
Host Congestion Control

Saksham Agarwal
Cornell University

Arvind Krishnamurthy
Google &

University of Washington

Rachit Agarwal
Cornell University

Emergence of Host Congestion

Recent technology trends: host conges>on
E.g., recent studies from Google, Microso=, Alibaba, etc.

Conven>onal wisdom: conges>on happens in the network core
At switches

Host conges>on in Google produc>on cluster

0.2 0.4 0.6 0.8
Host Access Link Bandwidth Utilization

H
os

t
D

ro
p

R
at

e

N
or

m
al

iz
ed

Fr
ac

ti
on

(A

m
on

g
al

l d
at

a
po

in
ts

 o
n

pl
ot

)

0.0 1.0
0

1

We reproduced host conges>on phenomenon
using an open sourced stack: Linux + DCTCP

Source: Understanding Host Interconnect CongesEon, HotNets 2022

Host Congestion: Impact on Application Performance

Topology: single sender, single receiver, 100Gbps access links
• No network fabric congesEon

Workload: MulE-tenant scenario
• iperf: Throughput-intensive network app
• netperf: Latency-sensi>ve network app
• MLC: Memory-intensive host-local app

Sender Receiver

Host conges>on in Google produc>on cluster

0.2 0.4 0.6 0.8
Host Access Link Bandwidth Utilization

H
os

t
D

ro
p

R
at

e

N
or

m
al

iz
ed

Fr
ac

ti
on

(A

m
on

g
al

l d
at

a
po

in
ts

 o
n

pl
ot

)

0.0 1.0
0

1

We reproduced host conges>on phenomenon
using an open sourced stack: Linux + DCTCP

Source: Understanding Host Interconnect CongesEon, HotNets 2022

Host Congestion: Impact on Application Performance

Our GitHub repo provides workloads and infrastructure required to reproduce our results:
hLps://www.github.com/Terabit-Ethernet/hostCC

0

25

50

75

100

No CongesEon With Host CongesEon

1

1000

1000000

0

1

2
Throughput (Gbps) Tail Latency (us)Packet Drop %

Experiment 1
[Baseline scenario]

Up to 55% reduc>on in
throughput

Experiment 3
[MulE-tenant scenario]

Up to 5000x infla>on in
tail latency

Experiment 2
[Larger #connecEons]

Up to 1.1% packet drops
=> poor isola>on

Paper provides workload details and addi>onal results

https://www.github.com/Terabit-Ethernet/hostCC

Host Conges>on: conges>on within the host interconnect
BoZlenecks within the NIC-to-CPU/memory datapath

Result: Queueing and drops at the NIC

Host interconnect: a different kind of network fabric
- hardware guarantees losslessness (no data drops)
- is shared by network applicaEons and “host-local” applicaEons

NIC

PCIe

IIO
DRAM

Understanding Host Congestion

Processor Interconnect Memory Interconnect

Peripheral Interconnect

Host interconnect comprises of three main components
- processor, peripheral and memory interconnect
- help exchange informaEon across NIC, CPUs and DRAM

Network traffic

Host-local traffic

Host Conges>on: conges>on within the host interconnect
BoZlenecks within the NIC-to-CPU/memory datapath

Result: Queueing and drops at the NIC

Host interconnect: a different kind of network fabric
- hardware guarantees losslessness (no data drops)
- is shared by network applicaEons and “host-local” applicaEons

NIC

PCIe

IIO
DRAM

Understanding Host Congestion

Host interconnect comprises of three main components
- processor, peripheral and memory interconnect
- exchange informaEon across NIC, CPUs and DRAMProblem likely to get even worse over Eme

1
2
3
4
5
6

2017 2019 2021 2023 2024 2025 2026

Peripheral device traffic Host-local traffic

Memory Bandwidth OversubscripEon

Sapphire
Rapids

Emerald
Rapids

Granite
Rapids

Diamond
RapidsIcelakeCascadelakeSkylake

Years

Rethinking conges>on signals
Conges>on happening “outside” the network

Sender Receiver

Memory controller outside the
considered view of network

Host Congestion Control: Rethinking CC Architecture

Memory controller outside the
considered view of network

Tradi>onal conges>on signals:
switch buffer occupancies, delays or packet drops

Sender Receiver

CongesEon Control
(RTT granularity)

Rethinking conges>on response

CongesEon Signal
(Delay/Drops)

- CC performed at RTT granularity
- Host-local traffic does not employ CC

Host Congestion Control: Rethinking CC Architecture

Host-local traffic does not
employ congesEon control

Host-local traffic does not
employ congesEon control

Key idea: Host-local conges>on response, at sub-RTT granularity

Sender Receiver

Host-local
Conges>on Response
(at sub-RTT granularity)

hostCC: A new CC Architecture for Host and Network Congestion

Host-local
Conges>on Response
(at sub-RTT granularity)

Prevents network traffic
gehng starved

Minimizes queueing and
drops at the NIC

hostCC: End-to-end Overview
1. Host Conges>on Signals
At sub-µs granularity
Using commodity hardware

Sender Receiver

Host
CongesEon

Signals

Host
CongesEon

Signals

hostCC currently uses
IIO buffer occupancy

as host congesEon signal

hostCC currently uses
IIO buffer occupancy

as host congesEon signal

hostCC: End-to-end Overview
1. Host Conges>on Signals
At sub-µs granularity
Using commodity hardware

Sender Receiver

Host
CongesEon

Signals

Host
CongesEon

Signals

CDF for IIO Occupancy Measurement Latency

Measurement latency <~600ns,
Independent of host congesEon

IIO Occupancy Behavior

IIO occupancy ~65 cachelines under
no host congesEon scenario

IIO occupancy saturates to max
value of ~92 cachelines

No Host CongesEon With Host CongesEon

µs-scale Behavior of IIO Occupancy

hostCC: End-to-end Overview
1. Host Conges>on Signals
At sub-µs granularity
Using commodity hardware

Sender Receiver

Host
CongesEon

Signals

Host
CongesEon

Signals

2. Host-local Conges>on Response
At sub-RTT granularity
No changes to applicaEons/hardware

Host-local
Conges>on Response
(at sub-RTT granularity)

Host-local
Conges>on Response
(at sub-RTT granularity)

hostCC currently uses
backpressure-based mechanisms
for host-local congesEon response

hostCC currently uses
backpressure-based mechanisms
for host-local congesEon response

hostCC: End-to-end Overview
1. Host Conges>on Signals
At sub-µs granularity
Using commodity hardware

Sender Receiver

Host
CongesEon

Signals

Host
CongesEon

Signals

2. Host-local Conges>on Response
At sub-RTT granularity
No changes to applicaEons/hardware

Host-local
Conges>on Response
(at sub-RTT granularity)

Host-local
Conges>on Response
(at sub-RTT granularity)

hostCC uses
Memory Bandwidth Alloca>on

for host-local congesEon response

hostCC uses
Memory Bandwidth Alloca>on

for host-local congesEon response

Example tool for backpressure to host-local traffic: Intel MBA
Al

lo
ca

te
d

M
em

or
y

Ba
nd

w
id

th
 (%

)

20
40
60
80

100

Allocation levels
0 1 2 3 4 5 6 7 8 9

Per-core Memory Bandwidth AllocaEon

Increasing backpressure for increasing allocaEon levels

hostCC: End-to-end Overview
1. Host Conges>on Signals
At sub-µs granularity
Using commodity hardware

Sender Receiver

Host
CongesEon

Signals

Host
CongesEon

Signals

2. Host-local Conges>on Response
At sub-RTT granularity
No changes to applicaEons/hardware

Host-local
Conges>on Response
(at sub-RTT granularity)

Host-local
Conges>on Response
(at sub-RTT granularity)

hostCC currently uses
backpressure-based mechanisms
for host-local congesEon response

hostCC currently uses
backpressure-based mechanisms
for host-local congesEon response

User-specified host resource
allocaEon policy

User-specified host resource
allocaEon policy

Target Network BW Target Network BW

Desired Alloca>on Level Desired Alloca>on Level

hostCC: End-to-end Overview
1. Host Conges>on Signals
At sub-µs granularity
Using commodity hardware

Sender Receiver

Host
CongesEon

Signals

Host
CongesEon

Signals

2. Host-local Conges>on Response
At sub-RTT granularity
No changes to applicaEons/hardware

3. Network Conges>on Response
Uses both network & host conges>on signals
No changes to network CC protocols

Network
CongesEon

Signals

Network CongesEon Response
(at RTT granularity)

Sending rate computed using
minimum boZleneck capacity in

network & host interconnect

Sending rate computed using
minimum boZleneck capacity in

network & host interconnect

Sending rate computed using
minimum boLleneck capacity in
network and host interconnect

Host-local
Conges>on Response
(at sub-RTT granularity)

Host-local
Conges>on Response
(at sub-RTT granularity)

hostCC: End-to-end Overview
1. Host Conges>on Signals
At sub-µs granularity
Using commodity hardware

Sender Receiver

2. Host-local Conges>on Response
At sub-RTT granularity
No changes to applicaEons/hardware

3. Network Conges>on Response
Uses both network & host conges>on signals
No changes to network CC protocols

Example scenario: Using ECN-based network CC protocols

Minimal modificaEons to the
host IP layer stack

(<100 LOC using NetFilter hooks)

Packet

PAYLOADHDRECN bits marked in
packet’s IP header

When switch buffer
occupancy exceeds

ECN threshold

When switch IIO buffer
occupancy exceeds ECN

threshold

ECN bits echoed
back to sender via
ACKs by transport

CC protocols react to ECNs
independent of the
source of marking

No changes required for
exisEng ECN-based protocols

(DCTCP, TCP w/ ECN, etc)

hostCC Benefits With Host Congestion

0
20
40
60
80

100

DCTCP DCTCP with hostCC

1

1000

1000000
Throughput (Gbps) Tail Latency (us)

Improved performance under host conges>on
Near-opEmal throughput and latency
Reduces queueing/drops to a bare minimum

Enables enforcing desired resource alloca>on policy
Network traffic close to user-specified target bandwidth

0
20
40
60
80

100

10 20 30 40 50 60 70 80 90 100

Throughput (Gbps)

Target network bandwidth (Gbps)

hostCC Benefits With Host Congestion and Network Fabric Congestion

Maintains benefits even in presence of both
network and host conges>on
Interpolates well with network CC

0
20
40
60
80

100

1x 1.5x 2x 2.5x

Throughput (Gbps)

Degree of incast

Performance similar to network CC in presence of
only network conges>on
Minimal overheads of using hostCC

0
20
40
60
80

100

1x 1.5x 2x 2.5x

Throughput (Gbps)

Degree of incast

Network Traffic
Resources

Host-local
Traffic

Resources

Coarse-grained
allocaEon

Finer-grained
allocaEon

CXL will reduce
peripheral interconnect latency

(i.e., NIC-to-IIO latency)

However, host congesEon
caused by increase in
IIO-to-DRAM latency

RDMA avoids data copy
overheads

Even with zero-copy, RDMA
sEll uElizes DRAM bandwidth

to DMA data to DRAM

We need new tools for efficient resource alloca>on
ExisEng tools too coarse grained
Need tools for finer-grained allocaEon

New technologies for solving host conges>on
Unclear if CXL will solve the problem
RDMA may not solve the problem by itself

Lessons learnt and future directions

hostCC: A CC architecture that handles host and network fabric congestion

Sender Receiver

Host
CongesEon

Signals

Host
CongesEon

Signals

Host-local
Conges>on Response
(at sub-RTT granularity)

Host-local
Conges>on Response
(at sub-RTT granularity)

Network
CongesEon

Signals

Network CongesEon Response
(at RTT granularity)

hostCC Linux implementaEon & workloads to reproduce our results are available at www.github.com/Terabit-Ethernet/hostCC
hostCC project webpage: www.cs.cornell.edu/~saksham/hostcc

http://www.github.com/Terabit-Ethernet/hostCC
http://www.cs.cornell.edu/~saksham/hostcc

