
Lightweight Approach to Kickstart Development of NIC Driver
David Ahern

October 2023

© 2023 ENFABRICA CORPORATION. ALL RIGHTS RESERVED.

Context and Motivation
Great idea for a new ethernet NIC
● Need to turn slides and ideas into something real - fast

Key point - starting from scratch!
● No existing H/W-S/W API to leverage
● No existing S/W to extend or adapt

Parallel H/W - S/W development

Ability to do POCs very quickly
● zctap, Linux devmem, etc.
● Do not want to wait for H/W support, APIs to be defined, etc.

© 2023 ENFABRICA CORPORATION. ALL RIGHTS RESERVED.

qemu Based Models
Absolutely provides value - in time

Requires definitions around H/W - S/W API
● Beginning of time: no BARs, no CSRs, no messaging between host S/W and firmware

PCI interface is not unique to your device
● DMA, MSI-X, BAR management - needed in time; not a priority

S/W driver development does not need to be serialized behind the H/W - S/W API
● Many, many ethernet and Linux networking APIs can be coded
● Start building unit, integration and end-to-end test cases
● Start working on related S/W (e.g., SDKs, IB module and provider, ...)

Focus on what is important now
● Design of queue descriptors and requests from H/W
● S/W arch and development, test environment and confidence in the driver and related code - all

on a simplified device model

© 2023 ENFABRICA CORPORATION. ALL RIGHTS RESERVED.

Prior Art: veth devices

© 2023 ENFABRICA CORPORATION. ALL RIGHTS RESERVED.

veth is an example of intent
● not tied to a PCI device

Very simple device model
● Tx from one veth is Rx into its peer

○ skb is forwarded
● No packet processing done by the model

○ just a passthrough

Allows complex S/W testing within a single host
● Namespaces represent endpoints

Extending veth Intent
Add a device model
● use H/W queue descriptors
● Tx: skb is posted to S/W model via descriptor

○ Tx completions when entry processed by model
● Rx: S/W model accepts packet from peer device and fills

buffer and descriptor
○ Rx completions generated for packet

Forwarding model between devices
● depends on what the device is doing or mimicking or what

is relevant to the testing
● “simple” - peer-to-peer - Tx from one device is Rx into peer
● “switch model” - lookup dmac
● “routing model”

© 2023 ENFABRICA CORPORATION. ALL RIGHTS RESERVED.

Leveraging tap Devices

© 2023 ENFABRICA CORPORATION. ALL RIGHTS RESERVED.

“Peer device” is tap based

Tx from model
● kernel_sendmsg to handoff packet to tap device
● Rx into tap == Rx into networking stack

Tx from tap
● Packets placed into ring and ring owner notified
● Device model pulls a packet from the ring

○ equivalent to receiving from the wire

Allows
● Unidirectional development (start with Tx)
● Packet captures to verify manipulations done by device model

(e.g., checksum offload)
● netem on tap devices to introduce random drops in network path

Essential Elements from a Driver Perspective

© 2023 ENFABRICA CORPORATION. ALL RIGHTS RESERVED.

PCI device
● Host stack sees a PCI device
● pci_dev operations

netdev representor
● Allows device to work with standard Linux

networking stack APIs

Queues
● host memory
● submitting packets to H/W
● receiving packets from H/W

Flow steering and RSS

Hardware Modeling

© 2023 ENFABRICA CORPORATION. ALL RIGHTS RESERVED.

Does not have to be exact - it’s a model
Only worry about essential elements from S/W driver perspective

Driver Code Paths that Matter Now
PCI device operations
● stubs for S/W model, but ready for H/W

devlink operations
● Prepare code to handle devlink ops

Netdev representor
● netdev operations for managing device interface to Linux networking stack

Control path
● Managing queues and their lifecycle

○ host memory operations (e.g., alloc, free), H/W operations (create, enable, disable, delete)
● Flow steering and RSS - ethtool APIs

© 2023 ENFABRICA CORPORATION. ALL RIGHTS RESERVED.

Code Paths that Matter Now
Datapath
● Queue descriptor formats
● Rx: getting packets from the device

○ Need to supply buffers so memory management and page_pool
○ Completion handling and napi

● Tx: sending packets to your device
○ Completion handling releasing skbs

Closed loop datapath
● Operational sockets (e.g., TCP roundtrip), not just packet injection
● Second level S/W aspects: zerocopy, retransmit, ...

Driver and H/W stats
● ethtool API

Key point: Able to get a lot of driver infrastructure in place and ready for extension to H/W details

© 2023 ENFABRICA CORPORATION. ALL RIGHTS RESERVED.

Source Code Organization
Use HAL APIs
● Ensure S/W stack sees consistent API
● Model differences are hidden behind model specific

handlers of the HAL
○ e.g., mydev_hw.c vs mydev_swmodel.c

Flags dictate backend to compile in

S/W model operates in virtual addresses; H/W model
needs physical address

© 2023 ENFABRICA CORPORATION. ALL RIGHTS RESERVED.

Module Initialization
Standard starter for a module
● module_init(enf_init_module);
● module_exit(enf_exit_module);

Need device model dependent implementations
● H/W model

○ Call pci_register_driver

● S/W model
○ Create N pci_dev instances (see next slides)
○ Fake PCI probe
○ Spawn kernel thread to monitor Tx queues (and tap packet ring if relevant) and forward packets (more

later)
■ pin it to 1 cpu; migrations of kthread cause unnecessary headaches

© 2023 ENFABRICA CORPORATION. ALL RIGHTS RESERVED.

Device Initialization - PCI interface
Drivers for PCI devices register pci_driver
● probe and remove callbacks

Write callbacks with in model dependent
functions
● PCI initialization (resources, iomap, enable,

bar, irq, ...) in H/W file
● Stubbed out for S/W model

© 2023 ENFABRICA CORPORATION. ALL RIGHTS RESERVED.

int enf_probe(struct pci_dev *, const struct pci_device_id *)
{

struct enf_pdev_priv *epp; // PCI dev private data
struct devlink *dl;

// allocate pci_dev private struct using devlink as
// the container
dl = devlink_alloc(&dl_ops, sizeof(*epp), &pdev->dev);

// PCI initialization per-backend
err = enf_pci_init(epp, pdev, id);

// register instance with devlink
 err = devlink_register(dl);

// other devlink calls e.g., devlink_params_register()

// create netdev representor for PCI device
// - standard netdev init and register
// - same regardless of H/W vs S/W model
netdev = enf_init_netdev(pdev);

// other relevant device initialization
}

Device Initialization - S/W Model
Mimick PCI scan and device probe
● Allocate pci_dev structure
● Use a platform_device to get a `struct device`

Call the properly partitioned PCI probe function
● H/W model can run through the PCI

initialization functions
● S/W only model just sets private data for the

pci_dev struct

© 2023 ENFABRICA CORPORATION. ALL RIGHTS RESERVED.

struct test_priv {
struct pci_dev pdev;
// test data unique to this device instance
// e.g., queues and metadata (Rx, Tx, completion),
// RSS and flow steering references, irq references

};

struct enf_test_priv *tpriv;
struct pci_dev *pdev;
char buf[16] = {};

// per-PCI device instance (e.g., veth style requires 2)
tpriv = kzalloc(sizeof(*tpriv), GFP_KERNEL);
pdev = &tpriv->pdev;

snprintf(buf, sizeof(buf) - 1, "testing-dev-%d", dev_id);
platform_dev = platform_device_alloc(buf,

 PLATFORM_DEVID_NONE);
err = platform_device_add(platform_dev);

pdev->dev = platform_dev->dev;

/* call the PCI probe function */
err = enf_probe(pdev, NULL);

H/W Notifications: irqs
Handling irqs
● S/W model implements irq_request function
● Saves handler, data and cpu affinity
● S/W model kthread ensures irq handler is

invoked on right cpu
● irq handler invokes napi_schedule

© 2023 ENFABRICA CORPORATION. ALL RIGHTS RESERVED.

static int enf_test_fake_msix(void *data)
{

struct enf_irq *irq = data;

irq->fn(irq->data);
return 0;

}

static void enf_test_notification(struct enf_irq *irq)
{

if (irq->cpu == raw_smp_processor_id())
enf_test_fake_msix(irq);

else
smp_call_on_cpu(cpu, enf_test_fake_msix,

 irq, true);
}

// per-cpu irq handler; schedule Rx softirq
static void enf_channel_irq_handler(void *data)
{

struct enf_channel *ch = data;

if (in_irq())
napi_schedule_irqoff(&ch->napi);

else
napi_schedule(&ch->napi);

}

H/W Notifications: Doorbells
Doorbells
● HAL wrappers for index moves

○ H/W version writes to CSRs
○ S/W version calls into S/W model to move pidx (e.g., Tx, Rx buffers) or update cidx (e.g., CQ)

● kthread sees pidx move on next scan
○ Do not want to Tx packets inline with index move

© 2023 ENFABRICA CORPORATION. ALL RIGHTS RESERVED.

Control Path
Queue Management
● netdev initialization needs to create one or more queue sets (e.g., per-cpu)
● enf_rxq_{add,del}(), enf_txq_{add,del}(), enf_cq_{add,del}()

○ alloc / free and start / stop versions

Backend specific handler
● H/W model - creates queues based on H/W - S/W API (e.g., message to firmware)
● S/W model - functions are into model and handled inline

© 2023 ENFABRICA CORPORATION. ALL RIGHTS RESERVED.

Data Path - Tx
Code up the entire Tx path - with the exception of DMA mapping

Take a packet from networking stack
● ndo_start_xmit handler

Fill descriptor from skb - data and skb frags
● Address in descriptor needs a wrapper

○ S/W model wants virtual, H/W wants physical or DMA
● Make DMA mapping a helper - empty for S/W model

Save reference to skb waiting for completion

Move pidx based on xmit_more flag

Implement Tx completion handling
● Free skb which for TSQ pushes another one down the stack

© 2023 ENFABRICA CORPORATION. ALL RIGHTS RESERVED.

S/W Model: Data Path - Tx
kthread for S/W model polls Tx queues for pidx moves
● Model for Tx scheduling decides how many packets to pull from each Tx before moving on to the

next

S/W model converts descriptor or packet into iov (leverage kvec and its helpers)
● peer is tap device: call kernel_sendmsg with iov; handoff packet to tap driver
● peer is same type: iov from Tx gets run through H/W model and put into Rx queue and descriptor

filled

Sends completion entry
● allows driver to code up completion handling (freeing skb)

© 2023 ENFABRICA CORPORATION. ALL RIGHTS RESERVED.

Data Path - Rx
Code up the entire Rx path
● napi setup during netdev initialization
● only shenanigans for the S/W model is the irq to napi_schedule handling

napi poller scheduled
● Process Rx ring
● Inject packets into networking stack
● Push new buffers

S/W model
● Pull packet from “wire”

○ for tap: pull skb entry from ring, convert to iov
○ for peer device: convert descriptor entry to iov
○ Run iov through H/W model and land data in buffers and push descriptor entry

© 2023 ENFABRICA CORPORATION. ALL RIGHTS RESERVED.

Data Path - Rx
H/W will DMA into posted buffers

S/W model will need to memcpy using CPU
● Limits throughput performance of S/W model (~15-30G on a modern DC CPU based on MTU)
● S/W model can cheat for say iperf3 packets - payload is irrelevant so skip the memcpy

○ Allows higher throughput and cycling through rings

© 2023 ENFABRICA CORPORATION. ALL RIGHTS RESERVED.

Build Your Custom S/W Layers
Tracepoints in the control and data paths
● Starting working on debug infrastructure for your driver

Start working on upper layer S/W
● Working driver - hides most H/W details
● e.g., IB driver, IB provider, *CCL plugins, etc

© 2023 ENFABRICA CORPORATION. ALL RIGHTS RESERVED.

Advanced Use Cases

© 2023 ENFABRICA CORPORATION. ALL RIGHTS RESERVED.

netdevice for tap or custom device (e.g., called enf here)

Connect tap or “enf” device to bridge
● L2 connectivity between peer sets within a host
● L2 connectivity between VMs (e.g., running a qemu based device model)

Route between tap or enf devices
● Host namespaces with a router namespace

○ Leverages Linux to do packet forwarding

Similar to what can be done today with veth
● Test configurations based on veth should work with your custom device

Demo

© 2023 ENFABRICA CORPORATION. ALL RIGHTS RESERVED.

Summary
Driver development and features do not need to be serialized behind formal H/W model

S/W only models allow driver development in a simpler environment

Hide the h/w details behind a HAL
● Wrapper PCI calls, DMA mapping, MSI-X handling
● No-ops for S/W model

Allows easier stress testing of S/W for random “H/W” failures
● Example: what happens to a packet socket app if a completion does not arrive from H/W?

○ hint: either stuck process or cpu lockup

© 2023 ENFABRICA CORPORATION. ALL RIGHTS RESERVED.

Thank You

© 2023 ENFABRICA CORPORATION. ALL RIGHTS RESERVED.

