
Quantum-Proofing Data: The Power Of Post-Quantum Cryptography

Krystian Matusiewicz
Intel, Poland

krystian.matusiewicz@intel.com

Milena Olech
Intel, Poland

milena.olech@intel.com

Natalia Wochtman
Intel, Poland

natalia.wochtman@intel.com

Abstract

Quantum algorithms can efficiently solve some problems
that are difficult for classical computers. Notably, Shor’s
algorithm can be used for efficient integer factorization
and discrete logarithm finding. While there are still
no sufficiently large quantum computers to threaten
practically used RSA and Elliptic Curve Diffie-Hellman
instances, deploying quantum-resistant alternatives to
RSA and EC-based cryptography is becoming an urgent
need.
Quantum attacks pose a threat to cryptography utilized
in the TLS protocol in two critical areas: key exchange
and client/server authentication. As a result, the security
of the TLS handshake process can be compromised, ne-
cessitating the adoption of post-quantum cryptography
(PQC) algorithms.
This year, the National Institute of Standards and Tech-
nology selected a suite of asymmetric algorithms resistant
to quantum attacks. One of them is CRYSTALS-Kyber,
a Key Encapsulation Mechanism (KEM) that can be
used to establish a session key securely.
This paper studies its application in the TLS handshake.
In order to assess the efficacy of post-quantum cryp-
tography (PQC), a comprehensive comparison between
traditional cryptographic methods and post-quantum
alternatives has been conducted. The study analyzes
the outcomes and provides a condensed summary of the
findings.

Introduction
Quantum computers leverage principles of quantum me-
chanics to perform computations by controlling the evolu-
tion of a state of a quantum system. By carefully setting
up a quantum system and making it undergo state trans-
formations (called quantum gates) one can arrive at a
destination state that after measuring yields the result
of the computation.

It turns out that that there exist computations that
can be done more efficiently on a quantum computer.
One of them is a Quantum Fourier Transform (Cop94).
This algorithm is the crucial ingredient of the algorithm
developed by Peter Shor (Sho95) that, by finding periods
of appropriately defined functions, is able to efficiently
factor composite integers and find discrete logarithms in
finite fields.

There are no quantum computers with sufficiently large
state to be able to factor practically used RSA moduli yet,
but the race to scale up quantum computers is ongoing
and we may expect significant progress in that area over
the next couple of years. U.S. administration treats the
risk as real enough for the President to issue a dedicated
National Security Memorandum (Bid).

National Institute of Standards and Technology has
been running a public competition (Nat) to address this
concern and select a new set of quantum-resistant al-
gorithms that will be standardized to augment legacy
schemes from FIPS-186.

The deployment of quantum-resistant algorithms is
meant to mitigate the threat of “store now, decrypt later”
attacks where the communication is being recorded now
and will be decrypted later when the advanced threat
actors will have access to powerful enough quantum com-
puters.

On the other hand, the adoption of post-quantum
cryptography involves completely new algorithms and
carries cryptanalytic, implementation and operational
risks. One of the solutions to mitigate those risks is
to use hybrid modes combining both classical and post-
quantum algorithms. That direction is recommended by
French and German cybersecurity agencies (Age; Bun)
and has been explored e.g. in (CPS19), (SFG23).

Taking into account that the key exchange and clien-
t/server authentication utilized in TLS protocol are sig-
nificantly threaten, there is a need to consider defense
methods that can be applied to current cryptographic
system.

This paper provides an extended background for all
related areas, like Transport Layer Security, Key Encap-
sulation Mechanism, Shor’s algorithm and Learning with
Error Problem. Subsequently, performed research has
been described, including methodology, used tools, and
the set of results. The purpose of the research was to
determine whether using hybrid keys - traditional one
combined with the Post Quantum - significantly increases
CPU load compared to traditional methods.



Related work
Transport Layer Security
Transport Layer Security Protocol (Res18) allows clien-
t/server applications to communicate over Internet se-
curely.

Providing a secure channel between the client and the
server is the primary goal of the TLS. Secure channel
shall ensure that the following properties are supported:
• Authentication

The concept of TLS assumes that the server side is
always authenticated. In the case of the client, authen-
tication is optional. Authentication may happen using
asymmetric cryptography, the Elliptic Curve Digital
Signature Algorithm (ECDSA), The Edwards-Curve
Digital Signature Algorithm (EdDSA), or a symmetric
pre-shared key (PSK).

• Confidentiality
Data sent over the channel shall be visible exclusively
to the endpoints. The length of the data is not hidden
by TLS itself, but endpoints may apply padding to
the TLS records to obfuscate the length and improve
protection level.

• Integrity
Attackers cannot change data sent over the channel.
These requirements should be full-filled even if the

attacker has complete control of the network.

TLS includes two main components:
• Handshake protocol

Handshake protocol is responsible for negotiating cryp-
tographic parameters and modes and establishing
shared keys. The protocol shall resist changes made by
the potential attacker, which means that the attacker
cannot influence the negotiation between server and
client by forcing parameter changes.

• Record protocol
Record protocol uses parameters negotiated during the
handshake to protect traffic between server and client.
The primary responsibility of this protocol is to divide
the traffic into a series of records and protect them
independently using appropriate traffic keys.
TLS does not influence the application layer. Higher-

level protocols can operate on the top of the TLS trans-
parently. The standard does not provide requirements
for adding security with TLS, initiating TLS handshake,
and interpreting the authentication certificates exchanged
between the server and the client.

Key Encapsulation Mechanism (KEM)
Ken Encapsulation Mechanisms (KEMs) are a set of
encryption methods designed to provide secure symmetric
key material for transmission using asymmetric (public-
key) algorithms (YHM23).

The standard method for sending a symmetric key with
the public key system is following:

1. Generate a random symmetric key

2. Encrypt using the chosen public key algorithm

3. Recipient decrypts the public key message to retrieve
symmetric key

Padding is required to provide better security if the
symmetric key is relatively short.

KEMs are designed to simplify the process by generat-
ing a random element in the finite group underlying the
public key system and deriving a symmetric key by hash-
ing this element and eliminating the need for padding.

Two peers can agree on the secret value if the first peer
can send the secret in an encrypted form and the second
one can decrypt and use it. KEM enables that flow by
three algorithms:

• Key generation algorithm: KeyGen() -> (pk, sk)

• Encapsulatiton algorithm: Encaps(pk) -> (ct, ss)

• Decapsultion algorithm: Decaps(sk, ct) -> ss

where pk stands for the private key, sk represents the
secret key, ct is a ciphertext, and ss stands for shared
secret.

The first algorithm generates a public key and a private
key, called a keypair. The second algorithm, encapsula-
tion, takes a public key as an input and outputs a shared
secret value and a ciphertext of this secret value. The
last, decapsulation, takes the ciphertext and the private
key as input and outputs the shared secret value.

KEM can be considered similar to Public Key Encryp-
tion (PKE) because both use keypairs - public and private
keys. However, in the case of PKE, one peer encrypts a
message using the public key and decrypts the message
using the private key. When KEM is used, one peer uses
the public key to create an encapsulation, and the second
one decrypts this encapsulation with the private key.

Figure 1: TLS handshake in Key Encapsulation Mecha-
nisms



Shor’s algorithm
In 1994, Peter Shor - a scientist working for Bell Labs,
created a polynomial time algorithm for factoring large
numbers of a quantum computer. The algorithm is consid-
ered crucial from the view of cryptography because most
cryptographic systems rely on the difficulty of factoring
large numbers. If an efficient method for factoring large
numbers was found, most current encryption systems
would be seriously compromised.

It has yet to be proven that factoring of large num-
bers can be achieved on a classical computer in poly-
nomial time. The fastest, widely known algorithm for
factoring a large number n runs in O(ec(logn)

1
3 ∗(loglogn)

2
3 ),

or expotential time. Contrary to quantum comput-
ers, where the Shor’s algorithm runs in O((logn)2 ∗
loglogn) and must continue on a classical computer
with O(logn) steps of post-processing. It means that
the quantum computer is capable of finding the prime
factors of an integer in a polynomial time (Sho95;
Hay15).

Shor’s algorithm has the potential to break algorithms
that are pivotal for key exchange in Transport Layer
Security (TLS):
• The RSA scheme
• The Finite Field Diffie-Hellman key exchange
• The Elliptic Curve Diffie-Hellman key exchange

Post Quantum Cryptography
Quantum computers will be capable of solving mathe-
matical problems that are difficult or impossible to solve
for traditional computers. If quantum computers are
built, they will bring a possibility to break many of
the public-key cryptosystems that are currently used in
security (BL17). That is why the first steps in post-
quantum cryptography (also called quantum-resistant
cryptography) have been issued. The primary purpose of
post-quantum cryptography is to prepare cryptographic
methods that are secure against quantum and classical
computers attacks and can be easily incorporated into
existing communication protocols (CPS19).

The National Institute of Standards and Technol-
ogy (NIST) initiated a process to standardize quantum-
resistant public-key cryptographic algorithms in 2017.

In July 2022 NIST selected Crystals Kyber as a Public-
key Encryption and Key-establishment algorithm and
CRYSTALS-DILITHIUM, SPHINCS+ and FALCON for
Digital Signature Algorithms.

Learning with Error Problem
Learning with Errors is a mathematical problem used in
cryptography to create secure encryption algorithms.

The main idea is to have secret information presented
as a set of equations with errors, so the shared secret
is hidden behind additional noise that cannot be easily
solved from the mathematical point of view.

At first, a secret key value s and additional value e
are created. Subsequently, a number of values A[] are

selected and following equation shall be solved:

B[] = A[]× s+ e (1)

Values of A[] and B [] indicates the public key. If s is
a single value, then both A and B are one-dimensional
matrices. However, if s is a one-dimensional matrix, then
A is a two-dimensional matrix, and B is one-dimensional
matrix. The difficulty is to solve equation 1, having only
A and B - the public key.

Steal now, decrypt later

Security experts warn there is a risk of storing encrypted
data for the future - when quantum computers will
achieve a maturity level capable of cracking currently
used algorithms. Advanced threat actors may already
steal the data and try to decrypt it once possible.

The potential scale of information disclosure will be
enormous, posing a significant threat to everyone. The
technique to “steal now, decrypt later” brings a signif-
icant risk of information leaks both in businesses and
governments.

In July 2022, The US Cybersecurity and Infrastructure
Security Agency shared a roadmap that the organization
should follow in cooperation with NIST to prepare for a
transition.

Most post-quantum algorithms are relatively new, so
the level of understanding of their usage has yet to be
studied as profoundly as the traditional approach like
RSA or elliptic curve Diffie-Hellman. That is why the
security community needs more confidence in their secu-
rity.

Additionally, even if the post-quantum algorithms are
officially defined, some users will not be eager to use them
immediately. In general, updating cryptographic algo-
rithms is a time-consuming process for most organizations
that need to modify a significant amount of hardware
and software. Transition in network protocols consists
of several steps. Firstly, the protocol must be examined
for any constraints that may influence adding new algo-
rithms with entirely new characteristics. Next, there is a
need to prepare an efficient method for integration into
a protocol. Finally, the design must provide backward
compatibility with not upgraded endpoints (CPS19).

On the other hand, some users may want to accelerate
the acquisition because of the ’steal now, decrypt later’
danger. The availability of quantum computers may be a
cryptographic breakthrough and pose the risk of data se-
curity where handshakes and encrypted communications
were previously recorded.

Hybrid keys are a response to the needs of both groups.
Combining existing encryption methods with quantum-
resistant algorithms protects current traffic from future
attacks and provides a stable, well-known security level.
The challenge is hybrid mode includes an additional fac-
tor that was not considered in previous cryptographic
transitions: the use of two cryptographic algorithms si-
multaneously.



Kyber overview
Kyber is an IND-CCA2-secure KEM (BKS19). The
security of the Kyber is based on the difficulty of
solving the Learning with Errors (LWE) problem over
module lattices. Kyber-512 is considered to provide a
security level roughly equivalent to AES-128, Kyber-
768 is considered to provide a security level roughly
equivalent to AES-192, and Kyber-1024 is considered
to provide a security level roughly equivalent to AES-256.

Version PR size PK size CT size

Kyber-512 1632 800 768
Kyber-768 2400 1184 1088
Kyber-1024 3168 1568 1568

where PR size stands for Private Key size, PK
size stands for Private Key size, and CT size stands for
Ciphertext size.
Kyber aims to establish a shared secret between two
peers with solid resistance to future quantum computer
attacks.

Hybrid keys
This chapter discusses the increasing necessity for hy-
brid key exchange mechanisms within traditional inter-
net security protocols like TLS, primarily due to the
looming threat posed by quantum computing. While
secure against current classical computers, traditional
cryptographic methods are potentially at risk from quan-
tum technologies. To address this potential threat, a
hybrid approach combining standard algorithms, like
Elliptic Curve Diffie-Hellman (ECDH), with those resis-
tant to quantum attacks (e.g., Kyber, Bite Flipping Key
Exchange BIKE, Supersingular Isogeny Key Exchange
SIKE).

However, despite their theoretical security, these
quantum-resistant algorithms are relatively new and have
yet to be tested as thoroughly as traditional algorithms.
The hybrid model’s strength lies in its redundancy. It
combines traditional and PQ exchange results to provide
better security if one gets compromised.

The hybrid key exchange in TLS 1.2 modifies Clien-
tHello, ServerHello, ServerKeyExchange, and Clien-
tKeyExchange messages. Client Hello and ServerHello
messages are modified to indicate support for PQ key
exchange extensions. Once a hybrid key exchange is
negotiated, the server sends its ephemeral ECDH pub-
lic key, generated using the corresponding curve, and
ephemeral Kyber public key generated with Kyber pa-
rameters. Both keys with corresponding params are sent
in the ServerKeyExchange message.

In response, the client generates its own ECDHE key
pair on the same curve as the server’s ephemeral ECDH
key, computes a ciphertext value based on the Kyber
public key received in the ServerKeyExchange, and sends
them back in the ClientKeyExchange message.

Both sides perform an ECDH operation to generate
the resultant ECDHE shared secret Z as part of the
premaster secret. The server side performs the Kyber

decapsulation routine to compute the Kyber encapsulated
key K. Premaster secret is formed by concatenating both
keys as premaster_secret = Z || K.

The TLS 1.3 standardized two separate Hybrid Key
Exchange Methods. The first one uses ECDHE with
Kyber768 (KK23) and the second one combining X25519
with Kyber768 (BW23). Both Key Exchange Methods
were also added to the supported_groups extensions. For
hybrid key exchange in TLS 1.3 the key_exchange field in
the KeyShareEntry is the concatenation of key_exchange
fields for each hybrid algorithm.

Figure 2: Message flow in a hybrid TLS hand-
shake (CPS19)

s2n-tls

Amazon’s s2n-tls is an open-source implementation of
the TLS (Transport Layer Security) protocol available
under the terms of the Apache License 2.0. It focuses
on simplicity and security and aims to be a more se-
cure alternative by reducing the potential attack surface
and making the code easier to review and maintain com-
pared to traditional TLS implementations. Compared to
OpenSSL, which contains around 70 000 lines of code to
support TLS, it implements it in significantly less (around
6 000) and undergoes external security evaluations and
penetration tests.

The key exchange scheme of s2n is based on combin-
ing exactly one traditional algorithm and one PQ. It
implements the hybrid specification from TLS 1.2 and
TLS 1.3 hybrid specification. It defines new cipher suites
where the key exchange mechanism is a hybrid of ECDHE
and post-quantum KEM. For example, ECDHE-KYBER-
RSA-AERS256-GCM-SHA384 is a hybrid cipher suite
with ECDHE for the classical component and Kyber for
the PQ component of the key exchange.



Results
The primary purpose of this paper was to measure and
compare the CPU load when traditional and hybrid key
exchanges in a TLS handshake are performed. The data
has been collected using s2n-tls, Amazon’s TLS imple-
mentation described in the previous section, and all oper-
ations were executed on Intel© Core™ Xeon(R) Platinum
8280 CPU @ 2.70GHz.

Methodology
In general, hybrid key exchange method has signifi-
cant impact on the ClientHello, the ServerHello, the
ServerKeyExchange, and the ClientKeyExchange mes-
sages presented on Figure 2.

An extension for the post-quantum key encapsulation
method enables the negotiation of specific PQ KEM
parameters during a handshake. The TLS client that
proposes PQ KEM cipher suite in its ClientHello message
shall include PQ extension. The TLS servers that imple-
ment PQ KEM cipher suite shall support this extension.
As a result, when the client uses PQ extension, the server
should only negotiate using a PQ KEM parameters once
the handshake is completed. This prevents unexpected
negotiation aborting when the client cannot deal with
the server’s PQ KEM key (CPS19).

The value examined in this research is the number of
CPU cycles spent on establishing the connection between
the client and the server. All results were collected using
a perf tool capable of measuring the performance counters
for Linux subsystems.

The s2n-tls provides two applications - s2nd and s2nc
- that show the usage of numerous s2n-tls APIs for the
server and the client sides accordingly.

The framework s2n-tls enables choosing the method of
key exchange. For the research described in this paper, a
hybrid key that consists of ECDHE and Kyber has been
compared to the traditional ECDHE method.

Furthermore, a flame graph is generated to visualize
the hierarchical data. The flame graph shows a trace of
distributed requests and depicts each service invocation
during execution with colored horizontal bars.

The tests for both method1 and method2 were repeated
ten times to increase the predictability and stability.

Results show that the CPU usage difference is rela-
tively small - 554059 cycles of the CPU. The CPU used
in this research is running at 2.70GHz frequency, so one
cycle takes around 0.37 nanoseconds. Considering the
time, the difference between post-quantum and tradi-
tional key exchange methods equals approximately 200
microseconds.

Compared to the traditional method, generated
flamegraphs visualize the complexity that hybrid key
exchange introduces to the source code.

For TLS handshake in s2n reference application, negoti-
ation consumes 10.345% of CPU usage for the traditional
ECDHE method and 16.129% of CPU usage for Kyber
and ECDHE. The record command was sampled at 100Hz,
and the number of samples equals 3 and 5, respectively.
Results are presented on Figure4 and Figure5.

Table 1: CPU load for hybrid and classical key exchange

ECDHE ECDHE & Kyber
No of CPU cycles 74863824 75678482

75382136 75645037
75139931 75810349
74766096 75639798
75163583 75695950
75017512 75622811
74860248 75371292
75352972 75698335
75335142 75532862
74812731 75539853

Average 75069418 75623477
Difference 554059 cycles

Figure 3: CPU load for hybrid and classical key exchange

Conclusions
Sensitive information, such as bank transfers and personal
data, is currently protected by public key encryption
techniques based on math problems. Sufficiently powerful
quantum computers can defeat these techniques.

The presented study investigated the implications of
substituting traditional key exchange methodologies with
a hybrid key exchange system on CPU workload. The
results of our study suggest a negligible increase in CPU
workload following this modification.

The comparison proves that the CRYSTALS-Kyber
algorithm, designed for general encryption purposes and
selected by NIST as a candidate for standardization
strongly relies on the device used as a client or server
and may not affect the CPU usage notably.

These findings comply with the conclusions of other
researchers regarding the potential impacts of incorpo-
rating Post-Quantum Cryptography (PQC) into modern
systems. It has also been proven that in some use cases,
the energy consumption for PQ implementation in TLS
1.3 can be equal to the traditional TLS (TDF+23).

This insight underscores the viability of post-quantum
cryptographic methods in contemporary communication
frameworks.
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Figure 4: Flamegraph for the s2n negotiation in a hybrid
TLS handshake

Figure 5: Flamegraph for the s2n negotiation in a tradi-
tional TLS handshake
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