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Emergence of Host Congestion

Recent technology trends: host conges>on 
E.g., recent studies from Google, Microso=, Alibaba, etc. 

Conven>onal wisdom: conges>on happens in the network core 
At switches



Host conges>on in Google produc>on cluster
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We reproduced host conges>on phenomenon 
using an open sourced stack: Linux + DCTCP

Source: Understanding Host Interconnect CongesEon, HotNets 2022

Host Congestion: Impact on Application Performance

Topology: single sender, single receiver, 100Gbps access links 
• No network fabric congesEon

Workload: MulE-tenant scenario 
• iperf: Throughput-intensive network app 
• netperf: Latency-sensi>ve network app 
• MLC: Memory-intensive host-local app

Sender Receiver



Host conges>on in Google produc>on cluster
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We reproduced host conges>on phenomenon 
using an open sourced stack: Linux + DCTCP

Source: Understanding Host Interconnect CongesEon, HotNets 2022

Host Congestion: Impact on Application Performance

Our GitHub repo provides workloads and infrastructure required to reproduce our results:
hLps://www.github.com/Terabit-Ethernet/hostCC
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Experiment 1 
[Baseline scenario] 

Up to 55% reduc>on in 
throughput

Experiment 3 
[MulE-tenant scenario] 

Up to 5000x infla>on in 
tail latency

Experiment 2 
[Larger #connecEons] 

Up to 1.1% packet drops 
=> poor isola>on

Paper provides workload details and addi>onal results

https://www.github.com/Terabit-Ethernet/hostCC


Host Conges>on: conges>on within the host interconnect 
BoZlenecks within the NIC-to-CPU/memory datapath

Result: Queueing and drops at the NIC

Host interconnect: a different kind of network fabric 
- hardware guarantees losslessness (no data drops) 
- is shared by network applicaEons and “host-local” applicaEons

NIC

PCIe

IIO
DRAM

Understanding Host Congestion

Processor Interconnect Memory Interconnect

Peripheral Interconnect

Host interconnect comprises of three main components 
- processor, peripheral and memory interconnect 
- help exchange informaEon across NIC, CPUs and DRAM

Network traffic

Host-local traffic



Host Conges>on: conges>on within the host interconnect 
BoZlenecks within the NIC-to-CPU/memory datapath

Result: Queueing and drops at the NIC

Host interconnect: a different kind of network fabric 
- hardware guarantees losslessness (no data drops) 
- is shared by network applicaEons and “host-local” applicaEons

NIC

PCIe

IIO
DRAM

Understanding Host Congestion

Host interconnect comprises of three main components 
- processor, peripheral and memory interconnect 
- exchange informaEon across NIC, CPUs and DRAMProblem likely to get even worse over Eme
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Rethinking conges>on signals 
Conges>on happening “outside” the network

Sender Receiver

Memory controller outside the 
considered view of network

Host Congestion Control: Rethinking CC Architecture

Memory controller outside the 
considered view of network

Tradi>onal conges>on signals: 
switch buffer occupancies, delays or packet drops



Sender Receiver

CongesEon Control 
(RTT granularity)

Rethinking conges>on response 

CongesEon Signal 
(Delay/Drops)

- CC performed at RTT granularity
- Host-local traffic does not employ CC

Host Congestion Control: Rethinking CC Architecture

Host-local traffic does not 
employ congesEon control

Host-local traffic does not 
employ congesEon control



Key idea: Host-local conges>on response, at sub-RTT granularity 

Sender Receiver

Host-local  
Conges>on Response 
(at sub-RTT granularity)

hostCC: A new CC Architecture for Host and Network Congestion

Host-local  
Conges>on Response 
(at sub-RTT granularity)

Prevents network traffic 
gehng starved

Minimizes queueing and 
drops at the NIC



hostCC: End-to-end Overview
1. Host Conges>on Signals 
At sub-µs granularity 
Using commodity hardware

Sender Receiver

Host 
CongesEon 

Signals

Host 
CongesEon 

Signals

hostCC currently uses  
IIO buffer occupancy  

as host congesEon signal

hostCC currently uses  
IIO buffer occupancy  

as host congesEon signal



hostCC: End-to-end Overview
1. Host Conges>on Signals 
At sub-µs granularity 
Using commodity hardware

Sender Receiver

Host 
CongesEon 

Signals

Host 
CongesEon 

Signals

CDF for IIO Occupancy Measurement Latency

Measurement latency <~600ns, 
Independent of host congesEon

IIO Occupancy Behavior

IIO occupancy ~65 cachelines under 
no host congesEon scenario

IIO occupancy saturates to max 
value of ~92 cachelines

No Host CongesEon With Host CongesEon

µs-scale Behavior of IIO Occupancy



hostCC: End-to-end Overview
1. Host Conges>on Signals 
At sub-µs granularity 
Using commodity hardware

Sender Receiver

Host 
CongesEon 

Signals

Host 
CongesEon 

Signals

2. Host-local Conges>on Response 
At sub-RTT granularity 
No changes to applicaEons/hardware 

Host-local  
Conges>on Response 
(at sub-RTT granularity)

Host-local  
Conges>on Response 
(at sub-RTT granularity)

hostCC currently uses  
backpressure-based mechanisms 
for host-local congesEon response

hostCC currently uses  
backpressure-based mechanisms 
for host-local congesEon response



hostCC: End-to-end Overview
1. Host Conges>on Signals 
At sub-µs granularity 
Using commodity hardware

Sender Receiver

Host 
CongesEon 

Signals

Host 
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2. Host-local Conges>on Response 
At sub-RTT granularity 
No changes to applicaEons/hardware 

Host-local  
Conges>on Response 
(at sub-RTT granularity)

Host-local  
Conges>on Response 
(at sub-RTT granularity)

hostCC uses  
Memory Bandwidth Alloca>on 

for host-local congesEon response

hostCC uses  
Memory Bandwidth Alloca>on 

for host-local congesEon response

Example tool for backpressure to host-local traffic: Intel MBA
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Increasing backpressure for increasing allocaEon levels



hostCC: End-to-end Overview
1. Host Conges>on Signals 
At sub-µs granularity 
Using commodity hardware

Sender Receiver

Host 
CongesEon 

Signals
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hostCC currently uses  
backpressure-based mechanisms 
for host-local congesEon response

hostCC currently uses  
backpressure-based mechanisms 
for host-local congesEon response

User-specified host resource 
allocaEon policy

User-specified host resource 
allocaEon policy

Target Network BW Target Network BW

Desired Alloca>on Level Desired Alloca>on Level



hostCC: End-to-end Overview
1. Host Conges>on Signals 
At sub-µs granularity 
Using commodity hardware

Sender Receiver

Host 
CongesEon 

Signals

Host 
CongesEon 

Signals

2. Host-local Conges>on Response 
At sub-RTT granularity 
No changes to applicaEons/hardware 

3. Network Conges>on Response 
Uses both network & host conges>on signals 
No changes to network CC protocols

Network 
CongesEon 

Signals

Network CongesEon Response 
(at RTT granularity)

Sending rate computed using 
minimum boZleneck capacity in 

network & host interconnect

Sending rate computed using 
minimum boZleneck capacity in 

network & host interconnect

Sending rate computed using 
minimum boLleneck capacity in 
network and host interconnect

Host-local  
Conges>on Response 
(at sub-RTT granularity)

Host-local  
Conges>on Response 
(at sub-RTT granularity)



hostCC: End-to-end Overview
1. Host Conges>on Signals 
At sub-µs granularity 
Using commodity hardware

Sender Receiver

2. Host-local Conges>on Response 
At sub-RTT granularity 
No changes to applicaEons/hardware 

3. Network Conges>on Response 
Uses both network & host conges>on signals 
No changes to network CC protocols

Example scenario: Using ECN-based network CC protocols

Minimal modificaEons to the 
host IP layer stack  

(<100 LOC using NetFilter hooks)

Packet

PAYLOADHDRECN bits marked in 
packet’s IP header

When switch buffer 
occupancy exceeds 

ECN threshold

When switch IIO buffer 
occupancy exceeds ECN 

threshold

ECN bits echoed 
back to sender via 
ACKs by transport

CC protocols react to ECNs 
independent of the  
source of marking

No changes required for 
exisEng ECN-based protocols 

(DCTCP, TCP w/ ECN, etc)



hostCC Benefits With Host Congestion
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Improved performance under host conges>on
Near-opEmal throughput and latency
Reduces queueing/drops to a bare minimum

Enables enforcing desired resource alloca>on policy
Network traffic close to user-specified target bandwidth
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hostCC Benefits With Host Congestion and Network Fabric Congestion

Maintains benefits even in presence of both 
network and host conges>on
Interpolates well with network CC
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Performance similar to network CC in presence of 
only network conges>on
Minimal overheads of using hostCC
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Network Traffic 
Resources

Host-local 
Traffic 

Resources

Coarse-grained 
allocaEon

Finer-grained 
allocaEon

CXL will reduce  
peripheral interconnect latency  

(i.e., NIC-to-IIO latency) 

However, host congesEon 
caused by increase in  
IIO-to-DRAM latency 

RDMA avoids data copy 
overheads 

Even with zero-copy, RDMA 
sEll uElizes DRAM bandwidth 

to DMA data to DRAM 

We need new tools for efficient resource alloca>on
ExisEng tools too coarse grained
Need tools for finer-grained allocaEon

New technologies for solving host conges>on
Unclear if CXL will solve the problem
RDMA may not solve the problem by itself 

Lessons learnt and future directions



hostCC: A CC architecture that handles host and network fabric congestion

Sender Receiver

Host 
CongesEon 

Signals

Host 
CongesEon 

Signals

Host-local  
Conges>on Response 
(at sub-RTT granularity)

Host-local  
Conges>on Response 
(at sub-RTT granularity)

Network 
CongesEon 

Signals

Network CongesEon Response 
(at RTT granularity)

hostCC Linux implementaEon & workloads to reproduce our results are available at www.github.com/Terabit-Ethernet/hostCC
hostCC project webpage: www.cs.cornell.edu/~saksham/hostcc

http://www.github.com/Terabit-Ethernet/hostCC
http://www.cs.cornell.edu/~saksham/hostcc

