Tutorial on Networking and Power Management

Jesse Brandeburg

Agenda

What is power management
Terms and acronyms
Why it matters
Platforms and Power Management
Measurement tools and examples
Controls and Methods
Cpupower example
Effects, side-effects, and gremlins
Previous Works
Lots of thoughts
Call to action
Similar Links

What is power management?

What are you willing to sacrifice? Latency? Throughput? Think ahead

CPU

Reduce or stop cycles of the CPU (C-state)

Reduce the frequency of the CPU (P-state)

•

RAM

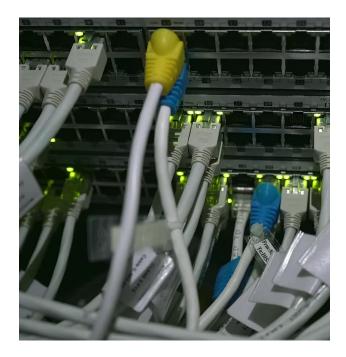
Frequency changes, more or fewer DIMMS

•	•	•	
•	٠	٠	
•	•	•	
_		5	_

Uncore

Reduce or stop cycles of the uncore (PC-state)

Stops DMA


Adapter(s)

Device state (D0, D3) Energy Efficient Ethernet (EEE) PCI Express power management (ASPM) Link State (link down,

reduce speed)

Terms and Acronyms

- CPU I hope you know this one
 - C-state
 - Core state running or one of the various sleep states which take a certain time to wake from each state
 - P-state
 - Frequency management
- ASPM
 - Active-State Power Management PCI Express power down link when no traffic
- EEE (802.3az) also "Green Ethernet"
 - Energy Efficient Ethernet power down transmitter when "idle"
- Uncore
 - PC-state: Package C-state: CPU+uncore's own sleep states
 - Usually contains the memory controller and DMA controller logic, among other things

Why it matters

- Hypothetical
 - Data center with 10,000 servers
 - 48 port switches (ToR)
 - Save 10 watts per server, per hour
 - 10wH * 10,000 = 100,000 wH aka 100kwH
 - * 24 hours = 240kwH per day
 - US range (2023) 0.084 \$/kwH to 0.20 \$/kwH, Oregon commercial rate \$0.131 [1]
 - 240 kwH * 0.131 = 26.2 dollars / day * 365 days
 - \$9,563 USD a year

Insights on Networking and Power

High speed ethernet is the only asynchronously driven (by surprise receive traffic) high speed I/O device

Platforms and Power Management

- Servers are waaaay different than laptops
- Servers are big power consumers
 - Power supplies (yep, they use power, not just supply it)
 - Big processors
 - Lots of RAM
 - Plug in cards (I/O, Ethernet)
 - Lasers
 - Fans
 - (potentially) Lots of storage devices
- 500 to 1,200+ watts per server

Measurement Tools and Examples

- turbostat
- Intel PTAT tool (Intel Design Center)
- GNOME power manager (client)
- PowerTOP (client)
- External power measurement (for example Kill-a-watt, Watts Up, many data center power distribution systems)

Control and Methods

- Kernel
 - cpufreq subsystem
 - Power aware scheduler
- cpupower
 - cpupower idle-info
 - cpupower idle-set --help
 - cpupower frequency-info
 - cpupower frequency-set --help
- sysfs
 - /sys/devices/system/cpu/cpu1/cpuidle/state2/name == C1E
 - /sys/devices/system/cpu/cpu1/cpufreq/
- Scripts
 - <u>https://github.com/VitorRamos/cpufreq</u>

Cpupower example

• What do I have?

cpupower idle-info

• What does it do?

- Sets CPU maximum wake time to 10us
- Self selects correct C-state to honor above limit

Effects, side-effects, and gremlins

- Lots of times, optimizing for power means sacrificing
 - Latency it goes up
 - Throughput it might go down, or cause RTT to go up (possibly need for bufferbloat)
 - Responsiveness upon initial request
- The past Best-Known Methods (BKM)
 - Just turn off power management!
 - Continuous 1,000+ watt usage (oops)
 - Let's poll!
 - Uses a LOT of CPU, therefore lots of power
 - Draconian
 - Thermal limiting the platform or CPU (don't get hot!)
 - /dev/cpu_dma_latency (whole platform! One setting)
- BIOS Settings!

Previous work

- Reduce power by using RSS table modification in real-time to scale queues, and sleep CPUs
 - Brandeburg / Creeley netdev 0x15 [1]

[1] <u>Netdev 0x15 - Dynamic Interface Power Management</u>

Lots of thoughts

- How do we help the networking stack give more feedback to the scheduler, power manager?
- Can the **stack** keep a CPU awake "a little longer" when the networking stack is expecting more traffic?
 - Power aware stack
- Busy poll (as a side effect of polling) keeps the CPU awake by polling from kernel to driver, is there a more granular option, or use mwait somehow?
- Should we consider an extra property of a "queue" the power policy of that queue?
- Kernel is missing granular driver-available per-CPU policy for power, today only has userspace /dev/cpu_dma_latency which affects all CPUs, and cpu power limits and c-state limits
- Scheduler delay of 1ms is much too long for 100Gb/s + ethernet

Call to Action

Working group to drive net-stack power awareness?

Meet monthly

Curate ideas {publish}

Create list of tasks {publish}

Prioritize tasks

Create some patches from tasks and send to list

Lets try! Want to help?

Contact <u>jesse.brandeburg@intel.com</u> or mail to <u>net-power@netdevconf.info</u>

Cool similar links

- Redhat
 - <u>Chapter 14. Importance of power management Red Hat Enterprise Linux 9</u>
 <u>Red Hat Customer Portal</u>
- DPDK power management
 - <u>56. Power Management Data Plane Development Kit 23.11.0-rc1</u> <u>documentation (dpdk.org)</u>