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Abstract

Hardware offloading through Single Root I/O
Virtualization(SR-IOV) is one of the methods to acceler-
ate virtual networks, used by platforms such as OpenStack
and Kubernetes. These platforms provide network features,
such as routing, switching and encryption, through software
implementation by default. Hardware offloading can radically
eliminate overhead of network features implemented by
software. Thus, it is super fast and useful for performance-
sensitive applications. In spite of their usefulness, currently
they can only offload Linux network functions on physical
machines and cannot be used for Linux network functions on
virtual machines (VMs). Thus, offloading virtual networks for
containers running on VMs is not possible although there are
cases where deploying containers to VMs rather than physical
machines is preferred for high flexibility.
We aim to achieve offloading Linux networks on VMs to SR-
IOV physical NICs. The reason why Linux networks on VMs
cannot be offloaded is that network construction software for
SR-IOV offload (e.g. SR-IOV CNI plug-in) cannot access PFs
from within VMs. It is common that VFs are assigned to VMs
when Linux networks on physical machines for VMs are of-
floaded by SR-IOV with PCI device assignment. Thus, when
we deploy containers to virtual machines, the network con-
struction software in the guest OS only can access VFs, not
PFs. There are two existing solutions to resolve this prob-
lem, but they have drawbacks. One lacks scalability (one VM
per PF) and also introduces security concerns and the other in-
creases complexity in each network construction software.
We propose a solution which involves emulating PFs that have
SR-IOV feature while offloading data plane to hardware. With
this, it is possible to offload Linux network functions on VMs
with high scalability of emulated PFs, enhanced security by not
giving VMs full NIC hardware control, and minimum increase
of complexity in network construction software. In order to
accelerate data plane with this solution, we propose utilizing
vDPA. Our PoC implementation employs an L2 switching fea-
ture in the SR-IOV legacy mode. We measured throughput
and latency of container networks on VMs with our PoC. The
results were several times better compared to when not using
SR-IOV.
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Introduction
Hardware offloading is one of the methods to accelerate vir-
tual networks, used by platforms such as OpenStack and Ku-
bernetes. These platforms provide network features, such as
routing, switching and encryption, through software imple-
mentation by default. These cause overhead on emulation
layer and might become bottleneck to accelerate virtual net-
works [2] [3]. Examples of such overhead include CPU cache
miss hits due to a network feature using hash tables and sys-
tem calls when features are implemented in user space. Hard-
ware offloading can radically eliminate overhead of network
features implemented by software. Thus, it is super fast and
useful for performance-sensitive applications.

The network construction software on platforms such as
OpenStack and Kubernetes can offload network processing
with Single Root I/O Virtualization (SR-IOV) [10], which is
one of hardware offload technologies. SR-IOV enables a sin-
gle PCI function (physical function, PF) to create multiple
virtual PCI functions, called virtual functions (VFs). This
feature is not only for networking acceleration, but we focus
on network usage, where the PCI devices are NICs. Com-
mon NICs with the SR-IOV feature have embedded switches
within themselves. Communication between VFs and PFs
or with external networks is forwarded by the embedded
switches. Also, depending on functionality of the NIC, it
is possible to provide various network functions such as a
firewall on the NIC. The platforms for VMs and containers
can significantly improve performance by configuring these
switching and network functions as it can reduce overhead by
eliminating the need for software-based network function im-
plementation. In order to use SR-IOV, administrators or net-
work construction software needs to create VFs and config-
ure switches in NICs by accessing PFs. One example of such
network construction software is CNI-compliant [8] plugins,
which are used to construct virtual network on Kubernetes.
We assume that administrators create VFs and CNI plugins
assign VFs to containers. Embedded switches may be con-
figured by either of administrators or CNI plugins, but con-
figuration by administrators is significantly limited and CNI
plugins needs to configure embedded switches for common
usage such as dynamic network configuration on Kubernetes
platforms. SR-IOV CNI plugin, OVN CNI plugin and Antrea
CNI plugin are examples of plugins that can use SR-IOV, all
of which behave as assumed above and configure embedded



Figure 1: Deploying to physical machine

switches themselves.
In spite of their usefulness, currently they can only offload

Linux network functions on physical machines and cannot be
used for Linux network functions on virtual machines (VMs).
Thus, offloading virtual networks for containers running on
VMs is not possible although there are cases where deploying
containers to VMs rather than physical machines is preferred
for high flexibility. The same is true for nested VMs.

Problem of Offload on VMs
As described in the previous section, network construction
software needs to access PFs for common SR-IOV offload
use cases. The reason why Linux networks on VMs cannot
be offloaded is that network construction software for SR-
IOV offload (e.g. SR-IOV CNI plug-in) cannot access PFs
from within VMs. Let us now describe why the software
running on VMs cannot access PFs. Here, we presume that
Linux networks on physical machines for VMs are offloaded
by ”PCI device assignment” of VFs to avoid overhead caused
by software. PCI device assignment is a technology to allow
guests to directly utilize physical PCI devices. It is common
that VFs are assigned to VMs when Linux networks on phys-
ical machines for VMs are offloaded by SR-IOV. Thus, when
we deploy containers to virtual machines as shown in figure
2, the network construction software in the guest OS only can
access VFs, not PFs, in contrast to when deploying containers
to physical machines as shown in figure 1 where the software
can recognize and access PFs. Network construction software
for SR-IOV does not work on VMs due to lack of access to
PFs; consequently, virtual networks running on VMs cannot
be offloaded by SR-IOV.

There are two existing solutions to resolve this problem:

1. Assign PFs to VMs and allow the guest to access PFs

2. Assign multiple VFs to VMs

However, both of these two methods have drawbacks.

Assign PFs to VMs and allow the guest to access PFs If
we allow a VM to access a PF by PCI device assignment,
the VM can directly control the physical device, which in-
creases attack vectors from the VM. And, this method also
lacks scalability because the VM exclusively use the specific
NIC. Therefore, we should avoid direct access to PFs from
VMs.

Figure 2: Deploying to virtual machine

Assign multiple VFs to VMs This method involves assign-
ing multiple VFs on physical machines to VMs and using
some of them for containers running on VMs instead of cre-
ating VFs on VMs. In other words, this method delegates
creation of VFs to hypervisors of VMs.

This requires VM administrators to have privilege in hy-
pervisors or additional means to make hypervisors create and
assign VFs to hot-plug them. Moreover, it is even more dif-
ficult to delegate configuration of embedded switches to hy-
pervisors because in general it is network construction soft-
ware that configures the switches. For the sake of delega-
tion, the software must have implementation to collaborate
with hypervisors, which increases complexity in each soft-
ware. Also, we have not found any such software so far. It
is possible that administrators configure switches in place of
network construction software, but in such a case only limited
networking functions, such as static network configuration,
are available on VMs because even simple dynamic configu-
ration is too complicated for administrators. Another exam-
ple of switch features difficult for administrators is SR-IOV
switchdev mode, with which we can use advanced switch fea-
tures such as a firewall. The reason for the difficulty is that
administrators are required to do more complicated handling
than SR-IOV legacy (non-switchdev) mode. Therefore, this
method is not a sufficient solution.

Consequently, we aim to achieve offloading Linux net-
works on VMs to SR-IOV physical NICs on the environment
where guests cannot access or control PFs in order to assign
VFs to VMs and to configure switches with more common
configuration than static network.

Approach: Virtual PF
We propose a solution which involves emulating PFs that
have SR-IOV feature. (This is called ”virtual PF”.) Hyper-
visors handle hardware control requests from VMs through
virtual PFs to configure hardware. This enables creation of
new VFs, called ”virtual VFs”, and allows SR-IOV to be con-
trolled within VMs. The number of virtual PFs is not lim-
ited by PFs of NICs, so it scales well. Also, hypervisors
can avoid giving VMs control of the entire NIC hardware be-
cause virtual PFs are emulated devices, leading to less secu-
rity concerns. Another advantage of virtual PFs is that SR-
IOV can be used in the same way as on physical machines.



Administrators on VMs can create VFs through virtual PFs
in the same manner as normal PFs. Since network construc-
tion software does not need to communicate with hypervi-
sors in this approach, existing network construction software
works without adding special implementation for VMs. As a
result, we can avoid the increase of complexity in each net-
work construction software. Dynamic network configuration
including SR-IOV switchdev mode is feasible because ex-
isting network construction software works in VMs and we
do not need to rely on administrators to configure embedded
switches in physical NICs. Also, in order to accelerate data
plane with this solution, we propose utilizing virtio data path
acceleration (vDPA) device [9], a technology added to Linux
in 2020. vDPA is realized by a type of device (called vDPA
device) whose datapath conforms to the virtio specification
but whose control path is vendor specific. vDPA devices only
allow data plane to be directly accessed from VMs and keep
control plane emulated. This technology is originally used
in live migration, etc. Figure 3 and 4 show control and data
plane in this approach.

Another possible approach is combining SR-IOV and
lightweight functions or devices that are non-compliant with
PCI specification, such as SubFunctions (SFs) [7] and scal-
able IOV [6]. If we can create lightweight functions or de-
vices through VFs assigned to VMs, just using such features
could solve the problem. However, this is not a generic solu-
tion because such features are highly vendor-dependent, and
we have not found any NICs with such features so far. This
may be worth revisiting once NICs with such features become
available in the future.

Implementation Details
As we have already explained in the previous section, we em-
ulate PFs that have SR-IOV feature. We describe the imple-
mentation added to qemu and Linux kernel for this emulation.

The emulated device to be added the SR-IOV feature to is
virtio-net because we utilized vDPA devices as backend de-
vices and they require virtio-net devices. When administra-
tors on VMs issue requests to add VFs, e.g., writing a number
to sysfs sriov numvfs file on Linux, Qemu

• creates emulated virtio-net devices for VFs,

• exposes them as PCI virtual functions to VMs, and

• assigns backend vDPA devices to them.

Also, because virtio-net driver did not have basic functions
to get SR-IOV information, we added functions which we
consider is minimum required to Linux kernel used in VMs.
Specifically, two functions were added: one to get the number
of VFs and another to get the configuration of VFs.

This approach needs vDPA devices as backend devices,
while existing SR-IOV implementation, which is igb SR-IOV
[1] whose embedded switch feature is emulated in Qemu,
does not need backend devices. Since we do not hard-code
vDPA devices as backend devices, backend devices are plug-
gable. So, it makes this approach useful for purposes other
than acceleration. For example, using tap devices as backend
devices is helpful to test and debug software using the SR-
IOV feature on VMs, as shown in Figure 5. And it allows us

to try virtio-net SR-IOV when we do not have physical NICs
with vDPA feature.

We delegated configuration of embedded switch of emu-
lated SR-IOV to management layer, not Qemu. The embed-
ded switch of emulated SR-IOV may be the embedded switch
of physical SR-IOV NICs in case of vDPA or Linux bridge for
tap devices. Examples of what takes role of the management
layer include libvirt and administrators.

This time we only implemented SR-IOV legacy mode. The
solution for SR-IOV switchdev mode in VMs is discussed in
the section of Future works.

Verification of Operation and Performance
We verified operation and performance of our PoC implemen-
tation [5]. The purpose of this verification is to confirm that
network construction software correctly works and that per-
formance is improved by vDPA. We tested the legacy SR-IOV
implementation stated above.

Target Environments
We performed functional and performance verification in two
environments. One is an environment to measure baseline
performance where virtual networks for containers in VMs
cannot be offloaded. This environment is called ”Without
Virtual PF”. The other is an environment with our proposed
method, ”virtual PF”, where we can offload virtual networks
for containers in VMs. This environment is called ”With Vir-
tual PF”. Hardware and software used to build the two envi-
ronments is shown in Table 1.

The followings are conditions common to both environ-
ments:
• Utilize two virtual machines as Kubernetes nodes; one is

master and the other is worker.
• Start containers as Kubernetes pods and verify communi-

cation between containers and physical machines different
from hypervisors of Kubernetes nodes.

• Utilize legacy SR-IOV VFs in physical NICs on hypervi-
sors of Kubernetes nodes.

• The netperf client process (netperf) and server process (net-
server) run in a pod on the worker node.
Any acceleration, including the proposed method and the

technologies to accelerate virtual network on VM, is only ap-
plied to the worker node because netperf processes for com-
munication of this verification runs in the worker node.

This verification was performed with a single flow. We
stopped the operation of irqbalance service on the hypervi-
sor to ensure that the cores generating interrupts were not
changed during the verification.

The performance verification metrics are throughput and
latency. The latency is the round trip time between the con-
tainer and the external physical machine.

Setup: Without Virtual PF
Figure 6 shows the overview of this environment. In this envi-
ronment, we utilize CNI plugin Calico for data plane. There-
fore, the followings included in Kubernetes virtual network
are software implementation:



Figure 3: Control Plane of Approach Figure 4: Data Plane of Approach Figure 5: For Testing

Table 1: The hardware and software used to build the environment
Server model HPE ProLiant DL360 Gen9

CPU Intel Xeon CPU E5-2600 @2.3GHz (CPU x2, 10 cores/CPU)
NIC Mellanox Technologies MT27710 family ConnectX-6 Dx (100G)

host/guest OS Rocky Linux 9.2
host/guest kernel 6.5.7

qemu version Qemu 8.1.1 (w/ virtio-net legacy SR-IOV support PoC patch applied)
Kubernetes version 1.27.6

CNI plugin Calico v3.26.3
SR-IOV Device Plugin 2.7.0

netperf 2.7

Figure 6: Without Virtual PF Figure 7: With Virtual PF

• L4LB/NAT: iptables implementation of kube-proxy

• Routing: CNI plugin Calico

• Firewall: NetworkPolicy function of CNI plugin Calico

We accelerated virtual network between VMs and external
physical machines with PCI device assignment.

Setup: With Virtual PF
Figure 7 shows the overview of this environments. We ap-
plied a patch [5] to qemu to enable virtual PF and utilized
the patched qemu in this environment. We used SR-IOV
CNI plugin for data plane in contrast to ”without virtual PF”
which uses CNI plugin Calico. Because SR-IOV CNI plugin
only manages virtual VFs assigned to pods, following plugins
were required:

• SR-IOV Network Device plugin: discover and advertise
networking resources

• CNI meta plugin: retrieve allocated network device infor-
mation of a Pod and give SR-IOV CNI plugin

In this verification, we used Multus CNI plugin as the CNI
meta plugin. Multus is a CNI plugin which enables multiple
network interfaces to be attached to a Kubernetes pod. Since
SR-IOV CNI plugin is used by Multus to attach an additional
interface, Multus requires another CNI plugin called ”master
CNI plugin” to create the primary interface which is used for
Kubernetes cluster network. We used Calico CNI plugin as
the master CNI plugin.

Operation
Verification method We checked the followings in the en-
vironment with Virtual PF:

1. New virtio-net devices (virtual VFs) are created and recog-
nized by kernel when an administrator in a VM writes the
number of VFs to sysfs sriov numvfs file of virtual PFs on
Linux.

2. Network construction software correctly works.

(a) SR-IOV network device plugin recognizes virtual VFs
as VF devices.

(b) SR-IOV CNI plugin can assign virtual VFs to containers
on the worker node.

(c) The external physical machine and containers on the
worker node can communicate with each other.

Result We checked there was no problem with 1, 2(a), 2(c).
2(b) did not work without changes to SR-IOV CNI plugin
mainly because virtio-net is subtly different from other NICs.



Table 2: Performance comparison on a single core [Mbps]

transmission reception
without Virtual PF 1635 968.1

with Virtual PF 1919.1 5421.9

The difference resides in sysfs, the interface to get informa-
tion of relation between VFs and PFs. Nevertheless, since
the basic mechanism using Netlink to configure the embed-
ded switch is kept unchanged, we consider that these changes
are slight and increase little complexity in CNI plugins. Let
us now concretely describe the difference and these changes
added to software.

Unlike other network devices, virtio-net-pci devices are
configured such that PCI devices themselves are not directly
recognized as network devices. Instead, virtio-net-pci devices
have virtio buses under themselves. Because of this differ-
ence in the hardware structure, the sysfs directory structure
of the Linux kernel is different from other network devices,
and SR-IOV CNI plugin was not compatible with this. So,
we added modifications to SR-IOV CNI plugin used in this
environment to accommodate this.

There was another pitfall in the VLAN setting of virtio
devices. Even though we do not configure VLAN, SR-IOV
CNI plugin automatically attempts to configure VLAN. This
caused an EOPNOTSUPP error because virtio-net driver in
Linux kernel does not have a function to handle network at-
tribute IFLA VF VLAN which is used for VLAN configura-
tion. We modified SR-IOV CNI plugin to ignore EOPNOT-
SUPP as a workaround. Notice that this problem will disap-
pear once the VLAN feature is added to virtio-net driver in
guest kernel in the future.

Performance: Throughput
Verification method We conducted a performance valida-
tion in each target environments. This validation involved
60-second UDP bulk transfer between a container and an ex-
ternal physical machine. We performed the measurements
five times and the average values of these are the validation
results of both transmission and reception throughput.

We conducted UDP bulk transfers from the container to the
external machine for validation of transmission performance,
and conducted it from the external machine to the container
for validation of reception performance.

Regarding transmission performance, we measured it with-
out applying bandwidth control because we confirmed that
the Linux kernel correctly applied backpressure from the NIC
to the socket. On the other hand, for reception performance,
we gradually increased the bandwidth limit on the sender side
with TC HTB filter to measure the maximum throughput to
determine the upper limit performance.

Result The results are shown in Table 2. In terms of trans-
mission performance in ”With Virtual PF”, we observed a
performance increase of about 1.2 times compared to the per-
formance in ”Without Virtual PF”, and the reception perfor-
mance improved about 6 times than ”Without Virtual PF”,
indicating a significant performance improvement.

Table 3: Performance comparison on a single core [µsec]

latency
without Virtual PF 320.2

with Virtual PF 221.8

The transmission result of 1.2 times improvement was
lower than we expected. Since we assigned emulation work
of guest interrupts to the same CPU as the vCPU was run-
ning on in this test, we consider that overhead of the interrupt
emulation caused the lower performance. In fact, when we
assigned the emulation work to a different CPU, the perfor-
mance drastically improved.

Performance: Latency
Verification method In both environments, we measured
latency by conducting multiple Request/Response communi-
cations over UDP for 60 seconds between a container and
an external machine. We conducted the measurements five
times, and the average of 99th percentile latencies was used
as the validation result for latency.

Result The results are shown in Table 3. Compared to the
latency without Virtual PF, the one with Virtual PF has de-
creased by 100 µsec.

Future works
We are considering a potential solution for realizing
switchdev mode on VMs. For switchdev mode, tc flower fil-
ters in VMs must be offloaded. In other words, a flow-based
switch needs to be emulated in hypervisors. Also, in order to
accelerate virtual networks with vDPA, the flow-based switch
must be offloaded to the embedded switch in physical NICs.
We consider Open vSwitch (OVS) [4] fits emulation of the
flow-based switch because switchdev mode was originally in-
troduced for offloading OVS.

We illustrate how to realize switchdev mode SR-IOV on
VMs with OVS. OVS is able to have multiple virtual bridges.
We can use one of these bridges as an emulated flow-based
switch for a VM. Qemu and management layer configure
the virtual bridge by translating offloaded TC flower to OVS
commands corresponding to ovs-ofctl. OVS has a feature to
offload virtual bridges to physical NICs, with which we can
offload the virtual bridge for the emulated flow-based switch
to offload vDPA datapath as shown in Figure 8.

Conclusion
We proposed ”Virtual PF,” as a solution to offload Linux net-
work on VMs with SR-IOV. This approach emulates PFs with
SR-IOV features, creates ”virtual VFs,” and allows VMs to
control SR-IOV. Benefits include high virtual PF scalability,
enhanced security by not giving VMs full NIC hardware con-
trol, and same SR-IOV usage as on physical machines. In
order to accelerate data plane with this solution, we propose
utilizing vDPA.

In this solution, when administrators on VMs issue
requests to add VFs, e.g., writing a number to sysfs



Figure 8: Concept for Switchdev mode

sriov numvfs file on Linux, Qemu creates emulated virtio-
net devices for VFs, exposes them as PCI virtual functions to
VMs, and assigns backend vDPA devices to them. Since we
do not hard-code vDPA devices as backend devices, backend
devices are pluggable. Thus, it makes this approach useful
for purposes other than acceleration. This time we only im-
plemented SR-IOV legacy mode.

We verified operation and performance of our PoC imple-
mentation. In the verification of operation, there was almost
no problem although we needed to add slight changes, which
involve sysfs for VF and PF relation information, to SR-IOV
CNI plugin. However, the basic mechanism to configure em-
ulated switches remains unchanged, minimizing impact on
CNI plugins. Also, we observed performance improvement
with transmission throughput by 1.2 times and reception by
6 times and latency reduced by 100 µsec. The transmission
result was lower than expected due to the overhead of emula-
tion work of guest interrupts.

In conclusion, the proposed approach shows significant
performance improvements when applied to container plat-
forms deployed on VMs. We are considering potential solu-
tion with OVS for realization of switchdev mode on VMs.
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