
Using eBPF to inject IPv6 Extension Headers

Justin Iurman∗, Eric Vyncke‡, Benoit Donnet∗,
∗ Université de Liège, Montefiore Institute – Belgium

‡ Cisco

Abstract

While IPv6 was already standardized in the 90’s, only the last
decade has seen a growth in its global adoption. In addition
to dealing with IPv4 addresses exhaustion, IPv6 comes with a
mechanism, called IPv6 Extension Header (IPv6 EH), allow-
ing the protocol to be more flexible and extensible. However,
according to recent studies trying to evaluate the survivability
of IPv6 EHs, most of these IPv6 EHs do not easily survive over
the global Internet (i.e., outside limited/controlled domains),
which might be problematic if a specific service requires such
an IPv6 EH. This paper discusses a use case in which an op-
erator needs to test the survivability of specific IPv6 EHs, as
a proof-of-concept, prior to service deployment. This paper
explains how an eBPF program can find a suitable usage in
building the service quickly as a proof-of-concept, by easily
injecting IPv6 EHs in network traffic and without the need to
modify existing tools or the kernel. We also evaluate our pro-
gram for IPv6 EHs injection in terms of throughput.

Introduction
During the last decade, IPv6 has been more and more

adopted [13]. If IPv6 allows for dealing with IPv4 ad-
dress exhaustion [19], it also comes with a mechanism,
called IPv6 Extension Header (IPv6 EH) [6, 4], that leads
to more flexibility and innovation. Examples of such in-
novations based on IPv6 EHs are Segment Routing with
IPv6 as forwarding plane [10, 11] and In-Situ Operations,
Administration, and Maintenance (IOAM) [3]. The pur-
pose of IPv6 EHs is to extend IPv6 without any modifi-
cation to the core protocol. IPv6 EHs form a chain, us-
ing the IPv6 Next Header field, and are placed between the
IPv6 header and the upper-layer protocol header. While new
IPv6 EHs might be defined in the future, the current list
mainly includes the Hop-by-Hop Options Header, the
Destination Options Header, the Routing Header,
the FragmentHeader, the Encapsulating Security
Payload, and the Authentication Header [6, 4].

Up to now, a few efforts have been made in assessing how
operators process IPv6 EHs. RFC7045 [4] provides guide-
lines on how IPv6 EHs should be transmitted, also with a fo-
cus on middleboxes influence on the traffic. Gont et al. [12]
analyze the security implication of IPv6 EHs and the im-
plications of discarding or filtering packets. Hendrikx et
al. [14] state that dropping all traffic containing any IPv6

EH is the de facto rule applied by any operator, for secu-
rity reasons. To support their claim, they perform a lim-
ited measurement campaign on a national research network
(CSNET) and a campus network (UTNET). In the same spirit,
Padurean et al. [36] run large-scale traceroute measure-
ments to find the presence of Segment Routing [10, 11] with
IPv6 as forwarding plane deployment. They reported no pres-
ence of such a deployment, probably due to IPv6 EH filter-
ing. Elkins et al. [7] focus on the Performance and Diag-
nostic (PDM) [8] Destination Options Header which
provides sequence numbers and timing information as a basis
for measurements. While they do not report any drop when
measurements are performed between hosting services, they
observe some drops when measurements are sent towards
Alexa top 1M domains. Huston and Damas [18] report an im-
provement, over the years, in processing the IPv6 Fragment
Header. They also notice that Destination Options
Header and Hop-by-Hop Options Header are generally
not supported on public Internet infrastructures. Finally, Léas
et al. [37, 28] test IPv6 EHs in full mesh through multiple
vantage points at the edge. Among others, they report that
path traversal diminishes as the size of IPv6 EH increases.
Generally speaking, most of the IPv6 EHs do not easily sur-
vive1 over the global Internet, which goes against the flexibil-
ity purpose of IPv6 EHs.

In parallel to this, recent years have seen a growing interest
in using eBPF to deploy network services. For instance, Tran
and Bonaventure [34] leveraged eBPF to support use cases
through injection of options in Multipath TCP. Xhonneux et
al. [39] developed a framework allowing network operators to
encode their own network functions as eBPF code that is au-
tomatically executed while processing specific packets. More
recently, eBPF has also found an usage in telemetry [16], load
balancing in clouds [27], or in security [38].

This paper discusses a service requiring to fragment large
DNS packets and relies on the IPv6 Fragment Header, as
an example. It has been shown that such an IPv6 EH does
not easily survive over the Internet (see Léas et al. [28], for
instance). We therefore believe that operators must first test
the survivability of an IPv6 EH in the context of their service
prior to any large-scale deployment.

1We define the IPv6 EHs survivability as the capacity of IPv6
EHs to traverse the Internet and arrive unmodified at the destination.

Figure 1: Example of a chain of pointers formed by the Next
Header field in IPv6.

To ease the deployment of such a proof-of-concept, this pa-
per introduces an eBPF [33] program (available online [22])
which allows to inject on the fly any IPv6 EH in existing traf-
fic. With such a program, it is easy to inject dedicated IPv6
EHs on existing traffic, without modifying end-hosts. Doing
so, an operator can easily test the survivability of its service.
This paper also evaluates the performance of the eBPF pro-
gram.

The remainder of this paper is organized as follows: next
section provides some background with respect to IPv6 EHs;
then, we describe how IPv6 EHs are injected with eBPF; after
that, we discuss a use case in which IPv6 EHs can find a suit-
able usage and we evaluate our implementation; finally, we
conclude this paper by summarizing its main achievements.

Background
The purpose of IPv6 EHs is to extend IPv6 without any

modification to the core protocol. The IPv6 Next Header
field specifies which upper-layer protocol comes after the
IPv6 header. All IPv6 EHs share a common field in their
respective headers, namely a Next Header field, whose
name and purpose are identical to the one in the IPv6 header.
This design allows for a chaining mechanism. Fig. 1 il-
lustrates how it works with three examples: the first one
represents a TCP segment, the second one represents a
Routing Header followed by a TCP segment, and the
third one represents a Routing Header followed by an
Authentication Header followed by a TCP segment.

The Internet Assigned Numbers Authority (IANA)
currently defines the following IPv6 EHs [2]: the
Hop-by-Hop Options Header, the Destination
Options Header, the Routing Header, the Fragment
Header, the Encapsulating Security Payload,
the Authentication Header, the Mobility Header,
the Host Identity Protocol Header, and the Shim6
Protocol Header. The Hop-by-Hop Options Header
is used to carry optional information, also called Op-
tions, that may be examined and processed by every node
along a packet’s delivery path, while the Destination
Options Header is used to carry optional information to
be examined only by the packet’s destination. An example
of Hop-by-Hop Options Header or Destination
Options Header usage is In-Situ Operations, Administra-
tion, and Maintenance (IOAM) [3]. With IOAM, telemetry
data is carried within packets rather than being sent through

Figure 2: Overview of how tc works with eBPF [35].

1 # tc qdisc add dev eth0 clsact
2 # tc filter add dev eth0 egress bpf da obj ebpf_program.o sec

section

Listing 1: Commands to attach an eBPF program to an
interface.

packets specifically dedicated to that. The IOAM traffic is
thus embedded in data traffic, but not part of the packet
payload. The Routing Header is used by an IPv6 source
to list one or more intermediate nodes to go through on the
way to a packet’s destination (i.e., to steer a packet), and
has several types defined: Source route (type 0) and Nimrod
(type 1) [5] which are both deprecated, Mobility support
(type 2) [24], RPL (type 3) [17], and Segment Routing
(type 4) [11]. The Fragment Header is used by an IPv6
source to send a packet larger than would fit in the path
MTU to its destination. It works like IPv4 fragmentation
except that only the packet source can fragment the packet.
The Authentication Header (sender authentication,
data integrity) [26] and Encapsulating Security
Payload (sender authentication, data integrity, confiden-
tiality) [25] are both part of the IPsec protocol suite. The
Mobility Header is used to allow devices to move from
one network to another while maintaining a permanent IPv6
address. The Host Identity Protocol Header is
used to separate the end-point identifier and locator roles of
IPv6 addresses [30]. The Shim6 Protocol Header is
used to determine valid locator pairs that could be used when
an outage is detected [31].

IPv6 EHs Injection with eBPF
This section describes how the eBPF program (both kernel

and user) is implemented [22]. In order to inject one or
multiple IPv6 EHs in outgoing traffic, the eBPF (kernel)
program must be attached to an interface. More specifically,
one needs to add a clsact qdisc [29] to an interface
(Listing 1, line 1), which is like a scheduler holding only
classifiers and that works both on ingress and egress. Then,
the eBPF (kernel) program must be attached to an egress
filter on that interface, with a specific section to be run
(Listing 1, line 2). Both commands use tc [32], a traffic
control tool as part of the iproute2 [21] solution. Finally,
the user program is used to configure the IPv6 EHs injection.
Fig. 2 provides a high-level picture of how it works. What
was previously described is inside the drawn red zone, on the
right side of the figure.

1 s t r u c t e x t h d r _ t {
2 s t r u c t b p f _ s p i n _ l o c k l o c k ;
3 __u8 i p 6 n e x t h d r ;
4 __u32 o f f _ l a s t _ n e x t h d r ;
5 __u32 b y t e s _ l e n ;
6 # d e f i n e MAX_BYTES 2048 / * F e e l f r e e t o i n c r e a s e i f needed * /
7 __u8 b y t e s [MAX_BYTES] ;
8 } ;
9

10 s t r u c t {
11 _ _ u i n t (type , BPF_MAP_TYPE_ARRAY) ;
12 _ _ u i n t (m a x _ e n t r i e s , 1) ;
13 __ ty pe (key , __u32) ;
14 __ ty pe (va lue , s t r u c t e x t h d r _ t) ;
15 _ _ u i n t (p i n n i n g , LIBBPF_PIN_BY_NAME) ;
16 } eh6_map SEC(" . maps ") ;
17
18 SEC(" e g r e s s ")
19 i n t e g r e s s _ e h 6 (s t r u c t _ _ s k _ b u f f * skb) {
20 __u32 o f f , b y t e s _ l e n , o f f _ l a s t _ n e x t h d r , i d x = 0 ;
21 s t r u c t e x t h d r _ t * e x t h d r ;
22 s t r u c t i p v 6 h d r * i p 6 ;
23 __u8 i p 6 n e x t h d r , x ;
24
25 i p 6 = i p v 6 _ h e a d e r (skb , &o f f) ;
26 i f (! i p 6)
27 r e t u r n TC_ACT_OK ;
28
29 i f (! p a s s _ c u s t o m _ f i l t e r (skb , ip6 −> n e x t h d r , o f f))
30 r e t u r n TC_ACT_OK ;
31
32 e x t h d r = bpf_map_lookup_elem (&eh6_map , &i d x) ;
33 i f (! e x t h d r)
34 r e t u r n TC_ACT_OK ;
35
36 b p f _ s p i n _ l o c k (& e x t h d r −> l o c k) ;
37 b y t e s _ l e n = e x t h d r −> b y t e s _ l e n ;
38 i p 6 n e x t h d r = e x t h d r −> i p 6 n e x t h d r ;
39 o f f _ l a s t _ n e x t h d r = e x t h d r −> o f f _ l a s t _ n e x t h d r ;
40 b p f _ s p i n _ u n l o c k (& e x t h d r −> l o c k) ;
41
42 i f (b y t e s _ l e n < 8 b y t e s _ l e n > MAX_BYTES)
43 r e t u r n TC_ACT_OK ;
44
45 x = ip6 −> n e x t h d r ;
46 i f (b p f _ s k b _ a d j u s t _ r o o m (skb , b y t e s _ l e n , BPF_ADJ_ROOM_NET, 0))
47 r e t u r n TC_ACT_OK ;
48
49 i f (b p f _ s k b _ s t o r e _ b y t e s (skb , o f f , e x t h d r −> b y t e s , b y t e s _ l e n ,

BPF_F_RECOMPUTE_CSUM))
50 r e t u r n TC_ACT_SHOT ;
51
52 i f (o f f _ l a s t _ n e x t h d r < MAX_BYTES && b p f _ s k b _ s t o r e _ b y t e s (skb , o f f

+ o f f _ l a s t _ n e x t h d r , &x , s i z e o f (x) , 0))
53 r e t u r n TC_ACT_SHOT ;
54
55 i p 6 = i p v 6 _ h e a d e r (skb , &o f f) ;
56 i f (! i p 6)
57 r e t u r n TC_ACT_SHOT ;
58
59 ip6 −> n e x t h d r = i p 6 n e x t h d r ;
60 ip6 −> p a y l o a d _ l e n = b p f _ h t o n s (skb −> l e n − o f f) ;
61
62 r e t u r n TC_ACT_OK ;
63 }

Listing 2: Simplified example of the eBPF program. [22]

Usage : . / t c _ i p v 6 _ e h _ u s e r . o { −− d i s a b l e | −− e n a b l e [−− f o r c e]
EXTHDR [EXTHDR . . . EXTHDR] }

EXTHDR := { −−hbh 8 . . 2 0 4 8 | −− d e s t 8 . . 2 0 4 8 | −− rh0 2 4 . . 2 0 4 0 |
−− rh2 | −− rh3 2 4 . . 2 0 4 0 | −− rh4 2 4 . . 2 0 4 0 | −− fragA | −−fragNA
| −−ah 1 6 . . 1 0 2 4 | −− esp 1 6 . . 2 0 4 8 }

I f a s i z e i s r e q u i r e d , i t MUST be an 8− o c t e t m u l t i p l e .
Rou t ing Header s i z e s minus 8 MUST be 16− o c t e t m u l t i p l e s .

Accep ted c h a i n i n g o r d e r , a s p e r RFC8200 sec4 . 1 :
− Hop−by−Hop O p t i o n s h e a d e r
− D e s t i n a t i o n O p t i o n s h e a d e r
− Rou t ing h e a d e r
− Fragment h e a d e r
− A u t h e n t i c a t i o n h e a d e r
− E n c a p s u l a t i n g S e c u r i t y Pay load h e a d e r
− D e s t i n a t i o n O p t i o n s h e a d e r

Listing 3: User program. [22]

Listing 2 shows a simplified example of the eBPF program.
Lines 1 to 8 represent the data structure used to inject IPv6
EHs, which is stored in a map (see lines 10 to 16). The map
is pinned so that the user program is able to interact with it.
This is also why the map is not per-cpu defined, since the
user program needs to update the map (which is not possi-
ble for each cpu from user space). The function in line 19 is
the handler for the egress section, and performs the following
steps: (i) checks for a pointer overflow, which is required by
the verifier (line 25); (ii) checks if the injection should hap-
pen for the current packet, based on editable rules (line 29);
(iii) holds a lock to read the fields stored in the map (lines 36
to 40). Unfortunately, the lock can’t be held when calling
bpf_skb_store_bytes, which means the only safe so-
lution would be to copy the buffer locally. However, this is
impossible due to the verifier and the stack limit. Therefore,
there is no safe solution and the worst case would be when the
user program updates the buffer between the lock being re-
leased and the call to bpf_skb_store_bytes. As a con-
sequence, the packet involved would probably be corrupted;
(iv) applies some boundary checks required by the verifier
(line 42); (v) makes room for the new bytes and inject them
in the packet (lines 46 and 49); (vi) updates the last IPv6 EH’s
next header field to the upper-layer protocol used in the cur-
rent packet (line 52), so that the IPv6 EH chain is complete;
(vii) restores and rechecks pointers (line 55); (viii) updates
the IPv6 next header field and payload length according to
which IPv6 EHs are inserted (lines 59 and 60).

Overall, the eBPF (kernel) program described in Listing 2
is completely independent of whether one or more IPv6 EHs
are injected, or their order. The only thing that it knows is that
it has to inject a buffer of bytes. Therefore, the overhead only
depends on the number of bytes to inject (see next section for
performance evaluation). Indeed, the buffer construction is
delegated to the user program which is responsible for con-
figuring what will be injected (one or more IPv6 EHs, their
order, etc). Listing 3 shows the ”-help” output of the user
program to illustrate how it works and its possibilities. Very
briefly, IPv6 EHs can be injected with constraints on respec-
tive sizes, and in any order. If the chosen order does not re-
spect RFC8200, an error is returned as a security. Should the
user really want to do it no matter what, the ”-force” flag
can be used to override the restriction.

IPv6 EHs Service Description
Let us consider an operator wanting to implement and de-

ploy a new service that would require the use of large DNS re-
quests and replies (i.e., sometimes above 1,280 bytes, some-
times up to 1,500 bytes and more). In IPv6, the minimum
link MTU is 1,280 bytes, which means that bigger packet
sizes are exposed to fragmentation, depending on the path
MTU. The IPv6 fragmentation is always performed by the
source and uses the Fragment Header. Based on some
recent studies [20, 23, 12, 37, 18, 1, 28], the operator fig-
ures out that the Fragment Header does not always sur-
vive over the global Internet, which is problematic consid-
ering the service. However, those studies do not neces-
sarily focus on the Fragment Header for the DNS ser-
vice. Therefore, before implementing its entire new service

0 8 16 32 64 128 256 512 1024 2048
Egress Injection (bytes)

10

20

30

40
T

h
ro

u
g
h

p
u

t
(G

b
p

s)

sender

receiver

Figure 3: eBPF injection and its impact on throughput.

and in order to not waste time foolishly, the operator wants
to make sure that all fragmented DNS requests and replies
would go through and reach the target. On top of that, the
operator would also like to use the Minimum Path MTU
Hop-by-Hop Option [15] in order to detect the mini-
mum path MTU. The aforementioned studies show that even
a small Hop-by-Hop Options Header almost never sur-
vives over the global Internet. The eBPF program proposed
in this paper could be a fast way of testing the service, i.e., an
easy way to develop a proof-of-concept, by injecting either a
Fragment Header or a Hop-by-Hop Options Header
to some specific packets. There are two possible outcomes:
either (i) the test is successful, and so the operator can con-
fidently implement and deploy its service; or (ii) the test is
not successful, and so the operator needs to think about an
alternative for its new service.

Evaluation Methodology
To evaluate the eBPF program, we run measurements be-

tween two physical machines that are directly connected,
each equipped with an Intel XL710 2x40Gb QSFP+
NIC (with Receive-Side Scaling enabled, and with an up-to-
date firmware and up-to-date i40e driver). Each machine runs
a Linux kernel v6.1 and has an Intel Xeon CPU E5-2630 v3
at 2.40GHz, 8 Cores, 16 Threads, and 32GB of RAM. UDP
traffic (i.e., to mimic the DNS use case) is sent at line rate
(40 Gbps) using iperf3 [9] with four clients (each sending at
a constant rate of 10 Gbps) and four servers in parallel. The
MTU is set to 8192 on both interfaces and the UDP payload
is set to 6082 bytes, so that the maximum size inserted (i.e.,
2048 bytes) would not make packet sizes to exceed.

As explained in previous section, only the size of the buffer
to be injected has an impact on performance, not its content
(i.e., whatever the combination of IPv6 EHs). Since most
of these IPv6 EHs are limited to a maximum of 2048 bytes,
we evaluate the size impact from 0 to 2048 bytes, although a
combination of IPv6 EHs could result in a much bigger buffer
(which is possible by simply increasing MAX_BYTES in the
eBPF program). Therefore, based on the presented use case,
we measure the injection of a Hop-by-Hop Options
Header (because the Fragment Header has a fixed size of
8 bytes) and we vary the size: 0 (none), 8, 16, 32, 64, 128,
256, 512, 1024, and 2048 bytes. As a results, packet sizes

are respectively 6144, 6152, 6160, 6176, 6208, 6272, 6400,
6656, 7168, and 8192 bytes.

Results
Fig. 3 shows a constant line rate throughput on both the

sender and the receiver for an 8-byte injection. For a 16-byte
injection and above, the throughput on the sender drops by
approximately 17% and stays the same up to 2048 bytes. This
sudden drop between 8 and 16 bytes and the fact that it is
constant looks a bit suspicious. We still need to investigate to
find an explanation. One of the reasons could be that the free
room in socket buffers is exhausted, and therefore an implicit
reallocation is needed. However, 16 bytes seems a bit low
for that, and it would be unlucky to cross such a boundary so
soon. Another more likely reason is the overuse of CPUs due
to iperf3 clients generating traffic. Note that the receiver can
keep up until 128 bytes, where a huge drop to approximately
20Gbps (half) is observed with 256 bytes and above. This
observation on the receiver is provided for information only,
since it is not directly what was measured.

This is important to remind readers that this section evalu-
ates the worst case, i.e., line rate traffic. Overall, it is highly
unlikely that an operator would need the eBPF program to
inject IPv6 EHs at line rate in order to simulate and test a
service.

Conclusion
In this paper, we leveraged eBPF for injecting IPv6 EHs

into packets. We explained how we implemented our tool
and demonstrate its potential usage through a use case de-
ployed by a network service provider. As a consequence, we
do believe that the proposed eBPF program could definitely
be useful for operators to quickly develop proof-of-concept
services based on IPv6 EHs.

Acknowledgments
This work has been supported by a Cisco grant

CG#75919971 and by the CyberExcellence project funded by
the Walloon Region, under number 2110186.

References
[1] APNIC Labs. Ipv6 fragmentation drop rate world map. Last

Access: April, 17th 2023.

[2] Authority, I. I. A. N. Internet protocol version 6 (IPv6) param-
eters - IPv6 extension header types. Technical report, Internet
Assigned Numbers Authority.

[3] Brockners, F.; Bhandari, S.; and Mizrahi, T. 2022. Data fields
for in-situ operations, administration, and maintenance(IOAM).
RFC 9197, Internet Engineering Task Force.

[4] Carpenter, B., and Jiang, S. 2013. Transmission and processing
of IPv6 extension headers. RFC 7045, Internet Engineering Task
Force.

[5] Castineyra, I.; Chiappa, N.; and Steenstrup, M. 1996. The
Nimrod routing architecture. RFC 1992, Internet Engineering
Task Force.

[6] Deering, S., and Hinden, R. 2017. Internet protocol, version 6
(ipv6) specification. RFC 8200, Internet Engineering Task Force.

[7] Elkins, N.; Ackermann, M.; and Deshpande, A. 2022. IPv6 ex-
tension headers (performance and diagnostic metics (PDM) des-
tination option) testing across the Internet. Last Access: April,
19th 2023.

[8] Elkins, N.; Hamilton, R.; and Ackermann, M. 2017. IPv6 per-
formance and diagnostic metrics (PDM) destination option. RFC
8250, Internet Engineering Task Force.

[9] ESnet. iperf3: A TCP, UDP, and SCTP network bandwidth
measurement tool.

[10] Filsfils, C.; Previdi, S.; Grinsberg, L.; Decraene, B.; Likowski,
S.; and Shakir, R. 2018. Segment routing architecture. RFC
8402, Internet Engineering Task Force.

[11] Filsfils, C.; Dukes, D.; Previdi, S.; Leddy, J.; Matsushima, S.;
and Voyer, D. 2020. Ipv6 segment routing header (srh). RFC
8754, Internet Engineering Task Force.

[12] Gont, F.; Linkova, J.; Chown, T.; and Liu, W. 2016. Observa-
tions on the dropping of packets with ipv6 extension headers in
the real world. RFC 7872, Internet Engineering Task Force.

[13] Google. 2008–2023. IPv6 statistics. Last Access: April, 17th
2023.

[14] Hendrikx, L.; Velan, P.; Schmidts, R.; De Boer, P. T.; and Pras,
A. 2017. Threats and surprises behind IPv6 extension headers.
In Proc. IFIP Network Traffic Measurement and Analysis (TMA).

[15] Hinden, R., and Fairhurst, G. 2022. IPv6 Minimum Path
MTU Hop-by-Hop Option. RFC 9268, Internet Engineering Task
Force.

[16] Hinz, J.-T.; Addanki, V.; Gyorgyi, C.; Jespen, T.; and Schmid,
S. 2023. TCP’s third eye: Leveraging eBPF for telemetry-
powered congestion control. In Proc. Workshop on eBPF and
Kernel Extensions (eBPF).

[17] Hui, J.; Vasseur, J.-P.; Culler, D.; and Manral, V. 2012. An
IPv6 routing header for source routes with the routing protocol
for low-power and lossy networks (RPL). RFC 6554, Internet
Engineering Task Force.

[18] Huston, G., and Damas, J. 2022. Ipv6 fragmentation and eh
behaviours. Last Access: April, 17th 2023.

[19] Huston, G. 2013–2023. IPv4 address report. Last Acces:
April, 17th 2023.

[20] Huston, G. 2017. Dealing with IPv6 fragmentation
in the DNS. https://blog.apnic.net/2017/08/
22/dealing-ipv6-fragmentation-dns/. Accessed:
2023-05-25.

[21] iproute2. Introduction to iproute2. See https:
//tldp.org/HOWTO/Adv-Routing-HOWTO/lartc.
iproute2.html.

[22] Iurman, J. 2023. IPv6 Extension Headers injec-
tion with eBPF. See https://github.com/iurmanj/
ebpf-ipv6-exthdr-injection.

[23] Jaeggli, J.; Colitti, L.; Kumari, W.; Vyncke, E.; Kaeo, M.;
and Taylor, T. 2013. Why operators filter framgents and what
it implies. Internet Draft (Work in Progress) draft-taylor-v6ops-
fragdrop-02, Internet Engineering Task Force.

[24] Johnson, D.; Perkins, C.; and Arkko, J. 2004. Mobility support
in IPv6. RFC 3775, Internet Engineering Task Force.

[25] Kent, S., and Atkinson, R. 1998. IP encapsulating security
payload (ESP). RFC 2406, Internet Engineering Task Force.

[26] Kent, S. 2005. IP authentication header. RFC 4302, Internet
Engineering Task Force.

[27] Kogias, M., and Yang, R. 2023. HEELS: A host-enabled
eBPF-based load balancing scheme. In Proc. Workshop on eBPF
and Kernel Extensions (eBPF).

[28] Léas, R.; Iurman, J.; Vyncke, E.; and Donnet, B. 2022. Mea-
suring IPv6 extension headers survivability with james. In Proc.
ACM Internet Measurement Conference (IMC), Poster Session.

[29] LWN.net. 2016. net, sched: add clsact qdisc. Accesses: 2023-
06-01.

[30] Moskowitz, R.; Nikander, P.; Jokela, P.; and Henderson, T.
2008. Host identity protocol. RFC 5201, Internet Engineering
Task Force.

[31] Nordmark, E., and Bagnulo, M. 2009. Shim6: Level 3 mul-
tihoming shim protocol for IPv6. RFC 55533201, Internet Engi-
neering Task Force.

[32] tc. tc(8) – linux manual page. See https://man7.org/
linux/man-pages/man8/tc.8.html.

[33] The Linux Foundation. 2021. eBPF. https://ebpf.io.

[34] Tran, V.-H., and Bonaventure, O. 2020. Beyond socket op-
tions: Towards fully extensible linux transport stacks. Computer
Communications 1:118–138.

[35] Tuxology. 2017. An entertaining eBPF XDP adventure. Ac-
cesses: 2023-06-01.

[36] V.-A Padurean, Gasser, O.; Bush, R.; and Feldmann, A. 2022.
SRv6: Is there anybordy out there? In Proc. International Work-
shop on Traffic Measurements for Cybersecurity (WTMC).

[37] Vyncke, E.; Léas, R.; and Iurman, J. 2022. Just another mea-
surement of extension header survivability (JAMES). Internet
Draft (Work in Progress) draft-vyncke-v6ops-james-02, Internet
Engineering Task Force.

[38] Wustrich, L.; Schacherbauer, M.; Budeus, M.; Freiherr von
Kunbberg, D.; GAllenmuller, S.; Pahl, M.-O.; and Carle, G.
2023. Network profiles for detecting application-characteristic
behavior using linux eBPF. In Proc. Workshop on eBPF and
Kernel Extensions (eBPF).

[39] Xhonneux, M.; Duchene, F.; and Bonaventure, O. 2018.
Leveraging eBPF for programmable network functions with IPv6
segment routing. In Proc. ACM CoNEXT.

