
Fast ZC Rx Data Plane using io uring

Pavel Begunkov, David Wei
Meta

{sil,davidhwei}@meta.com

Abstract

The Linux kernel networking stack has overheads that limit
performance. If more performance is needed, the usual way is
to use kernel bypass techniques that remove the kernel from the
picture. This is infeasible for many applications since kernel
bypass requires significant costs both upfront and continuous
to redesign entire systems around them.
In this paper, we propose a hybrid solution that is in between
using the full kernel networking stack and full kernel bypass.
We take advantage of hardware header splitting and flow steer-
ing to split the kernel networking stack into a control plane and
a fast ZC Rx data plane. This enables our solution to be de-
ployed on systems that expect the presence of a kernel TCP/IP
stack, but with some bottlenecked applications using the fast
ZC Rx data plane. We present our design and show some pos-
itive preliminary results on the reduction of system memory
bandwidth requirements at the same network line rates. We
then compare our solution with other similar approaches, and
finally discuss the potential challenges of making use of our
solution in applications.

Introduction
Memory bandwidth can be a bottleneck in large distributed
services e.g. disaggregated storage and recently in AI and ML
applications. The Linux TCP/IP networking stack in the Rx
path first copies packets into kernel memory via DMA, then
copies it again into its final destination in userspace memory
and/or device memory. At high network line rates, this puts
pressure on overall system memory or PCIe bandwidth and
adds CPU overheads. These overheads are well known ever
since the early days of Linux, and there has been a technolog-
ical arms race in both hardware and software optimisations to
keep up with ever increasing NIC line rate speeds.

One such hardware optimisation is direct cache access
(DCA) in processors, implemented in Intel CPUs as Data
Direct I/O (DDIO) technology. This optimisation uses the
last level cache (LLC) as the destination for network Rx
packets by intercepting data from a network interface over
PCIe. It works in the background and is entirely transparent
to the kernel. While it reduces memory bandwidth in many
cases, it cannot be controlled directly and research has shown
that it can cause regressions e.g. tail latencies in some edge
cases.[4] Other processor vendors e.g. AMD also do not pro-
vide an equivalent feature, so it is not something that can be

consistently relied upon in environments with mixed hard-
ware types.

Another optimisation technique is for applications to by-
pass the kernel entirely and directly place packets in their fi-
nal intended destination. The main two ways of doing this
are:

1. Remote DMA (RDMA) e.g. InfiniBand and RoCE where
network interfaces do the heavy lifting in processing pack-
ets and copying them via DMA to the final destination.

2. Software kernel bypass frameworks e.g. DPDK and
PF RING where packets are copied via DMA into
userspace memory and processed using a userspace
TCP/IP networking stack.

When implemented correctly, kernel bypass excels at pro-
viding low latency and/or high throughput. However, they re-
quire the entire system to be designed very specifically around
them, not only the application in question. Bypassing the
kernel means giving up the usual BSD socket API and fea-
tures that the kernel provides. Other services and libraries
running on the same system that assume the presence of a
kernel TCP/IP stack will need to be changed or replaced. For
companies not in the business of selling specialised hardware
or require incredibly high performance (e.g. financial trading
firms), the upfront and maintenance costs of re-architecting
software that expect a standard BSD socket API is simply in-
feasible.

In this paper, we introduce a hybrid solution that sits in
between the two kernel bypass options. We use header split-
ting and flow steering hardware features in NICs to essen-
tially split the Linux network stack into two:

• Control plane that is handled by the standard kernel
TCP/IP stack.

• Fast, zero copy (ZC) Rx data plane that directly delivers
payloads into userspace memory via DMA.

This allows the networking parts of a system to mostly op-
erate normally, but offer a faster Rx data plane for specific
applications. For the userspace facing API we chose to use
io uring which, as we will see discuss in the paper, provides
the necessary supporting features and also addresses some of
the other overheads with the TCP/IP networking stack.

This is a work in progress not yet merged with upstream,
and for now we have posted a working prototype with Broad-



com BCM57504 using the bnxt driver on the mailing list. We
are also working on a veth driver for testing the io uring parts
without requiring specific hardware and out-of-tree patches.

Background

Ring Buffers

There are a number of existing kernel bypass solutions, which
we will not go into detail as others have already provided a
thorough review.[1] The one thing that is common between
them is the use of shared ring buffers for passing data be-
tween kernel and userspace. This is chosen for a good rea-
son: shared ring buffers when implemented well do not re-
quire syscalls and can be lockless. io uring adds a way of
doing I/O in the kernel using shared ring buffers, starting in
kernel v5.1.[2]

io uring

From a high level, io uring shares two circular ring buffers
between the kernel and userspace: one is the Submission
Queue (SQ) and the other is the Completion Queue (CQ).
User applications submit requests into the SQ and then enter
the kernel to handle them. Once each request is done, it posts
a completion event into the CQ to notify userspace of the re-
sults. One of the key benefits of io uring is that userspace
submitting requests and processing completions do not re-
quire separate syscalls, which allows actions to be batched
together. Only one syscall is required when entering the ker-
nel after submitting all the requests to do the work.

Normally there is a 1:1 relationship between submitted re-
quests and completions, such that there is a completion for
every request. To keep receiving more data, an application
must continuously submit receive requests. For network re-
ceive requests, this becomes increasingly inefficient at high
network line rates, so io uring offers multishot requests that
allow a single request to be processed multiple times, posting
completions whenever it is triggered.[3] For example, a sin-
gle multishot receive request on a socket posts completions
whenever data is received on the socket. These multishot re-
quests persists until either explicitly cancelled by the applica-
tion or if an error is encountered.

This type of networking model, called a completion based
model, is different to the classic readiness based model that
APIs such as epoll provide. In readiness based models,
userspace selects buffers for data transfer once it receives no-
tifications that an action e.g. read or write is possible on a
socket. But for completion based models where a single mul-
tishot request is submitted ahead of time for many comple-
tions, io uring provides a way for userspace to register re-
sources ahead of time as well that the kernel will then use to
handle multishot requests. For example, userspace may reg-
ister memory as a buffer pool that will be used for receiving
data in multishot receive request. As data arrives on a socket,
io uring chooses a buffer from the pool to copy into. The
completion events posted holds information on which buffer
in the pool contains the data.

Page Pool
The page pool allocator in the networking stack has been
evolving from a fast path allocator for XDP to a general pur-
pose allocator. At the time of writing, both Broadcom’s bnxt
and Mellanox’s mlx5e drivers use page pool to fill hardware
Rx queues with pages. Page pool provides a unified API for
getting and putting pages, mapping DMA addresses, and of-
fers optimised page caching and recycling.

Design and Implementation
Figure 1 provides a high level overview of our proposal.

Figure 1: An overview of our proposal of doing ZC Rx using
io uring. We essentially expose userspace memory to hard-
ware Rx queues and use io uring to manage buffers.

Hardware Side
Buffer Management Currently for networking, io uring
only interacts with the socket API and does not have access
to underlying networking resources such as Rx queues. In
our proposal, we extend it down into the kernel’s network-
ing layer by adding a new ZC page pool allocator in the net-



working stack. This is analogous to the existing page pool
allocator, except instead of being backed by kernel memory,
it is backed by userspace memory registered with io uring as
registered buffers. A thin shim layer is added that is used by
drivers to decide which allocator to use for a given Rx queue.

To configure an Rx queue for ZC, a new
bpf netdev command opcode XDP SETUP ZC RX
on the NIC driver side and a corresponding io uring reg-
istration opcode IORING REGISTER ZC RX IFQ on the
userspace API side are added. This command creates an
interface queue object in io uring that holds all the necessary
context, associate a registered buffer region with the ZC page
pool allocator, then do driver specific work to prepare an
Rx queue by filling it with pages from our ZC page pool. It
is required for applications to register buffers first, before
setting up ZC Rx. There is a 1:1 relationship between an Rx
queue and an interface queue/ZC page pool in io uring.

Flow Steering In addition to configuring specific Rx
queues for ZC, we also only want network flows from spe-
cific applications to be directed to them. When these con-
nections intended for ZC Rx are established and a socket is
created, userspace must register them with io uring, associ-
ating the socket with an interface queue (and hence, a hard-
ware Rx queue). There is a 1:M relationship between an in-
terface queue and sockets corresponding to connections that
want to use ZC Rx. As we previously mentioned, hardware
flow steering is used to direct desired flows into specific ZC
Rx queues, and receive-side scaling (RSS) is used to make
sure other flows do not enter ZC Rx queues. For this paper,
we assume that userspace has already set up the correct flow
steering and RSS rules using external tooling e.g. ethtool.
This is not ideal and we want to tie this to the io uring regis-
tration API. We will discuss this, and other improvements, in
the future works section later.

Header Splitting We take advantage of hardware header
splitting in certain NICs, where there are typically two differ-
ent Rx queues per queue index, one for headers and one for
payloads. Only the payload Rx queues are filled with pages
from the ZC page pool. This ensures that headers are still
copied into kernel memory where it cannot be modified by
userspace. Note that this is not a hard requirement for ZC Rx
to work. The kernel could take an authoritative copy of the
headers such that userspace can trash them without affecting
the kernel TCP/IP stack.

The hardware side is fully set up at this point. As a NIC
receives packets in a ZC Rx queue, they are split such that the
header portion is copied into kernel memory as usual, but the
payload portion is copied into userspace memory. The NIC
notifies the kernel via hardware IRQs, then NAPI poll pro-
cesses the Rx queues and construct skbs to pass up the net-
working stack. The only difference is that the skb page frags
now point to our userspace pages. These skbs are marked
with a special ZC flag to prevent the networking stack from
inadvertently freeing the pages.

User Side
Data Plane For the most part, io uring ZC receive requests
are just like standard multishot receive requests, where it

reads sk buffs (skbs) from a socket whenever there is data
in the socket. The main difference is that ZC receive requests
do not pick a buffer from registered buffers and copy the skb
payload into it, as the payload is already copied by the NIC
via DMA. Instead, a ZC receive request is mostly a notifica-
tion mechanism for userspace, to let it know where to look
for the payload.

To do this efficiently, two new shared ring buffers between
kernel and userspace are added, called registered buffer rings:
one refill queue and one ZC Rx queue. These two are analo-
gous to the main io uring SQ and CQ respectively. As a ZC
receive request processes skbs in a socket, it posts entries into
the ZC Rx queue, one per skb frag. Each queue entry contains
the ZC pool region, an offset into the region, its length, and
flags. With this information, an application can find and pro-
cess the payload data.

The refill queue, as its name suggests, is for an application
to return buffers to the ZC page pool that it has finished with.
The ZC page pool is also tiered like page pool, with a fast
lockless cache, a ptr ring cache, a refill queue, and finally the
main ZC pool region. When refilling hardware Rx queues
with pages, the ZC page pool goes through this hierarchy in
order. The refill queue is above the main ZC pool region to
prevent it from overflowing.

The pair of Rx queue and refill queue pairs form the fast
ZC data plane.

Control Plane Once all skbs in a socket have been pro-
cessed, or if the ZC Rx queue is full, a completion event for
the ZC receive request is posted in the main io uring CQ.
This serves to tell an application to go look at the ZC Rx
queue. This standard io uring submission request and com-
pletion event pairs form the control plane.

Resource Management
At any point, a userspace page from a ZC page pool could be
in one of several places:

• Hardware Rx queue

• sk buff in the networking stack

• ZC Rx queue

• Userspace

• Refill queue

• ZC page pool

The ZC page pool refcounts userspace pages to manage
their lifetimes as pages are handed out or returned. When
pages are ref’d inside of skbs in the networking stack, a cus-
tom sk buff ubuf info destructor callback is used. This en-
sures that userspace pages in ZC skbs return back into the ZC
page pool when freed.

When tearing down an application, the ZC page pool can-
not be freed until all of its pages ref’d inside of skbs have been
returned from the Linux networking stack. The ZC page pool
schedules delayed work that periodically checks this, similar
to how the standard page pool works.



Error Handling
Resource Exhaustion There are several failure conditions
that need to be handled gracefully. The main one is, as with
any upfront resource registration, if the userspace memory re-
gion registered for ZC becomes exhausted. This would hap-
pen if the packet arrival rate is much greater than the rate
at which an application can process them. When this hap-
pens, the hardware Rx queues can no longer be kept filled
with userspace pages from the ZC page pool, so we fall back
to filling with kernel pages from the standard page pool. Note
that this is a permanent change in the state of ZC Rx, even as
buffers are returned via the refill queue.

Userspace pages from the ZC pool are distinguished from
others by being tagged with a special cookie in the page pri-
vate field. This cookie is checked when handling skb page
frags in ZC receive requests, and if a non-ZC page is detected
then it is copied into a page from the ZC page pool instead.

An astute reader may notice that in order to handle copy
fallback due to resource exhaustion, we require the very same
resource that became exhausted! This is why entering this
state where Rx queues configured for ZC are filled using ker-
nel pages again is permanent, even as userspace pages are
returned via the refill queue, since those are required for fall-
back.

This may only provide a temporary respite, as even if ker-
nel memory is inexhaustible, buffer space in sockets is finite.
When ZC Rx enters this state, an application is notified in ZC
receive completion events with a flag. This gives it an oppor-
tunity to address the underlying issue by e.g. allocating and
registering a new memory region for ZC. Once the applica-
tion is satisfied, it can kick the system back into ZC Rx mode,
where Rx queues are once again filled using userspace pages
from the ZC page pool.

Hardware Failure The other source of errors is if depen-
dent hardware features i.e. header splitting and flow steer-
ing fail. Let’s look at what happens in detail for each case.
Header splitting may fail by splitting too much or too little.
If too much, then some payload data will end up in the linear
part of skbs, which is gracefully handled by copy fallback. If
too little, then we rely on the kernel networking stack to reject
the skb.

For flow steering, there are again two cases. A packet from
a ZC flow may end up in a different Rx queue and get copied
into a kernel page. When this skb is read in a ZC receive
request, we again lean on copy fallback to do the right thing.

Or, if a packet from a non-ZC flow ends up in a ZC Rx
queue, then it will get accidentally copied into a userspace
page. This would not be a problem, as this skb will be
read using a standard receive function e.g. recv() and be
copied into its final destination in a different userspace pro-
cess. When this skb is done, proper resource management
will free its page frags back into a ZC page pool.

Results
We ran a modified version of iperf3 to use our new io uring
API on both an AMD and an Intel system with 62 GB of
DRAM and a Broadcom BCM57504 NIC with a 25 Gbps
link. The AMD system has an AMD EPYC 7D13 processor,

while the Intel system has an Xeon Platinum 8321HC proces-
sor.

We ran iperf3 for five minutes and used provided tooling
to measure system memory bandwidth: uProf for AMD and
pcm-memory for Intel. Figures 2 and 3 show our prelimi-
nary results. In both cases, the measured throughput is at line
rates. We see that the system memory bandwidth is reduced
significantly on both systems.

Figure 2: Measured system memory bandwidth on an AMD
system.

Figure 3: Measured system memory bandwidth on an Intel
system.

Discussions
There are a number of existing ways of doing ZC Rx, and
when compared to them, our proposal has the following ad-
vantages:

• Network packet headers are still processed by the kernel’s
networking stack. This makes our proposal deployable in
situations where this is expected and full kernel bypass is
infeasible. All of the infrastructure hooks in the network-
ing stack (e.g. BPF) are available.

• Depending on hardware and driver support, there are fewer
limitations on the sizes of payloads and MSS. For example,
it is not required for payloads to be exactly 4 kB in size.



• One common trait shared between kernel bypass methods
is the use of lockless shared ring buffers, reasons being it is
an efficient way of passing data without needing syscalls.
We use io uring for this, which conveniently provides in-
kernel shared ring buffers and APIs for interacting with
them.

• Networking with io uring also addresses some of the other
overheads of the Linux networking stack e.g. reducing
syscall overheads and increasing batching.

• We are working to get our solution merged upstream, and
if it does, then there is no need for out-of-tree modules,
userspace libraries (beyond liburing for io uring), and so
on.

However, as with many performance optimisations, the
trade off is with increased complexity, upkeep and possible
modes of failure. Our solution requires deeper plumbing
from userspace into the NIC hardware, as the refill/Rx ring
buffers we introduced can be viewed as a proxy to hardware
Rx queues that is accessible from userspace.

Unlike Tx where the data size is known ahead of time, Rx
is both unknown and bursty. This makes it challenging for
applications as it must decide upfront the amount of memory
and ring buffer sizes to allocate. Making optimal choices here
requires an application to understand its workload and how it
varies in time. We designed our solution with this in mind by
making sure it continues to work even if ZC memory regions
become exhausted, and applications can dynamically allocate
more resources if needed.

For a complex application, the data hop between a NIC and
userspace memory is simply one of many in a long pipeline.
Simply eliminating one copy using ZC Rx is unlikely to be
sufficient in isolation, if say the data needs to be manipulated
after it is received, requiring a copy. We observed that an ap-
plication needs to carefully coordinate the shape of the data
from end to end, eliminating copies along the entire pipeline,
while also satisfying constraints such as alignment require-
ments. As an example, consider a distributed disaggregated
storage service, where each storage block has some error cor-
rection redundancy added at its tail and writing the blocks
directly to hardware has specific memory alignment require-
ments. A client now cannot simply send the stored data as
before, where the server can copy it as needed. For ZC Rx to
work well in this case, a client needs to correctly pad the data
to allow a server to write the redundancy information with-
out copying, and the NIC on the server must respect the final
alignment requirements when placing the data.

One corollary of this is that our solution may not work well
with kTLS, which can combine decryption with the kernel
to userspace memcpy. Encrypted payloads are copied into
userspace directly with ZC Rx, so any decryption (whether
kernel or userspace) will require another copy, thus neutralis-
ing any benefits.

Future Work
Our primary goal is to get an initial version of our proposal
merged upstream. Google is working on a similar ZC Rx
proposal targeting device/GPU memory instead of userspace

host memory, and in their proposal they are making use of
new infrastructure in the Linux networking stack called page
pool memory providers. This allows custom backends to be
plugged into the page pool, and using this would eliminate
the need for our custom ZC page pool and reduce driver level
changes. We will work to move our solution to this infras-
tructure.

Once an initial version is merged, we have a long list of
future work we would like to do:

• Implement overflow handling for the new refill/Rx ring
buffers.

• io uring already has ZC Tx support. We would like to unify
its API with ZC Rx, such that there is a consistent API for
applications.

• Performance optimisations, particularly around locking.
• Tighter integration with hardware by being able to config-

ure flow steering rules inline with ZC Rx configuration. Or
being able to reconfigure hardware Rx queues dynamically
without requiring bringing down the entire interface.

• Add support for device memory as a destination as well,
building on top of the work done by Google.

Conclusion
In this paper, we presented a solution for doing network ZC
Rx using io uring on NICs that support hardware header split-
ting and flow steering. From preliminary benchmarks, we
showed that this reduced memory bandwidth requirements at
the same network speeds, which has potential to alleviate this
bottleneck in some distributed services and AI/ML applica-
tions. Its key advantage is that it can be used on systems
that expect a kernel TCP/IP stack, unlike kernel bypass tech-
niques.

In some ways, our proposal answers the call in [1], address-
ing all four overheads in the Linux networking stack: kernel
to userspace memcpy, reduce syscalls, adds a fast data plane,
and enables applications to manage hardware Rx queues.
This is done by extending io uring down into NIC hardware,
which was one shortcoming of io uring that [1] also noted.

References
[1] Ahern, D., and Mukherjee, S. 2022. Merging the network

worlds. In Netdev 0x16.
[2] Axboe, J. 2019. Efficient IO with io uring.
[3] Axboe, J. 2022. What’s new with io uring. In Kernel

Recipes 2022.
[4] Farshin, A.; Roozbeh, A.; Jr., G. Q. M.; and Kostić, D.

2020. Reexamining direct cache access to optimize i/o
intensive applications for multi-hundred-gigabit networks.
In Proceedings of the 2020 USENIX Annual Technical
Conference.


