
CXL and SmartNICs: a paradigm change?

Alejandro Lucero Palau
     alucero@os3sl.com

Abstract
Efficiently sharing memory between CPUs and high performance
devices  like  GPUs  is  what  CXL  tries  to  achieve.  This  new
approach will bring changes to how operating systems do things,
and networking will  also be affected sooner  or  later.  Although
similar  functionality  can  be  achieved  with  adhoc  vendor
pathways, CXL will allow simpler hardware designs, a protocol
more suitable than PCIe for memory load/store operations by the
CPUs, coherency managed by the protocol, and, what this paper
states, the opportunity for standardizing how the control path is
programmed by the Host into SmartNICs with Match and Action
Tables. If the Linux way of supporting such control path, that is a
slow  path  through  the  kernel  and  a  fast  path  through  the
SmartNIC,  is  assumed to be  the  right  solution,  an  CXL-based
design could overcome the limitations of current kernel approach
with  TC  and  netfilter/conntrack  when  used  in  massive
virtualization  scenarios.  Moreover,  the  offloading  of  rules  and
flows  could  not  only  be  standardized  but  simpler  and  more
efficiently done through CPUs memory operations instead of per-
vendor driver code requiring helpers like kworkers or suffering
hard-to-parallelize TC functionality. A paradigm change like this
could open new possibilities bringing closer the dream of full,
private and compartmentalized programmability in the network
control path required in multi-tenant cloud networks.
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1. Introduction
New  technologies  can  always  be  disruptive  but  only  if
achieving the expectations once the marketing dust settles
down and the advantages can clearly be seen without the
blurry vision of just-to-prove promises.

Memory is one of the most disruptive in potential when
the term includes  volatile  and  non-volatile  options,  with
the  industry  looking  for  the  Holy  Grail  of  a  high
performance,  low  latency,  low  energy  and  non-volatile
solution. The disruption would not only be in the hardware
world  but  also  in  operating  systems  design  since  the
current memory hierarchy would need a revision in terms
of why operating systems do things as they do now. 

While the memory-type innovations, so promising some
years ago, have not achieved the expected status,  except
for  some  minor  options  for  embedded  systems,  and,  of
course,  the  use  of  SSDs  in  servers,  the  memory
connectivity  revolution  could  bring  such  a  disruption
sooner,  and  CXL  seems  to  be  the  standard  gaining
momentum  (without  discarding  other  options  worth  to
consider and equivalent in the functionality envisioned).

CXL [1] can be seen as an PCIe extension. In fact, the
current  PCIe  protocol  is  available  with  the  CXL.io
specification, one of the CXL protocols. The other two are
CXL.mem and CXL.cache and the ones to focus here. The
interesting  thing  about  CXL is  the  handling  of  memory
coherency between Host and Device,  along with a more
suitable protocol for the bandwidth and latency demanded
by load/stores when performed by the CPUs. Depending
on  the  requirements  three  different  device  types  are
defined:

1. Type 1 device using CXL.io and CXL.cache, the
idea  being  the  device  coherently  caching  Host
memory.  The  device  can  have  a  memory,  apart
from that dedicated to the cache involved, but it is
not managed by the Host.

2. Type 2 device using the three CXL protocols, the
idea being a type 1 device plus device memory
managed by the Host.

3. Type 3 device using CXL.io and CXL.mem, the
idea  being  memory  extensions.  This  can  create
memory hierarchies to be used by the Host and
will likely require main changes to how the Host
manage them, more complex than current NUMA
memory management.

For  the  sake  of  what  this  paper  tries  to  discuss,  it  is
irrelevant the specific hardware/standard behind, CXL or
equivalent, the focus being what this technology brings in
for solving, improving and extending what SmartNICs do.
Regarding the device type for an SmartNIC implementing
a CXL-based solution as presented in this paper, a type 1 or
type 2 could theoretically work, but there are other details
like counters which could imply a type 2. It is not the goal
of  this  work  to  go  into  that  level  of  detail  but  just  an
intellectual exercise about the possibilities.

More  specifically  this  paper  covers  what  SmartNICs
with Match and Action Tables (MATs) require and what a
CXL-based solution could mean. The discussion is based
on how Linux deals with the control path programmability,
the  support  of  offloading  such  control  rules  (match  and
action) and flow states (connection tracking) to SmartNICs
and the necessity of having both, the slow path, through the
operating system, and the fast path, through the hardware,
as current OVS-TC offers. Other solutions as implemented
by  private  offload  mechanism  could  also  obtain  better
results and simpler designs, but it is in the dual path where
the benefits can be higher.

The Linux Traffic Control (TC) [2] was not designed for
what SmartNICs try to solve in the massive virtualization
area,  with  another  Linux  network  component,  netfilter,
suffering  similar  scalability  problems  when  hundreds  of
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thousands  or  even  millions  of  connections  need  to  be
constantly  tracked.  This  is  not  reported  (or  not  loud
enough) as a problem because the Linux kernel TC is the
slow path, and it is not expected to be a performance issue
since most of the traffic will be handled by the specialized
SmartNIC. Of course,  this is true for the case of such a
hardware,  but  even  in  this  scenario  the  current  kernel
implementation is arguably not good enough because the
slow path can eat a considerable amount of cpu cycles, and
any latency when offloading the control rules or flows will
add up to the problem. The misconception is likely due to
considering the setup for the control rules something static
or  quasi-static,  meaning  that  happens  once  when  the
related VM is deployed, but this is  not  always the case.
OVS default behavior is to add/remove the required control
rules based on traffic, so the setup is dynamic and the rate
of  change  dependent  on  the  specific  system  needs  and
configuration. This is even worse for offloading flow states
which  can  fully  stress  out  the  offloading  mechanism  if
thousands or dozens of thousands of connections appear or
disappear  per  second,  as  it  can  be  expected  with  VMs
acting as servers. If we consider the slow path as the only
path, what is the case for supporting more rules/flows than
what  the  hardware  is  able  to  cope  with,  or  for  those
complex match and actions not fully supported by the HW,
improving the slow path acquires more dramatic urgency.
Although  important  by  itself,  this  paper  focuses  on  the
potential  benefits  for  the  dual  path  when using  a  CXL-
based design.

Interestingly, there is a related technology, P4 [3], which
can alleviate the scalability issues along with adding the
promising land of a full control path programmability. This
is not only in the hardware side P4 was originally designed
for, but also in the slow path where the way packets are
processed is (or should be) equivalent to what the hardware
does, and due to hardware limitations, usually a superset of
those control rules/flows. With a P4 frontend interface and
a software P4 interpreter/compiler, the same functionality
can theoretically be obtained,  both,  in  the slow and fast
paths.  Leaving  aside  how  this  will  be  finally  (if  so)
implemented,  and  assuming  the  performance  will
significantly  improve  (and  therefore  current  TC  and
netfilter conntrack bottlenecks overcome) a following set
of questions arise:  could the offload of those match and
action  rules  be  also  improved  for  minimizing  the  cpu
required  even  with  such  an  optimized  new  packet
processing  component?  How  can  the  current  per  driver
vendor  code  be  avoided  for  translating  the  equivalent
TC/conntrack semantics to those per vendor proprietary? If
same P4 code is being used,  by software and hardware,
could the same data tables  in  a  single place/memory be
used?

It could be argued that every vendor will implement the
hardware MAT tables differently so this cannot be imposed
or an agreement for a standard reached, and that it will lack
the flexibility required. But it is not the specific and per-
vendor  hardware  tables  the  ones  to  converge  but  the
memory  backing  their  contents.  For  an  SmartNIC
implementing those MATs hardware tables and focused on
massive virtualization, just a small set of the rules or the

flows to work with will be populated into those tables, with
most  of  them  being  in  device  RAM  memory.  How  the
hardware  tables  can  be  populated  based  on the  memory
contents is up to each vendor,  where several  options are
available,  like  reserving  HW  table  entries  for  specific
rules/flows/clients, implement specific eviction/scheduling
where those HW table entries will be populated based on
generic  or  specific  necessities,  or  even  to  have  two
different fast paths inside the device, one being the fast-fast
where  the  packets  can  be  handled  using  the  HW table
entries,  another  where the packets are handled using the
device memory. With rules and flows kept in Host DRAM
for  the  slow path,  and  most  of  them also in  the  device
DRAM, if  we put  a  CXL-based  design into the  picture,
same contents could be used by the device or by the main
cpus in  the slow path:  just  updating at  specific  memory
addresses once and each side will use them. This is where
the CXL device type will matter. A type 1 device would
imply  the  Host  memory  being  updated  and  the  Device
memory being a cache of those contents. In this case the
slow  path  will  get  the  entries  to  work  with  from  Host
memory. If a type 2 device is used, the CPUs will update
the  device  memory,  so  cache  misses  when  accessing
rules/flows entries by the slow path would imply getting
the contents from the device (transparently performed by
the CXL protocol).  As commented before, which type to
use  needs  to  be  studied  in  more  detail,  and  maybe that
could be just a vendor decision. 

While, as commented previously, device memory can be
directly accessed from the Host cpus as any other memory
if  mapped  accordingly  (PCIe  BARs  regions  or  specific
memory mapping in embedded designs), and surely some
closed  solutions  make  use  of  this  possibility,  with  CXL
there exist important improvements as already explained.
In any case, the rules/flows entries in the device memory
can  be  populated/depopulated  by  the  Host  CPUs  with
load/stores implying a smooth offloading process. 
CXL  can  be  a  big  change  and  make  possible  other
functionalities  arguably  required  for  achieving  the  full
dream of  virtualization where full  confidentiality  can be
provided, which is explored briefly in this document. If we
put all this together, if the holistic approach is pursued, the
standardization about how to write the memory is likely
not  needed at  all:  a  fully  programmable  datapath would
give cloud tenants the power of defining that themselves,
where  the  rules  to  apply  will  be  in  sync  with  what  the
hardware supports. Even if the fully programmability is not
achieved  or  not  in  the  short  term,  what  unsurprisingly
seems to  be  harder  in  the  hardware  side,  the  slow path
programmability  could  not  need  that  standardization  as
long  as  the  programmability  is  offered  by  each  vendor.
This is a more likely outcome in the short term than the
fully  programmable  hardware  datapath,  and  the  CXL
approach can be useful in any case.

In the next sections the problem with the current slow
path  implementation  is  described,  then  the  specific
problem of offloading rules/flows to SmartNICs when used
in  massive  virtualization  deployments.  Next  we  will
compare the current offloading process to a theoretical one
based on CXL. It is worth to mention this design would
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need  the  scriptable  P4  (or  something  equivalent)  in  the
slow path, what could be seen as a reinforcement of such
an  idea,  or  maybe  a  mutual  reinforcement.  Finally,  a
further exercise is performed looking at possibilities in the
Openflow area, multitenancy support and per-client control
path ownership, as another CXL potential disruption.

2. SmartNICs: MATs and DRAM
Terminology can always be confusing, so it is necessary to
state what kind of SmartNIC we mean in this discussion.
Servers  can  run  dozens  of  virtual  machines  and  code
executed inside those virtual machines (VMs) can achieve
native cpu execution except when I/O is required, which is
emulated  and  therefore  suffers  from extra  work  needing
cpu cycles.

SmartNICs can significantly improve this with the code
inside the VMs doing I/O straight to the hardware instead
of going through the host software emulation. The idea is
to give each VM a chunk of the hardware,  but  then the
problem is how the hardware knows what to do with the
I/O coming from those VMs.

Reducing  the  discussion  to  networking,  the  hardware
needs  to  have  rules  for  handling  those  packets,  and  for
figuring out how packets coming through the wire need to
be  dispatched to the right VM. For doing so efficiently,
there are hardware CAM tables containing those rules to
apply. A rule defines first which packets the rule should be
applied  to,  and  then  which  actions  to  execute  for  those
packets,  like  redirecting  them  to  a  specific  port  or
adding/removing a tunnel header.

Hardware CAM tables are how Match and Action Tables
(MATs) can be more efficiently implemented, but they are
power  hungry  beasts  because  the  matching  happens  in
parallel implying a lot of gates being involved at the same
time. The dimension of those CAMs does not suit what fat
servers require,  not  just  in terms of number of rules but
also regarding the flows to  be tracked (if  this service is
offered what seems to be common nowadays). The solution
is  to  back  up the  rules  and  flows with  DRAM and use
hashing for obtaining the rule or flow to work with. The
relationship between those rules and flows in DRAM and
the CAMs is up to the hardware design, but the DRAM
will be used for a massive virtualization scenario. So, the
question is how those CAM tables and that DRAM end up
being populated with the rules and flows required.

The Openflow/OVS way
The  Open  Virtual  Switch  (OVS)  [4] was  designed
following  the  Openflow  [5] standard,  the  control  and
forwarding  paths  of  an  SDN  [6] architecture.  The  idea
being a centralized controller having the information about
how a VM being deployed needs to be configured in terms
of its networking communications. The host executing the
specific VM will get that information from the controller
through the  OVS component  which  configures  that  VM
networking accordingly.

OVS is implemented with two cooperative components,
one inside the kernel and the other in user space. The one
inside  the  kernel  does  the  handling  for  those  packets

coming from the OVS ports connected to VMs and from
the wire. If a packet did not match any configured rule, so
no  action  can  be  applied,  it  is  sent  to  the  user  space
component. At that point the OVS user space component
can know what to do with the packet or maybe it requires
to ask the controller about it. Once it does know, a new rule
specifying the handling will be configured into the kernel
side and the packet injected back to the kernel for being
handled. The in-kernel rule configuration implies to install
it  inside the data structures used by OVS which evolved
through the different versions and it is well described in
[4].

Before  talking  about  when  hardware  offload  changed
this picture, it is necessary to comment the rules to work
with can be installed at the time of the VM deployment,
then being a static rule configuration happening once. But
this is not always the case and OVS by default keeps this
dynamic  based  on  the  traffic  itself,  and  rules  being
installed and removed constantly. That is why the way the
rules  can  be  updated,  in  software  or  in  hardware,  does
matter,  and  any  limitation  in  that  regard  having  a
significant  impact  on  the  full  system,  not  only  in  the
related  VMs.  This  rate  of  change  is  also  unarguably
important  when the conntrack functionality is  considered
along the rules.

While  OVS helped  to  deal  with  the  requirements  for
networking in virtualization, it is a software solution being
executed in the same cpus used by cloud clients. Indeed the
way  VMs  were  attached  to  OVS  was  through  I/O
emulation requiring more cpu cycles to be stolen from the
clients or just those cycles not being  monetizable, and of
course  the  performance  suffers. Hardware  came  to  the
rescue where the OVS configuration could be applied and
packets handled without host intervention. Or so once the
rules are offloaded. The problem in the Linux world was
how to perform such an offload. At the time there were
private per vendor solutions but attempts to include them
in the kernel were rejected. It was not the first time such
kind of divergent implementations had to be added to the
kernel  with  the  usual  solution  being  to  make  it  a
configurable  option  selecting  which  solution  to  use,  but
requiring,  of  course,  some  minimum  convergence  for
allowing such flexibility. In this case it did not happen that
way because it was considered the Linux Traffic Control
(TC)  component  could  be  used  with  minor  changes  for
supporting  hardware  offload.  It  required  though  the  TC
infrastructure  being  part  of  the  OVS  kernel  component
with the rules  to match with and the actions to perform
being  those  already  present  (or  easily  extended  as  it
happened with TC flower). 

3. TC and conntrack bottlenecks
As  mentioned,  offloading  the  control  path  was  under
discussion for several years and it was finally accepted  as
an extension to the Linux Traffic Control Infrastructure. It
is easy to criticize that decision  a posteriori but it can be
arguably said that:

1. The  number  of  rules/flows  to  support  was
considered but not its rate of change.
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2. Any overhead makes things far worse than just a
temporal degradation.

3. It was good enough for Diffserv [2] but not for
massive virtualization. 

As already commented, the rules to apply when a new
VM is deployed are not (usually) static but dependent on
network  traffic.  That  is  where  the  fast  path/slow  path
appears,  initially the fast  path related to packet handling
inside the kernel, the slow path meaning the packet needed
to  go  to  user  space  for  deciding  what  to  do.  With  the
hardware offload the fast path is the hardware and the slow
path the software handling by the host which included the
kernel and user space handling. Therefore, how the rules to
act on packets change, its rate of change, it does matter.
The  second  point  is  even  more  relevant  for  hardware
offload because the latency to offload, the latency until the
hardware can use the offload rule, implies further packets
will  need  to  go  through the  slow path,  the  host,  which
requires cpu cycles contending with the needs from VMs
and with the slow path itself dealing with other flows.

Five problems with TC
The first problem with TC is it is not designed for updating
a qdisc in parallel. Let’s see how this can affect the rate of
change with a vxlan device. VMs belonging to the same
virtual  network  and  running  in  different  serves
communicate through a tunnel which they are not aware of.
This tunnel is deployed and handled by the virtual network
provider and with vxlan tunnels a vxlan device is created
and therefore a qdisc. It is in this vxlan qdisc ingress (after
the  UDP layer  has  detected  the  packet  belonging  to  a
tunnel  connection)  where  the  rules  will  be  added,  but
because  this  sequential  updating  restriction,  concurrent
flows  reaching  the  host  and  being  handled  by  different
cores through an efficient RSS (with inner headers for the
case of tunneling) will contend for updating the qdisc. Not
so long ago someone tried to submit  a patch for  adding
parallelism, but it was discarded because it required locks
which are not easy to handle inside TC, and because that is
the control path after all, which does not require this kind
of  optimizations.  With  the  right  motivation  this  could
change but this is not the only problem.

The second problem with TC is those qdisc rules, once
they have been installed, will be checked out sequentially
until one matches the packet. This is not so bad for a low
number of rules to work with per  qdisc,  but  all  the cpu
cycles  required  here  are  a  problem  with  the  current
networking  performance  available  with  gigabit  cards.
Again,  TC  was  designed  for  supporting  the  Diffserv
architecture  at  a  time  where  the  needs  for  massive
virtualization were distant and where the gap between the
cpu packet handling and network cards performance was
not so bad.  User space solutions like netmap or DPDK
appeared  because  this  gap  increased  (along  with  the
problems coming with system calls and interrupts). Should
the kernel move to another model or maybe should it keep

TC  along  with  a  more  suitable  solution  for  massive
virtualization?. 

The third  problem is  related  to  parsing  and  matching
what is performed for each rule until one match is found.
Other implementations dealing with matching packets are
far  better  in  this regard (see [4])  which comes from the
necessity of dealing with a far higher number of rules to
match with. Also, the current parser, kernel flow dissector,
can have been useful until now or still up to the task for
certain  scenarios,  but  its  performance,  leaving  its
implementation clarity aside, highly improvable [7].

A fourth problem with TC is the syntax gap. For massive
virtualization  and  with  OVS-TC  relying  on  Openflow,
those  rules  defined  in  Openflow  syntax  need  to  be
translated to TC. This is even worse with hardware offload
where  such  a  TC rule  will  need  to  be  translated  to  the
specifics of each vendor by the related driver. 

And  the  fifth  problem  with  TC  is  its  ossification.
Interestingly  this  was  something  always  favorably  to
software versus hardware solutions, but supporting quickly
new  protocols  requires  another  approach.  This  could
hopefully  be  overcome  soon  if  the  P4  software  and
hardware datapaths end up being a reality.

SmartNICs  can  alleviate  these  problems  because  the
datapath  will  be in  the hardware.  Right? Well,  the  slow
path is still there with SmartNICs, and here it comes the
bad news: any latency offloading rules implies more packet
through the slow path, which implies more latency for the
offload again.

Conntrack  design  is  probably  better  suited  for
supporting  a  higher  load  of  processing,  at  least  for
checking if a particular flow is already being tracked. But
conntrack as a TC action depends on the rules execution
and therefore suffers from the sequential process. 

Offloading
TC rules and conntrack flow states can be offload to the
hardware. The limitations exposed have an impact on the
offload  because  it  cannot  happen  faster  than  TC  or
conntrack  add  rules  or  flows.  But  the  offload  itself  has
problems.

A TC rule to offload needs to be received by the related
hardware driver, what is currently happening at the end of
the TC rule insertion, and this can not happen in parallel as
we  have  mentioned  in  the  TC  problems  list.  Then  the
driver  will  check  for  the  hardware  supporting  the  rule
requirements, and if supported, it will translate the TC rule
to the format required by the hardware. Interestingly, data
about the rule to offload is kept by the driver for dealing
with  new  necessities  (updating,  removing,  counters).  At
that  point  a  specific  per-vendor  mechanism  is  used  for
sending the rule and, usually, waiting for the completion of
the operation. This is of course up to the vendor where the
possibilities  are  a  specific  hardware  block,  firmware,  or
both.

For  conntrack  the  offload  does  not  happen
synchronously  but  through  kworkers.  Those  works  will,
when processed by the kernel kworkers, end up reaching
the driver  and a similar process than with TC rules  will
occur, although usually simpler in this case. Currently the
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implementation  creates  two  different  works  for  a  flow
offload, one for each direction. It is not necessary to say
how  the  system  will  use  the  cpu  for  executing  those
kworkers will have an impact, and the fact of not existing
the  notion  of  processing  flows  batches  makes  this
mechanism a problem with massive  virtualization where
conntrack  flows  will  be  inserted  and  deleted  constantly
based on traffic. 

The previous picture tries to show the current processing
when TC rules  and  flow states  are  offloaded.  The  Host
needs to process not just the TC insertions and conntrack
flow states changes but the specific driver will need to do
more work before the data ends up in the hardware. The
final  latency  has  two  components  here,  the  latency
introduced by the kernel and the latency introduced by the
driver/hardware for exchanging the control data. There is
another component and this is related to how the hardware
will handle the control data until it  is really used by the
hardware  datapath.  There  are  different  possibilities  for
implementing this final step, like redirection to DRAM or
populating the MATs with the new data, and that can be
done through specific hardware design or by firmware. But
apart  from the specific design, avoiding latencies here is
not trivial since the mechanism needs to be designed for
the rate of change required.

An SmartNIC with a DRAM will be constantly using the
DRAM  when  fully  operative,  otherwise  the  device

design/dimensioning is arguably inappropriate. If so, does
it not make sense to use the direct DRAM population from
the  Host  and  with  the  best  available  technology?  A
counterargument is some rules/flows could be installed in
MATs  with  lower  latency  through  a  direct-MAT
population, but this requires a carefully and costly design if
unexpected  latencies  needs  to  be  fully  avoided.  If  this
minimal low latency is required, which can only be done
up to a point (MATs size), some internal mechanism could
be added for DRAM rules/flows entries triggering such a
population  based  on  certain  flag  or  similar  signal.
Simplifying the control path inside the device has also the
advantage of keeping the focus on the datapath, in this case
focusing  on  how  the  interaction  between  MATs  and
DRAM, and any intermediate cache, can be improved. 

4. CXL into the picture
It should be clear at this point which are the main problems
with  the  current  Linux  way.  Maybe  it  is  also  worth  to
discuss if the slow/fast paths is the best option. This paper
assumes it is, so just a few lines to back this up:

• Overcoming the hardware resources limitation.

• Matching  or  actions  not  supported  by  the
hardware.

• Flow  initialization  based  on  host-only
functionalities like conntrack. Currently conntrack
state can be offloaded but only when the state is
established by the software.

As  commented  earlier,  CXL  does  also  make  sense
without the dual datapath since it can potentially (based on
the hardware design though) minimize the latency of rules
or  flows  offload,  using  less  host  cpu  cycles  and  likely
saving energy with a  more efficient  protocol than adhoc
hardware designs.

With the dual datapath, CXL could be used just for the
offload,  with  vendor  drivers  writing  to  CXL  memory
addresses. This is the more conspicuous use and likely the
first  step  towards  a  fully  CXL support,  but  although  it
would benefit from the CXL protocol advantages, it would
not exploit the possibilities. So, which are the extra gains
for the dual path scenario?

CXL  was  designed  for  the  requirements  of  sharing
memory between devices  and cpus where the coherency
plays  a  key  role.  With  the  necessities  of  massive
virtualization, the amount of memory required for keeping
the rules and flows is significant. With the dual datapath, as
it  is  currently  implemented,  that  amount  of  memory
doubles (or triples if the data kept by the driver counts), so
could not the same memory contents be used by both, the
hardware  and  software  datapath?.  This  is  theoretically
possible but there are some caveats which require further
discussion. Before that, a second potential advantage needs
to be presented.

While a single path with an adhoc vendor solution can
write  to  CXL  memory  the  specific  contents  with  no
constraint, the dual datapath requires a generic way as a
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frontend  with  specific  per  vendor  drivers  as  backends.
Removing  this  indirection  is  possible  if  there  is  just  a
generic  way which implies  agreement  or  standardization
about what to write to CXL memory. It is important to note
this is not about restricting or forcing vendors what to do
since  the  secret  sauce  about  the  MATs  design  and  any
packet switching details can be kept: the only requirement
is about how the rules and flows are saved in the DRAM. It
could be argued that format will be intimately related to
such internal design, but, in that case, who should be doing
the required translation? If it is before the CXL memory is
written, that will be charged on the host cpus. If it can be
performed by each vendor inside the device when MATs or
intermediate caches are populated, the burden will be on its
vendor design. Moreover, could not be a fully P4 solution,
where the hardware and software will  depend on the P4
design, the one in charge of how to populate the DRAM?
Finally, it  is worth to question if the several  translations
performed today, the syntax gap, could not be avoided, at
least  for  the  hardware,  if  the  devices  would  pursue
Openflow compatibility. Could a fully P4 solution have the
right format already in the Openflow controller?

Now, if we join the last two concepts, there it comes an
interesting solution:

The picture is hopefully showing the design possibilities.
The memory written by the Host, when rules or flows need
to be updated, is a CXL memory. Once there is a change,
thanks  to  the  CXL coherency,  both,  the  device  and  the
Host, will see the same tables, not the MATs but the data
structure  to  be  used  in  DRAM.  When  the  slow path  is

executed in the Host, the CXL coherency appears, with the
cpu using CXL memory for  data  not  present  in  the cpu
cache. Those cache misses are likely handled with higher
latency  than  accesses  to  the  Host  DRAM, although this
depends on the CXL device type.  If  the data is  in Host
DRAM  and  the  device  is  caching  the  data,  the  Host
memory needs to be dimensioned properly. If  the device
DRAM  keeps  the  data  and  the  Host  is  caching,  the
dimensioning depends on the vendor.  The data will  only
really  be  in  one  place  in  the  second  case,  but  options
should be considered. As the picture also shows, there is
part of the table not under CXL domain: overcoming the
HW resources and supporting by software what the HW
does not.

In  a  dual  datapath  scenario  this  design  implies  the
hardware  will  get  the  new  control  data  as  soon  as  the
beneath  hardware  allows  and  not  dependent  on  middle
layers adding latency and subject to potential bottlenecks.
As we have shown previously, current offload mechanism
through specific drivers are not needed, and hopefully not
translations either. Is this an impossible dream?

The caveats do exist, but they are not unbearable. The
most  important  one is  with this  design the software and
hardware need to use same algorithm for accessing the data
in the shared memory. The most likely solution seems to be
a number of cuckoo hash tables as some current hardware
switches are using. But this does not need to be fixed but
through  a  configuration  option  based  on  what  the  HW
requires.  The  initial  option  could  likely  be  just  an
agreement following the current state of the art,  but this
design  would  surely  lead  to  further  research  and  other
options appearing in the following years. As an example,
another potential solution with CXL memory could be the
control data not really written by the Host but by specific
HW dealing with the intrinsics of the data structure used,
where updates (as with cuckoo hashes) could be harder and
therefore  potentially  accelerated/controlled  by  specific
hardware elements. Of course, the software should have a
read-only  way  for  using  the  data  in  the  slow  path
execution. The CXL advantage would still  be there with
the writes going to specific hardware buffers where those
write/updates  accelerators  will  use  them.  This  is  quite
similar to how GPUs currently receive commands from the
Host  and  the  performance and  design  of  those  elements
will set the latencies. Finally, and again, a full P4 solution
involving  the  software  and  hardware  datapaths  could
potentially include the way of accessing the data from both
sides efficiently.

The  host  writing  straight  to  the  CXL  memory  has
another  important  advantage:  this  is  orthogonal  to  other
interesting things the host needs to do (or could do). One of
those  things  is  yet  another  intellectual  exercise  about
further CXL possibilities in the SmartNIC area, specifically
now about how to support  multitenancy with the proper
confidentiality  and  performance  and  through  a  simpler
interface than with adhoc solutions. This will be discussed
in the next section but before that, let´s talk about hardware
counters.
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Reading counters on demand with CXL
Those working in the SmartNIC area through the last 10
years are well aware of how offering counters to the Host
can  be  a  nightmare  by  itself.  Having  multiple  wire
interfaces  in a  network card and giving stats about  how
packets are sent and received is a tractable problem but that
explodes when you have dozens or hundreds of VFs plus
hundreds or thousands of rules, actions and flows.

A common solution is to send the counters regularly to
the Host  which requires  the  related  driver  passing those
counters to the related software counters. The data can be
sent through a special  channel or just using the datapath
and some filter  in  the  driver  for  detecting  those  special
packets. The work is not negligible and the time between
the counters being packed into those special packets until
the interested user gets them can be significant. Moreover,
all the work done could be for nothing if none is interested.
So, what if those counters are read on demand?

Here is where the cache coherency could be interesting
because the coherency is not needed until the user reads
them  and  just  those  the  user  is  interested  in.  The
granularity of this coherency is important and something to
look at, but the main problem to solve here is how the user
knows about the memory address to read from, and more
importantly, how the hardware should keep them. We are
not going to discuss this further, but it is important to note
the  fact  that  we  mentioned  the  user  and  not  the  kernel
knowing about how to read the counters. The next section
explains what.

5. Openflow and Multitenancy
The orthogonality of a CXL design could be the key for
achieving a dream in the SDN world: the programmability
of the control path under the client command.

So,  what  is  still  needed  for  achieving  the  network
virtualization dream? The answer,  although probably not
complete, is threefold:

1) Two-level control path: cloud provider at the first level,
tenants at the second one.

The Cloud provider has to give a network to the client, a
virtualized one. But how the exchanges inside that network
happen should not  arguably  be  under  the  control  of  the
cloud provider. Some clients will be happy to forget about
it and have the work done somehow with a default control
path  configured  by  the  cloud  provider.  But  surely  big
clients do not want to leave such a control  to the cloud
provider because it gives a lot of information about what is
being done by the client. Not just how the communications
are  being  done  but  also  what  communications  are  not
allowed  is  information  none  with  security  concerns  is
happy to unveil. Moreover,  a security breach in the host
could manipulate that control in nefarious ways.

This has been proposed in Openflow  [8][9][10][11] for
allowing clients to program routers slices assigned to them.
We state that there exists the same need for those private
slices  with  the  SmartNICs  control  path  being  under  the
control of the client owning the VM. Note this does not
mean under the control inside the VM.

2)  Fully  isolation  and  privacy  about  control  path
set/required by tenants inside their network.

Because the previous point, the control should not only
be performed by the client  but  it  needs to  be protected.
This  includes  the  previous  statement  about  a  security
breach in the host not able to modify the control path of a
client,  and  also  the  fact  that  the  control  path  inside  the
virtual network should not be visible for the cloud provider
either. 

This should not be confused with the privacy offered by
encrypted  tunneling  protocols  like  IPSec  which  can
encrypt not just the data but also the inner headers.  The
problem being the Host and the NIC need to know which
are  those  inner  headers  for  doing  the  proper  forwarding
after  the  tunnel  encapsulation  is  removed.  A  proper
solution is only possible if only in the client´s execution
context can those inner headers not just be read but also
used for the matching and action required, and of course,
for configuring the matching rules. There is no doubt this is
really demanding, but there should not be doubt either that
only  that  way  can  be  the  protection  and  privacy  really
offered  if  this  two-level  network  control  management  is
really required.

3) Qos applied independently in the two levels.

While the cloud provider hopefully offers certain degree
of QoS per VM/client,  how the guaranteed bandwidth is
internally used should be in the hands of the client. CXL
can help facilitating access to related counters and maybe
using a per rule/flow weight which can be easily modified
by the client and by the provider. This does not mean the
provider can modify what the client does, but obviously,
the provider needs to have also a way for doing the QoS at
its level.

How CXL can help here? The Holistic Approach.

Because the configuration can be based on Host CPU
writes  to  CXL  memory,  the  different  levels  can  have
private mappings to different slices in that memory. There
is  no  need  of  code  in  the  Host  translating  generic
configuration about control path to the specific instrinsics
of a particular hardware device. This could be also possible
without CXL, but the interface which is required for each
level (the client level implying multiple clients) is simpler
with  just  CPU  read/writes  to  the  private  CXL memory
slice, and as it was presented earlier, not requiring a special
path through kernel drivers, nor special PCIe management
in the device for the control path changes ending up in the
device DRAM.

It  is  an  holistic  approach  because  with  a  memory
interface  plus  real  memory  in  the  device,  memory
encryption technology can be used for the protection and
privacy required. Technologies like AMD´s SEV-SNP [12],
Intel´s SGX [13] or ARM´s CCA [14] could be leveraged
for such a confidential control path data.

And  as  with  CXL  counters  are  theoretically  easily
accessible helping with adjusting QoS configuration, and
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with such a configuration having the simple interface of
memory accesses in the two levels.

The  previous  picture  shows  how  this  could  be
implemented. The different colors for the CPU´s tries to
reflect  the  different  execution  contexts  where  the  CXL
memory,  specifically  those  ranges  linked  to  the  context,
will be accessed, both for the slow path execution and for
the updates to the rules and flows (the control path).

One  context  executing  OVS  and  installing  rules  and
flows under the control  of  the cloud provider  is  needed
since the virtual network is created by the cloud provider
and how to  connect  with  other  local  or  remote  VMs  is
established at that level (how the defined tunnels are given
to the client after this setup is not discussed here but not a
big issue if this solution ends up being a reality). There is
also one remote OpenFlow management system owned and
managed by the cloud provider.  There are other contexts,
one per tenant having a VM in the machine, with specific
CXL slices owned by tenants. Writing or reading the CXL
slices is only possible inside the execution context owning
such slice. The Openflow management is visualized with
different systems with each tenant controlling its own one.
With those encryption technologies commented previously,
those CLX slices and the slices in the main host memory
used (for  supporting more rules/flows than the hardware
admits) will be encrypted protecting the contents from a
security breach or from an non-trusted provider. Executing
code  writing  to  or  reading  from CXL memory  slices  is
feasible,  although  current  kernel-based  solutions  will
require important changes. As an example, there are epbf
programs  nowadays  handling  packets  inside  the  kernel

implying  special  contexts  (ebpf  virtual  machines)  where
that code is executed, so this specific CXL context could
also be theoretically supported. When should those context
be executed? This is obviously something requiring further
investigation and, undoubtedly, discussions with the Linux
kernel  community  and  related  projects  like  OVS.  But,
currently, the slow path is not counted on the client but on
the  Host.  Should  not  be  fairer  to  have  those  contexts
contending  with  the  cpu  cycles  assigned  to  the  related
client´s VMs?

There  will  be  those  arguing  the  cost  of  doing  this
context-based  execution  for  handling  packets  will  slow
down the performance significantly, but this is only true if
compared with a  fast  path not  requiring such slow path
functionality. Most of the fast path will happen inside the
NIC with the offloaded rules and flows already installed
through  the  CXL  interface,  and  although  as  stated
previously  in  this  document,  the  slow  path  should  be
optimized as much as possible, the trade-off between the
security  and  privacy  and  the  potential  performance
degradation seems to be good enough [15] for the security
side. Moreover, if this solution is considered as the right
one, and there is a demand for it, the performance would
be  improved  with  specific  hardware  designs  by  the
different CPUs architectures keen to offer this possibility,
as it has happened in the past.

It is also important to note the privacy offered with the
solution described in this  document  should cover all  the
involved components. The Host, being it the main OS, the
hypervisor or other VMs/clients, should not be able to alter
the  control  path  of  a  specific  VM/client  nor  to  see  its
configuration, but the NIC should not break this privacy
either.  This  is  obviously  a  complex  thing  to  do  but  not
different  to  what  is  being  done for  preserving  the  VMs
privacy  nowadays  and  therefore  not  just  feasible  but
desirable  for  the  sake  of  giving  the  full  privacy  pack
required  in  public  clouds.  This  could  be  implemented
partially or fully. Partially implying encryption is not used
inside the NIC in all the processing, although it is obvious
the right keys will be needed at some point, but the client´s
related data should not be readable from NIC memories or
registers  without the client  collaboration in special  cases
like debugging. 

6. Conclusions
There is no doubt CXL is a paradigm change and it will
bring  new possibilities  only  limited  by  the  inventive  to
harness it in unexpected ways.

With an  CXL Type 1 or  2  SmartNIC,  the  Linux way
could have these advantages:

1. Data in the slow path with rule and connection
entries shared with the hardware fast path.

2. Population and depopulation by the Host with just
memory operations by the CPUs. Offloads do not
require extra work.
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3. Counters  can  be  read,  and  coherency  can  be
delayed until required.

4. Arguably, CXL-based setup can facilitate Device
resource management and QoS from the Host.

5. Future HW designs based on fully programmable
pipelines,  as  scriptable  P4  points  to,  or  an
equivalent HW eBPF, would suffer same problem
than  current  solutions  regarding  population  and
depopulation of MATs and hash tables. The rate of
change for  the  control  data  will  be  higher  than
conventionally assumed, and a CXL-based design
can only help.

6. An  holistic  approach  with  CXL  along  with
memory  encryption  technologies  can  make
possible the full virtualization dream, or at least
being one (giant) step closer.

This  proposal  is  really  ambitious  and  no  doubt  it
requires the SmartNIC vendors to believe in the prospects,
although maybe it is the cloud providers, knowing better
how  could  be  the  impact  of  such  technology,  the  ones
pushing forward. Being aware of the challenges ahead, we
use  the  same  initial  paragraph,  this  time  applied  to  the
proposal itself:

New  technologies  can  always  be  disruptive  but  only  if
achieving the expectations once the marketing dust settles
down and the advantages can clearly be seen without the
blurry vision of just-to-prove promises.
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