
Netdev 0x17, Vancouver, Canada:

Unleashing SR-IOV Offload on

Virtual Machines

Yui Washizu

NTT Open Source Software Center

yui.washidu@gmail.com

Agenda

1. Introduction

2. Approach

3. Functional/Performance Verification

4. Summary

2

Introduction

Unleashing SR-IOV Offload on Virtual Machines

3

Overhead of Virtual Network

NW functions in virtual NW of VMs/containers implemented in software

• Network functions: routing, switching or encryption etc.

• On platforms like OpenStack or Kubernetes etc.

• Software implementation causes the occurrence of overheads on emulation layer.

4

(k8s etc.)

5G/6G

VM VM

ContainerLB (proxy)

VM

Container

✘software proxy

✘ routing/switching

L7LB

✘ software LB

Overhead ↑↑

user（PC, IoT terminal etc.）

etc...

✘ firewall

✘ encryption

✘ bottlenecks: NW features implemented in SW

Hardware offloading

Can drastically reduce overhead of software implementation

• OpenStack and Kubernetes especially can use Single Root I/O Virtualization

(SR-IOV) for hardware offloading.

5

container

SmartNIC

PF

Physical machine

(host)

VF

1 physical NIC

Multiple NICs from the OS

• enables a single PCIe function

to present multiple separate PCI function

• called virtual functions (VFs)

What is SR-IOV ?

Offloading on VMs

Offloading Linux network on VMs to SR-IOV physical NICs

• Network offloading on VMs isn’t possible

• Available only on physical machine

• Offloading of container network on VMs is not supported

• Demand of deploying containers to VMs for high flexibility

• The same is true for nested VMs

6

Why can’t networking on VMs be offloaded?

NW construction software can’t access SR-IOV PF

• Network construction software configures networks by accessing SR-IOV PF

• e.g. SR-IOV CNI plug-in (used on OpenStack or Kubernetes)

7

Deploying to physical machine Deploying to virtual machine

container

SmartNIC

PF

Physical server
(host)

VF

container

SmartNIC

PF

Physical server
(host)

VF VF’s VF ?

VM (container host)

Network

construction

software

Can access PF and

configure NW

Network

construction

software

Can’t access PF and

configure NW

Can’t solve this by existing function ?

Following methods aren’t enough to solve this issue

• Passthrough host’s VF to VM ?

• Can’t control SR-IOV within guest (can’t use SR-IOV CNI etc.)

• Hard to add feature of switchdev SR-IOV on guest

› Can’t create rep device for switchdev mode without accessing to PF within VM

• Assign PFs to VM and allow VMs to exclusively access PFs ?

• Lack scalability and introduce security concern

8

Approach

Unleashing SR-IOV Offload on Virtual Machines

9

Proposed Approach: Virtual PF

Emulates PFs that have SR-IOV feature (=“virtual PF”)

• Virtual PFs (implemented mainly in Qemu)

• Allow host’s SR-IOV to be controlled within the guest (SR-IOV emulation)

• Handle hardware control requests from the guest through the virtual PF

› To configure the hardware and create new VFs (=”virtual VF”)

10

container

SmartNIC

PF

Physical server

(host)

Virtual PF Virtual VF

VM（container host）

Network

construction

software

Can access (virtual)PF

and configure

Virtual NW !

SR-IOV emulation’s advantage:

• Same way as the way on physical machine

• Application works same as on physical machine

› Available to use existing network construction software (e.g. SR-IOV CNI plug-in)

• Create rep device for switchdev mode (in the future)

• Scalability and less security concern

• Not directly access to PFs

• Scalability: Needless to assign one PF per VM

• Less security concern: guests can’t control entire NIC hardware

SR-IOV emulation

11

How to accelerate NW by Virtual PF

Utilize virtio data acceleration (vDPA) for backend

• offload only data plane without offloading control plane

12

Host
Guest

Virtual PF Virtual VF

Physical NIC

VF VF

offloaded L2SW
PF

Qemu vdpa

virtio-net

vdpa

virtio-net

Host
Guest

Virtual PF Virtual VF

Physical NIC

VF VF

offloaded L2SW
PF

Qemu

Control Plane Data Plane

with

feature of

Virtual PF

Useful for purpose other than acceleration

Replacing backend for other use cases

• Even utilize tap devices to test SR-IOV for guest OS as backend is pluggable

13

Host
Guest

Virtual PF Virtual VF

Physical NIC

VF VF

offloaded L2SW
PF

Qemu vdpa

virtio-net

vdpa

virtio-net

Host
Guest

Virtual PF Virtual VF

Physical NIC

tap tap

bridge
PF

Qemu

For acceleration For testing & debugging

vhost

virtio-net

vhost

virtio-net

Future works: switchdev SR-IOV in guest

Potential solution for guest switchdev mode with OVS

• Qemu (+ libvirt etc.) handle

tc configuration from guest

• Host’s OVS configures

offloading

• Bridge in OVS

• For offloading guest’s switch

14

Host

Guest

Virtual VF

Physical NIC

VF VF

offloaded L2SW

PF

Qemu vdpa

virtio-net

vdpa

virtio-net

Virtual PF rep

OVS
tc command

PF driver

rep

tc flower

bridge (for guest)

ovs-ofctl

add-flow

Offload configure

Functional/Performance Verification

Unleashing SR-IOV Offload on Virtual Machines

15

Purpose of Verification

Confirm the followings:

• performance is improved by vDPA

• SR-IOV CNI plug-in works

16

Verification Target’s setup

Server model HPE ProLiant DL360 Gen9

CPU Intel Xeon CPU E5-2600 @2.3GHz

NIC Mellanox Technologies MT27710 family ConnectX-6 Dx (100G)

Host/Guest OS Rocky Linux 9.2

Host/Guest kernel 6.5.7

Qemu version Qemu 8.1.1 (w/ virtio-net legacy SR-IOV support PoC patch applied)

Kubernetes version 1.27.6

CNI plugin Calico v3.26.3

SR-IOV CNI plugin 2.7.0 (*)

netperf 2.7

17

(*) with slight modification (caused by current virtio limitation)

structure of virtio’s sysfs is different from other common devices because virtio bus is under virtio PCI device

Target Environments

Functional/performance verification in the following 2 environments

• Using legacy SR-IOV VFs as backend and netperf as measurement tool

18

Without offload in VM
• Comparison target

• without using HW offload on guest

With offload in VM
• HW offload usage on guests

by SR-IOV CNI

host

guest container

Physical NIC

VF(legacy)

virtual VF

vDPA

Offloading with SR-IOV

host

host container

Physical NIC

virtio-net

PCI device allocation

Kubernetes NW through

software(*)

VF(legacy)

External machine External machine

(*) including firewall and NAT

Verification metrics and section

Verification metrics are throughput and latency

• Measured between application on guest’s container and application on external

machine

19

Without offload in VM With offload in VM

host

guest container

Physical NIC

VF

virtual VF

vDPA

Offloading with SR-IOV

host

host container

Physical NIC

virtio-net

PCI device allocation

Kubernetes NW through

software(*)

VF

External machine External machine

m
e
a
s
u

re
d

 s
e
c
tio

n

m
e
a
s
u

re
d

 s
e
c
tio

n

Throughput

• Measuring method

• Average throughput of UDP bulk transfer using netperf

• Results

• Transmission: x 1.2 (1635 Mbps → 1919.1 Mbps)

• Reception: x 6 (968.1 Mbps → 5421.9 Mbps)

20

1635
968.1

1919.1

5421.9

Transmission Reception

Result of single core [Mbps]without offload in VM

with offload in VM

Yx 1.2 Yx 6

Latency

• Measuring method

• 99%ile of round trip time: UDP request/response using netperf

• Results

• - 100 μsec (320 μsec → 221 μsec)

21

320.2

221.8

Latency

Result of single core [μsec]without offload in VM

with offload in VM

Y

- 100 μsec

Summary

22

Summary

• Background

• There are cases: deploying containers to VMs for high flexibility

• Achieve offloading Linux network on VMs to SR-IOV physical NICs

• Proposed method: Virtual PF

• Application works same as on physical machine using SR-IOV emulation

• Able to offload to NIC container’s virtual NW using vDPA

• Result

• Throughput (Tx): x 1.2 (1600 Mbps → 2800 Mbps)

• Throughput (Rx): x 6 (930 Mbps → 5500 Mbps)

• Latency: - 100 μsec (320 μsec → 221 μsec)

23

