

Netdev 0x17, Vancouver, Canada:

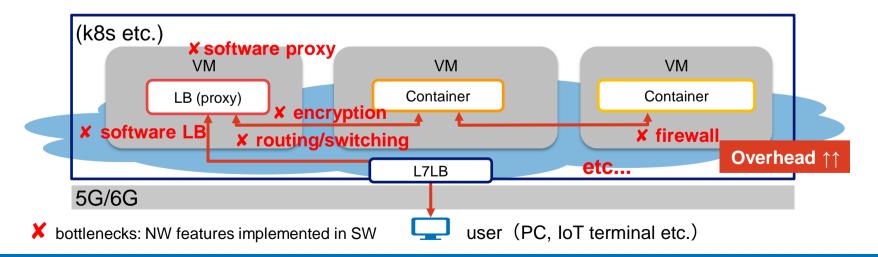
Unleashing SR-IOV Offload on Virtual Machines

Yui Washizu

NTT Open Source Software Center yui.washidu@gmail.com

- 1. Introduction
- 2. Approach
- 3. Functional/Performance Verification
- 4. Summary

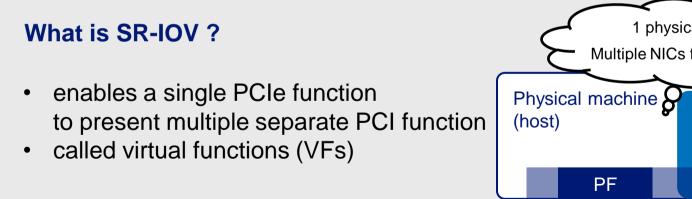
Introduction

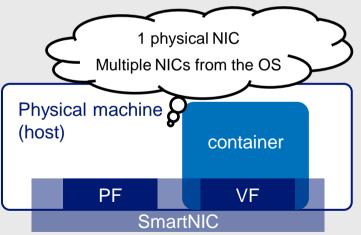

Unleashing SR-IOV Offload on Virtual Machines

Overhead of Virtual Network

NW functions in virtual NW of VMs/containers implemented in software

- Network functions: routing, switching or encryption etc.
 - On platforms like OpenStack or Kubernetes etc.
- Software implementation causes the occurrence of overheads on emulation layer.

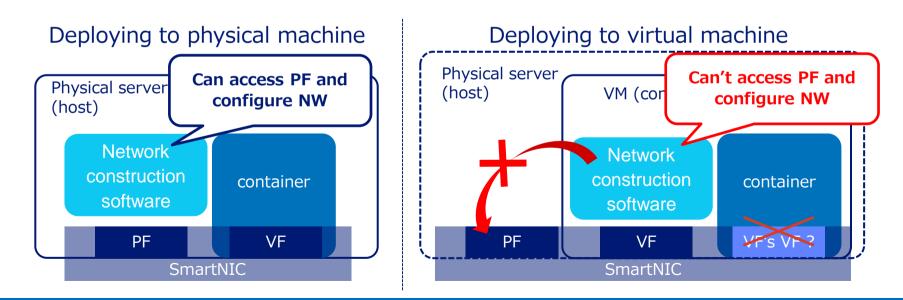



Hardware offloading

Can drastically reduce overhead of software implementation

 OpenStack and Kubernetes especially can use Single Root I/O Virtualization (SR-IOV) for hardware offloading.

Offloading on VMs


Offloading Linux network on VMs to SR-IOV physical NICs

- Network offloading on VMs isn't possible
 - Available only on physical machine
- Offloading of container network on VMs is not supported
 - Demand of deploying containers to VMs for high flexibility
- The same is true for nested VMs

Why can't networking on VMs be offloaded?

NW construction software can't access SR-IOV PF

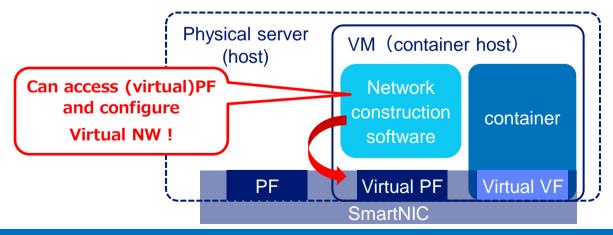
- Network construction software configures networks by accessing SR-IOV PF
 - e.g. SR-IOV CNI plug-in (used on OpenStack or Kubernetes)

Can't solve this by existing function ?

Following methods aren't enough to solve this issue

- Passthrough host's VF to VM ?
 - Can't control SR-IOV within guest (can't use SR-IOV CNI etc.)
 - Hard to add feature of switchdev SR-IOV on guest
 - > Can't create rep device for switchdev mode without accessing to PF within VM
- Assign PFs to VM and allow VMs to exclusively access PFs ?
 - Lack scalability and introduce security concern

Approach


Unleashing SR-IOV Offload on Virtual Machines

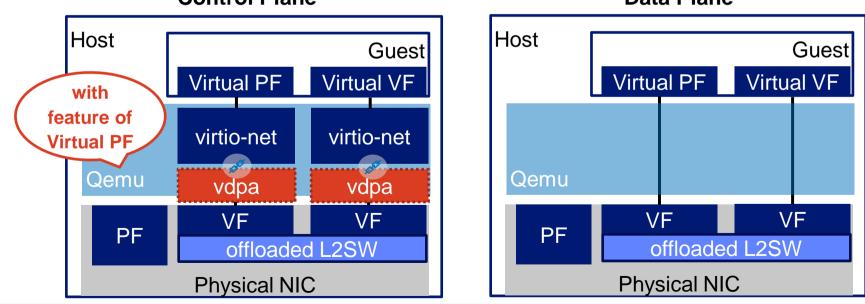
Proposed Approach: Virtual PF

Emulates PFs that have SR-IOV feature (="virtual PF")

- Virtual PFs (implemented mainly in Qemu)
 - Allow host's SR-IOV to be controlled within the guest (SR-IOV emulation)
 - Handle hardware control requests from the guest through the virtual PF
 - > To configure the hardware and create new VFs (="virtual VF")

SR-IOV emulation

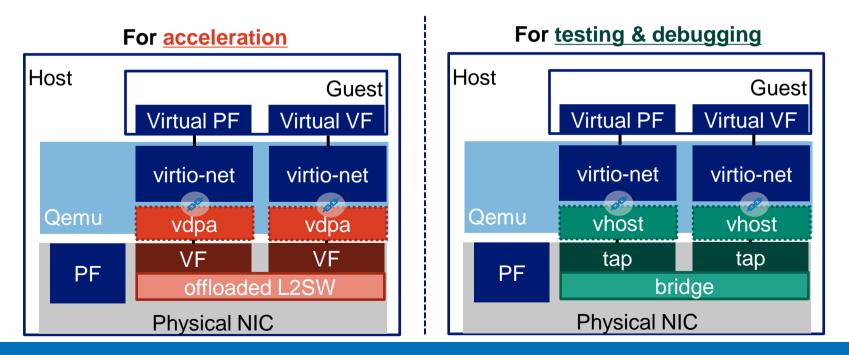
SR-IOV emulation's advantage:


- Same way as the way on physical machine
 - Application works same as on physical machine
 - > Available to use existing network construction software (e.g. SR-IOV CNI plug-in)
 - Create rep device for switchdev mode (in the future)
- <u>Scalability and less security concern</u>
 - Not directly access to PFs
 - Scalability: Needless to assign one PF per VM
 - Less security concern: guests can't control entire NIC hardware

How to accelerate NW by Virtual PF

Utilize virtio data acceleration (vDPA) for backend

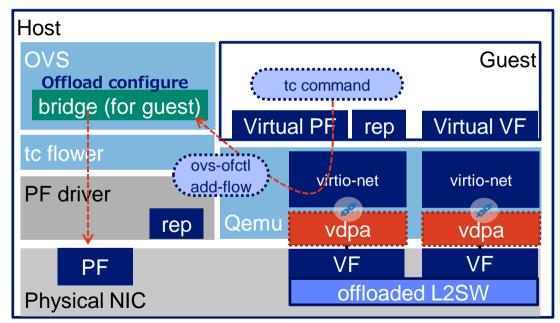
• offload only data plane without offloading control plane


Control Plane

Data Plane

Useful for purpose other than acceleration ONT

Replacing backend for other use cases


• Even utilize tap devices to test SR-IOV for guest OS as backend is pluggable

Future works: switchdev SR-IOV in guest

Potential solution for guest switchdev mode with OVS

- Qemu (+ libvirt etc.) handle tc configuration from guest
- Host's OVS configures
 offloading
- Bridge in OVS
 - For offloading guest's switch

Functional/Performance Verification Unleashing SR-IOV Offload on Virtual Machines

Purpose of Verification

Confirm the followings:

- performance is improved by vDPA
- SR-IOV CNI plug-in works

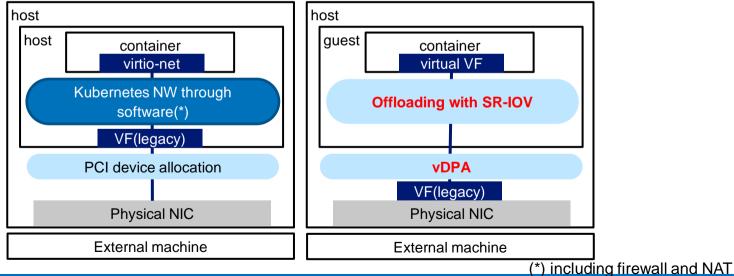
Verification Target's setup

Server model	HPE ProLiant DL360 Gen9
CPU	Intel Xeon CPU E5-2600 @2.3GHz
NIC	Mellanox Technologies MT27710 family ConnectX-6 Dx (100G)
Host/Guest OS	Rocky Linux 9.2
Host/Guest kernel	6.5.7
Qemu version	Qemu 8.1.1 (w/ virtio-net legacy SR-IOV support PoC patch applied)
Kubernetes version	1.27.6
CNI plugin	Calico v3.26.3
SR-IOV CNI plugin	2.7.0 (*)
netperf	2.7

(*) with slight modification (caused by current virtio limitation) structure of virtio's sysfs is different from other common devices because virtio bus is under virtio PCI device

Target Environments

Functional/performance verification in the following 2 environments

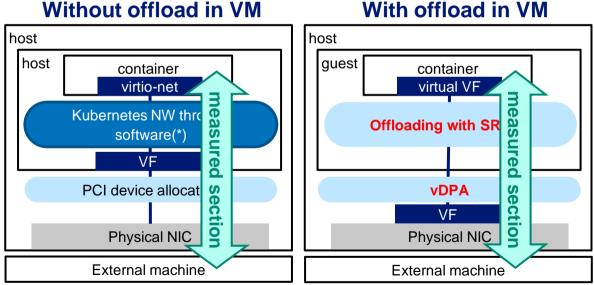

• Using legacy SR-IOV VFs as backend and netperf as measurement tool

Without offload in VM

- Comparison target
- without using HW offload on guest

With offload in VM

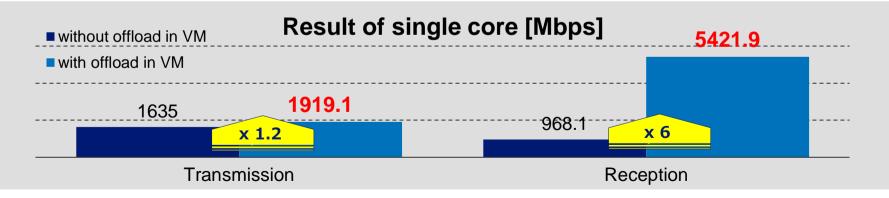
 HW offload usage on guests by SR-IOV CNI



Verification metrics and section

Verification metrics are throughput and latency

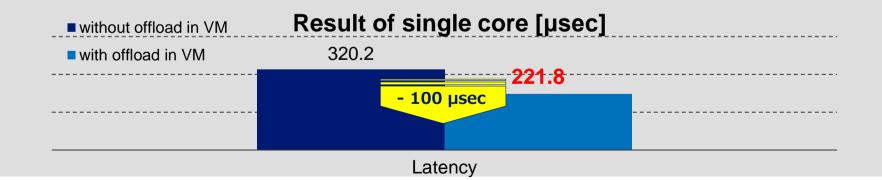
Measured between application on guest's container and application on external ٠ machine



With offload in VM

Throughput

()


- Measuring method
 - Average throughput of UDP bulk transfer using netperf
- Results
 - Transmission: **x 1.2** (1635 Mbps \rightarrow 1919.1 Mbps)
 - Reception: **x 6** (968.1 Mbps \rightarrow 5421.9 Mbps)

- Measuring method
 - 99%ile of round trip time: UDP request/response using netperf
- Results
 - - 100 μ sec (320 μ sec \rightarrow 221 μ sec)

Summary

- Background
 - There are cases: deploying containers to VMs for high flexibility
 - Achieve offloading Linux network on VMs to SR-IOV physical NICs
- Proposed method: Virtual PF
 - Application works same as on physical machine using SR-IOV emulation
 - Able to offload to NIC container's virtual NW using vDPA
- Result
 - Throughput (Tx): **x 1.2** (1600 Mbps \rightarrow 2800 Mbps)
 - Throughput (Rx): **x 6** (930 Mbps \rightarrow 5500 Mbps)
 - Latency: 100 μ sec (320 μ sec \rightarrow 221 μ sec)