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Introduction

Unleashing SR-IOV Offload on Virtual Machines
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Overhead of Virtual Network

NW functions in virtual NW of VMs/containers implemented in software

• Network functions: routing, switching or encryption etc.

• On platforms like OpenStack or Kubernetes etc.

• Software implementation causes the occurrence of overheads on emulation layer.
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Hardware offloading

Can drastically reduce overhead of software implementation

• OpenStack and Kubernetes especially can use Single Root I/O Virtualization 

(SR-IOV) for hardware offloading.
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Offloading on VMs

Offloading Linux network on VMs to SR-IOV physical NICs

• Network offloading on VMs isn’t possible

• Available only on physical machine

• Offloading of container network on VMs is not supported

• Demand of deploying containers to VMs for high flexibility

• The same is true for nested VMs
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Why can’t networking on VMs be offloaded?

NW construction software can’t access SR-IOV PF

• Network construction software configures networks by accessing SR-IOV PF

• e.g. SR-IOV CNI plug-in (used on OpenStack or Kubernetes)
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Can’t solve this by existing function ?

Following methods aren’t enough to solve this issue

• Passthrough host’s VF to VM ?

• Can’t control SR-IOV within guest (can’t use SR-IOV CNI etc.)

• Hard to add feature of switchdev SR-IOV on guest

› Can’t create rep device for switchdev mode without accessing to PF within VM

• Assign PFs to VM and allow VMs to exclusively access PFs ?

• Lack scalability and introduce security concern
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Approach

Unleashing SR-IOV Offload on Virtual Machines
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Proposed Approach: Virtual PF

Emulates PFs that have SR-IOV feature (=“virtual PF”)

• Virtual PFs (implemented mainly in Qemu)

• Allow host’s SR-IOV to be controlled within the guest (SR-IOV emulation)

• Handle hardware control requests from the guest through the virtual PF

› To configure the hardware and create new VFs (=”virtual VF”)
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SR-IOV emulation’s advantage:

• Same way as the way on physical machine

• Application works same as on physical machine

› Available to use existing network construction software (e.g. SR-IOV CNI plug-in)

• Create rep device for switchdev mode (in the future)

• Scalability and less security concern

• Not directly access to PFs

• Scalability: Needless to assign one PF per VM

• Less security concern: guests can’t control entire NIC hardware

SR-IOV emulation
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How to accelerate NW by Virtual PF

Utilize virtio data acceleration (vDPA) for backend

• offload only data plane without offloading control plane
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Useful for purpose other than acceleration

Replacing backend for other use cases 

• Even utilize tap devices to test SR-IOV for guest OS as backend is pluggable
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Future works: switchdev SR-IOV in guest

Potential solution for guest switchdev mode with OVS

• Qemu (+ libvirt etc.) handle

tc configuration from guest

• Host’s OVS configures 

offloading

• Bridge in OVS

• For offloading guest’s switch
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Functional/Performance Verification

Unleashing SR-IOV Offload on Virtual Machines
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Purpose of Verification

Confirm the followings:

• performance is improved by vDPA

• SR-IOV CNI plug-in works
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Verification Target’s setup

Server model HPE ProLiant DL360 Gen9

CPU Intel Xeon CPU E5-2600 @2.3GHz

NIC Mellanox Technologies MT27710 family ConnectX-6 Dx (100G)

Host/Guest OS Rocky Linux 9.2

Host/Guest kernel 6.5.7

Qemu version Qemu 8.1.1 (w/ virtio-net legacy SR-IOV support PoC patch applied)

Kubernetes version 1.27.6

CNI plugin Calico v3.26.3

SR-IOV CNI plugin 2.7.0  (*)

netperf 2.7
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(*) with slight modification (caused by current virtio limitation)

structure of virtio’s sysfs is different from other common devices because virtio bus is under virtio PCI device



Target Environments

Functional/performance verification in the following 2 environments

• Using legacy SR-IOV VFs as backend and netperf as measurement tool
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Verification metrics and section

Verification metrics are throughput and latency

• Measured between application on guest’s container and application on external 

machine
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Throughput

• Measuring method

• Average throughput of UDP bulk transfer using netperf

• Results

• Transmission: x 1.2 (1635 Mbps → 1919.1 Mbps)

• Reception: x 6 (968.1 Mbps → 5421.9 Mbps)
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Latency

• Measuring method

• 99%ile of round trip time: UDP request/response using netperf

• Results

• - 100 μsec (320 μsec → 221 μsec)
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Summary
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Summary

• Background

• There are cases: deploying containers to VMs for high flexibility

• Achieve offloading Linux network on VMs to SR-IOV physical NICs

• Proposed method: Virtual PF

• Application works same as on physical machine using SR-IOV emulation

• Able to offload to NIC container’s virtual NW using vDPA

• Result

• Throughput (Tx): x 1.2 (1600 Mbps → 2800 Mbps)

• Throughput (Rx): x 6 (930 Mbps → 5500 Mbps)

• Latency: - 100 μsec (320 μsec → 221 μsec)
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