfactory response 1from the control process
(Jos18).

There are several well-established methods used
for PID controller tuning, for example, Ziegler-
Nicholsmethod, (NNZ42), Cohen-Coon method (Jos18),
Asrom and Hagglung method, (Ast93), or trial and error
method (too). Besides that, Genetic Algorithms (GA)
have proven to be capable of locating high-performance
areas in complex domains, including finding optimal set-
tings for PID controllers. (Pla21).

Each method carries its advantages and trade-offs, re-
quiring a judicious selection based on the specific charac-
teristics and requirements of the system at hand.

Control system (Ele)
A control system is a system that regulates the behavior
of other devices through control loops to achieve the
desired result. Control loops are processes designed to
maintain a process variable, or in other words, to control
a system’s output. Two types of control loops define two
main types of control systems:
• Open control loops - The system’s output is not

directly measured or compared to the desired set-point.
The control action is determined exclusively by the
input and the system’s characteristics. Open control
loops are used in open-loop control systems.

• Closed control loops - involve measuring the sys-
tem’s output and comparing it to the set point. The
system’s input, output, and characteristics determine
the control action. Closed loops are used in closed-
loop control systems.
PID controller-based control systems implement closed

control loops.

Control system stability (Nis11)
Stability is the most essential specification of a control
system. Each linear 2, time-invariant 3 system’s response
can be described as a sum of the forced and natural
responses:

y(t) = yforced(t) + ynatural(t) (2)

The natural response of the system is the behavior of
the system that arises solely from its initial conditions
and inherent dynamics. It is the way the system be-
haves without any external input or disturbance. On the

1Satisfactory response - a response that fulfills require-
ments related to the speed of response, accuracy, and stability.

2A linear control system is a type of control system in
which the relationship between the input and the output of
the system can be described by linear mathematical equations.

3A time-invariant control system is a type of dynamic
system in which the system’s parameters, characteristics, and
behavior do not change over time.

other hand, the forced response is the system’s behavior
resulting from an external input or disturbance.

Based on the response characteristic, each control sys-
tem can be defined as stable, unstable, or marginally
stable, where each of the following terms is defined as:
• A linear, time-invariant system is stable if the system’s

natural response eventually reaches zero as the time
approaches infinity.

• A linear, time-invariant system is unstable if the sys-
tem’s natural response grows without bound as the
time approaches infinity.

• A linear, time-invariant system is marginally-stable
if the system’s natural response remains constant or
oscillates as time approaches infinity.
When analyzing the total system’s response exclusively,

separating the natural response from the forced response
is difficult. However, if the system’s input is bounded and
the total system’s response is not approaching infinity (as
time approaches infinity), the natural response is also not
approaching infinity. On the other hand, if the system’s
input is unbounded, the total response is also unbounded,
making it impossible to arrive at any conclusion about
the system’s stability. Based on that, a stable system
can also be defined as every system that yields a bounded
output for each bounded input. This statement is called
the bounded-input, bounded-output (BIBO) definition
of stability.

At the same time, if the system’s input is bounded, but
the total system’s response is unbounded, the system is
unstable since we can conclude that the natural response
approaches infinity when the time approaches infinity.
Based on that, an unstable system can also be defined
as every system that, for any bounded input, yields a
unbounded output.

Figure 7 presents typical responses of a system.

Figure 7: Typical responses of a control system
(EEE)

Linux PTP Control system stability (Edi06)
Linux PTP suite implements IEEE 1588 using the
Proportional-Integral (PI) controller in the clock’s control

system. Figure 8 presents a servo model in a timeRe-
ceiver clock.

Figure 8: Model of the servo in a timeReceiver clock

The system consists of a controller, sample and hold,
and a plant representing the clock. As for the general PID
control loop described in section , in this control system
error signal e(t), that is a difference between the set-point
(time of the remote master clock) r(t) and the current
system output value (time of the local slave clock) y(t)
is forwarded to the controller to produce control signal
u(t). The presented control loop is fundamentally an
example of a discrete control system, as the error signal
e(t) is sampled with a period T corresponding to the
PTP synchronization interval.

The control system performance depends on PI con-
troller gains - Kp and Ki. John C. Edison (Edi06)
performed an exhaustive analysis of the PTP PI con-
troller’s gains influence on control system stability. A
two-dimensional plane representing the relationship be-
tween parameters Kp and Ki can be divided into three
sections, each representing a different type of stability
based on the roots of characteristic equation 4:

1. Roots of the characteristic equation are complex
Conditions for stability are described by equations 3-5:

(P + I)2 < 4I (3)

0 ≤ I ≤ 4 (4)

0 ≤ P ≤ 1 (5)

2. Roots of the characteristic equation are real
and equal
Conditions for stability are described by equations 6-8:

(P + I)2 = 4I (6)

0 ≤ I ≤ 4 (7)

0 ≤ P ≤ 1 (8)

3. Roots of the characteristic equation are real
and unequal
Conditions for stability are described by equations
9-10:

2P = 4− I (9)

0 ≤ P ≤ 2 (10)

Picture 9 represents final stability regions.

4Characteristic equation - polynomial equation that arises
from the denominator of the system’s transfer function when
it’s expressed in terms of the Laplace variable ’s’.

Figure 9: Stability regions for Kp and Ki parameters

Linuxptp PI controller limitations

Software implementation of PI controller in the linuxptp
further limits the two-dimensional plane representing the
relationship between parameters Kp and Ki.

Regardless of the input parameter value passed as an
argument, its maximum value will be trimmed to hard-
coded values. The maximum allowed value for the propor-
tional gain Kp is 1.0, whereas the maximum permissible
value for the integral gain Ki is 2.0.

Picture 10 presents the linuxptp controller limitations
of Kp and Ki gains (dashed) along with previously intro-
duced system stability regions.

Figure 10: Linuxptp stability regions for Kp and Ki
parameters

Data evaluation methods (Pla21)
Measures of the average error that depicts model perfor-
mance are based on summaries of error values in time
ei (i = 1, 2, ..., n). Various metrics take into account
different aspects of the measured values, such as:

• RMSE - Root Mean Squared Error - described by the
formula 11. The sensitivity of RMSE is caused by
the fact that each error ei is squared, which strives for
more significant influence on the final result.

RMSE = [n−1
n∑

i=1

|ei|2]
1
2 (11)

• Mean Absolute Error - MAE, described by the formula
12. This measure signs the magnitude of the errors by
applying absolute value.

MAE = n−1
n∑

i=1

|ei| (12)

.
• MBE is the average error defined as Mean Bias Error

- MBE and is described by the formula 13. MBE
value mainly indicates average model bias rather than
provide error magnitude.

MBE = n−1
n∑

i=1

ei (13)

The calculation of MAE consists of two parts. The first
part is summing the absolute values of the errors, then
dividing the total error by n. The calculation of RMSE
involves three steps. First, total square error is obtained
as a sum of individual squared errors. This means that
significant errors have a greater influence on the total
than minor errors. Subsequently, the total square error
is divided by n, equal to the Mean Squared Error - MSE.
The last step is to take RMSE as the square root of the
MSE.

PTP-optimization framework
This section describes the improvements in the PTP-
optimization 5 framework introduced during the Netdev
0x16 conference 6 (Pla21).

The framework’s primary goal is to optimize the time
synchronization using the linuxptp project by optimizing
the Proportional-Integral (PI) servo parameters using
the Genetic Algorithm (GA) described in the previous
publication.

Usage
The developed framework is highly flexible and con-
figurable through a configuration file. Table PTP-
Optimization framework configureme file configurables

5https://github.com/mplantykow/PTP-Optimization/
6https://github.com/intel/PTP-optimization

(appendix) presents all configurable parameters of the
framework along with their function description.

The main.py file must be executed to start the auto-
mated PTP PI controller gains optimization procedure.
The parameter that determines the interface to work on
−− i must be given as an argument to the main.py script
along with the parameter that determines the test time
in seconds −− t.

./python3 main.py --i enp0s0 --t time

Within the framework, the system explores various
potential values of Kp and Ki for the controller by testing
different combinations over a defined number of epochs.
As a result, sets of Kps and Kis, along with the scores
(calculated based on the chosen metric), are generated.

Stability verification
PTP-Optimization framework was extended with the
feature that reduces the possible search space for optimal
values to the area defined by an object’s stability analysis
described in section .

In the previous implementation, the possible search
area was limited only by the input parameters, namely
−−max_kp and −−max_ki, which were set to 15 by
default.

The current implementation provides three possible
parameters for the stability verification:

• Complex - reduces the possible search space for opti-
mal values to the "Complex and Stable" area on figure
9. This area describes the case when the roots of the
characteristic equation are complex and is represented
by equations 3-5.

• Real - reduces the possible search space for optimal
values to the "Real and Stable" area on figure 9. This
area describes the case when the roots of the character-
istic equation are real and unequal and is represented
by equations 9-10.

• False - reduces the possible search space for optimal
values to the area limited by − − gen_max_kp and
−−gen_max_ki (fallback to the old implementation).

The choice of which stability type to analyze is deter-
mined through configurations in the source file.

If stability verification is enabled and, as a result of
crossover or mutation procedures, the resulting creature
goes beyond the stability boundaries of the object, the
values of Kp and Ki of the creature are estimated to the
nearest point within the selected stability region. The
estimation operation is performed in steps whose size is de-
termined by a parameter named reduction_determinant
(see table 5.

By default, due to the linuxptp PI controller limitations
described in section Linuxptp PI controller limitations),
regardless of the actual parameters passed as arguments
for Kp and Ki, their maximum value will be limited for
the proportional gain Kp to 1.0 and 2.0 for the integral
gain Ki, unless the linuxptp is modified and recompiled
accordingly.

The goal of enabling this feature was to allow the user
to exclude unstable combinations upfront to reduce the
optimal solution search time.

New application - ptp4l
The new framework allows optimizing the second appli-
cation from the linuxptp project - ptp4l. The preferred
application shall be specified in the config file.

The ptp4l tool offers a lot of configurable variables
that affect the time to achieve final synchronization. The
implemented framework uses the following command:

./ptp4l -i {interface} -m -2 -s

--tx_timestamp_timeout 100

--pi_proportional_const {P}

--pi_integral_const {I}

Where tx_timestamp_ timeout indicates the number
of milliseconds to poll waiting for the transmit timestamp
from the kernel.

One of the primary assumptions of the framework
is that the data provided to the genetic algorithm are
collected using a solid clock with stable frequency. An ad-
ditional step has been applied to eliminate the noise that
may negatively influence the data. The previously de-
scribed ptp4l command with default Kp=0.3 and Ki=0.7
values has been performed for 60 seconds.

Console output and logging
PTP-Optimization framework was improved with the
new debug features - more meaningful framework output,
extended logging, and graphs.

With the graph_per_epoch flag enabled, the frame-
work can create graphs that illustrate generated Kp and
Ki values (Figure 11) and the change of the score in the
following epochs (Figure 12). The first chart combines
the elite creature and the epoch number, allowing us to
interpret the second diagram correctly.

Figure 11: Kp and Ki pais with assigned epoch number

Figure 12: Scores per epoch

Besides that, at the end of each run, the framework
generates the plot that represents colored Kp and Ki
values, where colors indicate the assigned metric score
(Figure 13).

Figure 13: Combined creature and score graph

Furthermore, new csv files are generated at the end of
the calculations. One collects data about all investigated
Kp and Ki pairs and metric scores, and the second pro-
vides information about best-scored creatures with their
rates.

These improvements alleviate data interpretation and
adjust the framework according to the specific use case.

Logging during the operation was extended to provide a
better understanding of the framework’s learning process.
It is also possible to follow the progress by tracking
printed % of improvement.

Data evaluation
This work aims to synchronize our timeTransmitter and
timeReceiver PHC timers as closely as possible. Modify-
ing Kp and Ki allows us to achieve that goal more quickly.
The ideal scenario is to have an offset between the leader
and the timeReceiver equal to 0. Evaluation methods
have been applied to calculate the deviation from the
perfect scenario.

The developed framework gives a possibility to choose
three different evaluation metrics: MSE, RMSE, and
MAE. In this work, two are being considered - RMSE
and MAE. The reason behind that is that the metric’s
influence on the framework determines which pairs of
Kp and Ki generate the best output, where the best
means output with the smallest deviation from ideal
point 0. Having that, RMSE and MSE are described by
the following formulas:

RMSE = [n−1
n∑

i=1

|ei|2]
1
2 (14)

MSE = [n−1
n∑

i=1

|ei|2] (15)

In all cases, we will evaluate each pair of Kp and Ki pre-
cisely in the same manner, maintaining the proportions
resulting from the square root. That is why the difference
in the use of metrics is invisible from the perspective of
the framework operation.

Test setup
The test setup consisted of two Raspberry Pi Compute
Modules 4 (CM4): Grandmaster and the DUT. Both
modules ran the Raspberry Pi OS "bullseye" with kernel
6.1.54-v8+ and linuxptp 3.1 installed. Modules were
connected back to back with an Ethernet cable.

The Grandmaster was synchronized to the uBlox NEO-
M9N GNSS receiver using NMEA data and the 1PPS
signal using the ts2phc tool.

The DUT was running the framework described in this
document.

Both sides had NTP synchronization disabled using
timedatectl set-ntp off and systemctl disable systemd-
timesyncd commands.

Results
The team conducted experiments to optimize the PI con-
troller parameters implemented in Linux PTP. This sec-
tion presents the results of individual studies conducted
to assess the changes introduced in the framework. It
consists of three subsections, each representing a different
test and its goal.

Study of the time required to ensure test
repeatability
In this section, we present the results of the time required
to ensure test repeatability study. The ability to replicate

test conditions reliably is paramount in any experimental
design.

We conducted sixty-minute tests of the ’ptp4l’ appli-
cation to define the time required to achieve repeatable
conditions. We utilized the PI controller, adjusting the
frequency (with default Kp 0.7 and Ki 0.3 parameters),
and measured the offset value in time. Each test was
respectively repeated ten times. Running metrics were
calculated based on the value of the offset.

This study aimed to find the time when metrics would
reach similar values. Picture 14 presents the conver-
gence of running metrics in time. Additionally, Table
1 presents Root Mean Square Error Values (RMSE) at
points in time, along with its average value and the stan-
dard deviation.

Figure 14: Convergence of running metrics in time

Table 1: Root Mean Square Error (RMSE) at different
time points

RMSE
Run30s 90s 150s 300s 600s 1200s 3600s
1 44.85 26.76 21.47 16.53 12.82 10.90 9.65
2 51.88 30.58 24.05 17.96 14.13 12.51 10.49
3 41.13 24.97 20.03 15.65 12.56 10.85 10.16
4 7.22 12.55 11.52 12.05 10.94 10.07 9.51
5 16.07 11.62 10.60 10.45 9.45 9.48 9.88
6 53.51 31.74 25.13 18.73 14.56 11.85 10.26
7 7.53 9.37 8.78 9.06 8.84 9.65 9.41
8 49.24 28.98 22.97 17.26 13.53 11.25 9.58
9 17.69 13.00 11.73 10.15 9.56 9.69 9.25
10 28.64 18.03 14.96 11.85 10.24 9.56 8.74
Ave.31.78 21.06 17.12 13.95 11.66 10.58 9.69
Stdev17.56 8.03 5.92 3.44 1.99 1.00 0.49

The metric values over time were collected for the
entire test duration. The table 1 presents only selected

values, while the value at other time points can be read
from the 14.

The RMSE value achieves the highest values varying
from 7.22 to 53.51 for the shortest presented period (30s),
resulting in 31.78 on average. For this test, the standard
deviation value is 17.56. The RMSE values for tests that
lasted less than 30 seconds are even higher.

The average value of the metric indicating the error
decreases with the increasing duration of the test. The
same dependency applies to the standard deviation.

The smallest RMSE values were achieved for the longest
test that lasted 3600s (1 hour). The lowest metric score
equals 8.74, while the highest equals 10.49. For this test,
the average metric value equals 9,69, and the standard
deviation achieved 0.49.

As described in section Usage the framework explores
various potential values of Kp and Ki for the controller
by testing different combinations over a defined number
of epochs, conducting tens of experiments in a single run.

Due to that, the 600-second (10-minute) test time was
selected as a compromise between test time and test
repeatability for further tests. For this test time, the
RMSE value is 8.84 - 14.13, achieving 11.66 on average.
The standard deviation equals 1.99, over seven times less
than the 30s-long tests.

Stability verification checks influence the
framework’s performance
This test investigates the impact of stability verification
on the results. The system’s stability is the most im-
portant control system’s specification. If the system is
unstable, its response grows without bounds over time.

This study examines whether stability verification af-
fects the framework performance in terms of results or
the time required for their achievement.

In this test, two scenarios were run.
The first tested area is limited to the "Complex and

stable" (additionally limited by the linuxptp stability
hard limits of Kp <= 1 and Ki <= 2). As a result, the
test limited the search of Kp and Ki to the area described
by equations 16 and 17:

(P + I)2 < 4I (16)

0 < I < 2 (17)
Figure 15 presents resulting scatter plot. Each point

on the scatter plot presents a single creature described by
Kp and Ki values. This test was configured for X initial
creatures and five epochs. As a result, Z creatures were
tested.

On the figure 15, a clear accumulation of points at the
boundary of the examined area is noticeable. This is a
result of the algorithm described in section Stability veri-
fication, which, where a creature resulting from crossover
or mutation moves beyond the defined area, shifts it to
the nearest point within the defined range.

Each point is assigned a color that depends on the
value of the metric calculated for that point. The points

are yellow for the smallest RMSE values, slightly less
than 8. As the metric value increases, the points darken
through orange and purple until they reach the blue color,
which is defined as the highest metric value exceeding 16.
Many points that have achieved a good result (yellow)
are clustered at the upper boundary of the permissible
range on its left side.

Figure 15: Results scatter plot with limited stability
region

The table 2 presents the Kp, Ki, and RMSE values
achieved for the best (elite) creature in each epoch. This
test error metric value decreases from 9.055 to 7.926,
adjusting Kp from 0.7 to 0.938 and Ki from 0.3 to 0.589.

Epoch Kp Ki RMSE
ref 0.7 0.3 9.055
0 0.366 0.693 9.896
1 0.941 0.583 8.247
2 0.941 0.583 8.247
3 0.69 0.207 8.183
4 0.938 0.589 7.926

Table 2: Elite score - limited stability region

In the second run, the complete stability region limited
by built-in linuxptp boundaries (Kp <= 1, Ki <= 2)
was tested. Figure 16 presents a scatter plot of the
second test. Points on the scatter plot present Kp and
Ki pairs and are colored based on the assigned RMSE
metric value. The only difference between the first and
second tests is the analyzed area of Kp and Ki, which,
in this case, has a larger surface area and a rectangular
shape.

In the figure 16, an apparent accumulation of points
at the boundary of the examined area is noticeable, as in
the previous case, this is expected.

RMSE is slightly above 8 (yellow) to over 17 (dark
blue) in this test. As for the previous test, many points
that have achieved a good result (yellow/orange) are

clustered at the upper boundary of the permissible range,
on the left side.

Figure 16: Results scatter plot with unlimited stability
region

The table 3 presents the Kp, Ki, and RMSE values
achieved for the best (elite) creature in each epoch. This
test error metric value goes down from 11.8 to 8.132,
increasing Kp from 0.7 to 1 and decreasing Ki from 0.3
to 0.229.

Epoch Kp Ki RMSE
ref 0.7 0.3 11.8
0 0.861 0.285 11.01
1 1 0.219 9.558
2 1 0.229 8.132
3 1 0.229 8.132
4 1 0.229 8.132

Table 3: Elite score - full stability region

In both conducted tests, the lowest metric values,
and thus the best results, are achieved when Kp hov-
ers around 1.

In the first test, the values of Ki for which good results
are achieved are higher than the default, most likely due
solely to the shape of the analyzed area (Kp reaches a
value of 1 when Ki is equal to 1). In the case of the
second test, it is evident that good results are achieved
with Ki slightly lower than the default.

Lower metric values are obtained for a larger Kp than
default and a smaller Ki than default. This means the
system should rely more on the current error value and
be less responsive to accumulated errors.

The accumulation of points characterized by small
metric values in the upper left part of the examined
space suggests exploring a range broader than the one
defined in linuxptp. At the same time, it is evident that
the "Complex and stable" area excludes a portion of good

results, so the entire "Real and stable" area should be
examined.

Increasing number of epochs
As a final exercise, the ptp4l test response with the PI
controller tuned with values returned by GA was com-
pared with the ptp4l test response with the PI controller
tuned with default settings (Kp = 0.7 and Ki = 0.3,
initial population size = 8). This test was performed
to investigate the influence of increasing the number of
epochs on results.

Figure 17 and table 4 presents the outcome of running
10 epochs with built-in linuxptp limitations where Kp is
smaller than 1 and Ki smaller than 2.

The elite score oscillates between 8 and 11, where the
usage of the default values result is approximately 11.
Collected data indicates an improvement level equal to
30%.

In this case, the aggregation of points with the lowest
metric values is in the upper left area and along Kp and
Ki axes. This test confirmed previous observations, where
larger Kp and lower Ki bring better results than default
values.

Notably, increasing the number of epochs does not
significantly lower the creature scores. Table 4 shows that
the best-scored coefficients were found after six epochs.
It proves that more epochs do not guarantee better test
results.

Figure 17: Results scatter plot with ten epochs

Epoch Kp Ki RMSE
ref 0.7 0.3 11.277
0 0.746 1.332 11.277
1 0 0.122 8.741
2 0 1.029 8.298
3 0 1.029 8.298
4 0 1.088 8.284
5 0.916 0.442 7.975
6 0.916 0.442 7.975
7 0.916 0.442 7.975
8 0.916 0.442 7.975
9 0.916 0.442 7.975

Table 4: Elite score - longest run

Conclusions
The established framework offers a user-friendly auto-
mated approach for fine-tuning the Proportional-Integral
controller integrated within two linuxptp applications:
phc2sys and ptp4l. As for phc2sys, the preset parameters
employed in the PI controller typically produce satis-
factory outcomes. Nevertheless, the framework demon-
strated its capability to achieve superior results in all
examined scenarios. This study consistently indicated
the effectiveness of the developed framework. In most
cases, just a few iterations were needed to discover pa-
rameters that markedly outperformed the default values.
Additionally, it’s worth noting that this work comprehen-
sively addresses all aspects outlined in the ’future work’
section presented at the previous conference.

References
[Ast93] Tore Hagglund Karl J. Astrom. PID Contollers,
2nd Edition. 1993.

[Edi06] John C. Edison. Measurment, Control and Com-
munication using IEEE 1588. Springer, 2006.

[EEE] EEEguide.com. Transient response of closed
loop drive system. https://www.eeeguide.com/
transient-response-of-closed-loop-drive-system/.
Accessed: 2023-10-8.

[Ele] Electrical4U. Control systems: What
are they? https://www.electrical4u.com/
control-system-closed-loop-open-loop-control-system/
?utm_content=cmp-true. Accessed: 2023-10-8.

[Ins] Zurich Instruments. Principles of pid controllers.
https://www.zhinst.com/sites/default/files/
documents/2023-07/zi_whitepaper_principles_of_
pid_controllers.pdf. Accessed: 2023-9-13.

[Jos18] E. A Joseph. Cohen-Coon PID Tuning Method:
A Better Option to Ziegler Nichols-Pid Tuning Method.
2018.

[man] Debian man pages). https://manpages.debian.
org/unstable/linuxptp/phc_ctl.8.en.html. Ac-
cessed: 2023-10-12.

[Nis11] Norman S. Nise. Control systems engineering, 6th
edition. John Wiley & Sons, Inc., 2011.

[NNZ42] J.G. Nichols N.B. Ziegler. Optimum settings for
automatic controllers. 1942.

[Pla21] Machnikowski Plantykow, Olech. Precision Time
Protocol optimization using genetic algorithm. 2021.
Accessed: 2023-9-13.

[PTP] Precision time protocol (ptp/ieee-1588). https:
//endruntechnologies.com/pdf/PTP-1588.pdf. Ac-
cessed: 2023-9-13.

[too] Inca tools. Explore the 3 pid tuning meth-
ods. https://www.incatools.com/pid-tuning/
pid-tuning-methods/. Accessed: 2023-10-8.

[Vil12] Ramon Vilanova. PID Control in the Third Mille-
nium. Springer, 2012.

https://www.eeeguide.com/transient-response-of-closed-loop-drive-system/
https://www.eeeguide.com/transient-response-of-closed-loop-drive-system/
https://www.electrical4u.com/control-system-closed-loop-open-loop-control-system/?utm_content=cmp-true
https://www.electrical4u.com/control-system-closed-loop-open-loop-control-system/?utm_content=cmp-true
https://www.electrical4u.com/control-system-closed-loop-open-loop-control-system/?utm_content=cmp-true
https://www.zhinst.com/sites/default/files/documents/2023-07/zi_whitepaper_principles_of_pid_controllers.pdf
https://www.zhinst.com/sites/default/files/documents/2023-07/zi_whitepaper_principles_of_pid_controllers.pdf
https://www.zhinst.com/sites/default/files/documents/2023-07/zi_whitepaper_principles_of_pid_controllers.pdf
https://manpages.debian.org/unstable/linuxptp/phc_ctl.8.en.html
https://manpages.debian.org/unstable/linuxptp/phc_ctl.8.en.html
https://endruntechnologies.com/pdf/PTP-1588.pdf
https://endruntechnologies.com/pdf/PTP-1588.pdf
https://www.incatools.com/pid-tuning/pid-tuning-methods/
https://www.incatools.com/pid-tuning/pid-tuning-methods/

Table 5: PTP-Optimization framework configureme file configurables

Variable Default value Description

debug_level 1 This variable adjusts the level of printed debug log messages;
Set to 1 for basic logging, set to 2 for full logging

app ptp4l This variable defines which of the PTP applications should
be tested. Following arguments are accepted: ptp4l, phc2sys

metric MAE This variable defines which of the metrics is used for cal-
culations. Following metrics are accepted: MSE, RMSE,
MAE

initial_values False Set this option to True to load initial creatures (Kp, Ki)
from initial_values.csv file; If set to False, initial creatures
will be randomly drawn

graph_per_epoch False Set to true to generate a graph with results for each epoch

stability_verification Real This parameter determines the stability verification; There
are two stability regions defined in (Edi06): Complex (Com-
plex & stable) and Real (Real & stable). This parameter
can be also set to False to disable stability verification check.
In this case, gen_max_kp and gen_max_ki parameters can
be used in order to limit the search area. Note, that default
PI controler implementation in linuxptp limits the input
parameters as described in section "Linuxptp PI controller
limitations".

gen_max_kp_stable_complex 1 Based on (Edi06), it is advised to do not modify

gen_max_kp_stable_real 2 Based on (Edi06), it is advised to do not modify

gen_max_ki_stable 4 Based on (Edi06), it is advised to do not modify

reduction_determinant 0.001 If stability verification is enabled and as a result of crossover
or mutation procedures the resulting creature goes beyond
the stability boundaries of the object, the values of Kp and
Ki of the creature are estimated to the nearest point within
the selected stability region. This parameter determines
estimation step size.

gen_population_size 8 Genetic algorithm - Initial population size

gen_epochs 8 Genetic algorithm - Number of epochs, minimal accepted
value - 1; There is no maximal value

gen_max_kp 5 This parameter limits the algorithm search area by limiting
the maximal Kp value that can be used for tests; This
parameter is ignored when stability_verification is set to
True

gen_max_ki 5 This parameter limits the algorithm search area by limiting
the maximal Ki value that can be used for tests; This
parameter is ignored when stability_verification is set to
True

gen_num_random 2 Genetic algorithm - Number of random parents added to
each epoch

gen_num_inherited 5 Genetic algorithm - Number of parents directly replicated
to create a new generation

gen_num_replicated 4 Genetic algorithm - Number of parents replicated to create
a new generation

gen_mutation_coef 1 Genetic algorithm - Mutation coefficient; determines the
influence of mutations on creatures

gen_elite_size 1 Number of elite chromosomes

test_repeted_creatures False Set to True to retest repeated creatures, set to False in order
to reduce the test time and assign previous value if the same
creature shall be tested

	Introduction
	Related work
	Precision Time Protocol
	Linux PTP
	ptp4l
	PID
	PID tuning
	CS
	CSS
	CSS
	Linuxptp PI controller limitations
	METRICS

	PTP-optimization framework
	Usage
	Stability verification
	New application - ptp4l
	Console output and logging

	Data evaluation
	Test setup
	Results
	Study of the time required to ensure test repeatability
	Stability verification checks influence the framework's performance
	Increasing number of epochs

	Conclusions

