
Implementation of the SEARCH Slow Start Algorithm in the Linux Kernel

Maryam Ataei Kachooei†, Joshua Chung+, Amber Cronin†, Benjamin Peters*,
Feng Li*, Jae Won Chung*, and Mark Claypool†

† Worcester Polytechnic Institute, Worcester, MA, USA
+ Lexington Christian Academy, Lexington, MA, USA

* Viasat Inc., Marlboro, MA, USA

Abstract

TCP slow start is designed to ramp up to the network con-
gestion point quickly, doubling the congestion window each
round-trip time until the congestion point is reached, where-
upon TCP exits the slow start phase. Unfortunately, the default
Linux TCP slow start implementation – TCP Cubic with HyS-
tart [4] – can cause premature exit from slow start, especially
over wireless links, degrading link utilization. However, with-
out HyStart, TCP exits too late, causing unnecessary packet
loss. To improve TCP performance during slow start, we de-
veloped the Slow start Exit At Right CHokepoint (SEARCH)
algorithm [8] where the congestion point is determined based
on bytes delivered compared to the expected bytes delivered,
smoothed to account for link latency variation and normal-
ized to accommodate link capacities. In prior work, we im-
plemented SEARCH and evaluated it over 4G LTE, low earth
orbit (LEO), and geosynchronous (GEO) satellite links. In this
paper, we implemented search as a Linux kernel v5.16 mod-
ule, illustrate its performance over GEO satellite links by ex-
ample, and evaluate SEARCH over Wi-Fi. Over all networks,
SEARCH reliably exits from slow after the congestion point
is reached but before inducing packet loss. Our Linux kernel
module is open-source and available for general use and fur-
ther evaluation.

Introduction
The TCP slow start mechanism starts sending data rates cau-
tiously yet rapidly increases towards the congestion point,
approximately doubling the congestion window (cwnd) each
round-trip time (RTT). Unfortunately, default implementa-
tions of TCP slow start, such as TCP Cubic with HyStart [4]
in Linux, often result in a premature exit from the slow
start phase, or, if HyStart is disabled, excessive packet loss
upon overshooting the congestion point. Exiting slow start
too early curtails TCP’s ability to capitalize on unused link
capacity, a setback that is particularly pronounced in high
bandwidth-delay product (BDP) networks (e.g., GEO satel-
lites) where the time to grow the congestion window to the
congestion point is substantial. Conversely, exiting slow start
too late overshoots the link’s capacity, inducing unnecessary
congestion and packet loss, particularly problematic for links
with large (bloated) bottleneck queues.

To determine the slow start exit point, the TCP sender can
monitor the acknowledged delivered bytes in an RTT and
compare that to what is expected based on the bytes acknowl-

edged as delivered during the previous RTT. Large differ-
ences between delivered bytes and expected delivered bytes
are then the indicator that the slow start has reached the net-
work congestion point and the slow start phase should exit.
We call our approach the Slow start Exit At Right CHoke-
point (SEARCH) algorithm.1 SEARCH is based on the prin-
ciple that during slow start, the congestion window expands
by one maximum segment size (MSS) for each acknowledg-
ment (ACK) received, prompting the transmission of two seg-
ments and effectively doubling the sending rate each RTT.
However, when the network surpasses the congestion point,
the delivery rate does not double as expected, signaling that
the slow start phase should exit. Specifically, the current de-
livered bytes should be twice the delivered bytes one RTT
ago. To accommodate links with a wide range in capaci-
ties, SEARCH normalizes the difference based on the cur-
rent delivery rate and since link latencies can vary over time
independently of data rates (especially for wireless links),
SEARCH smooths the measured delivery rates over several
RTTs.

This paper describes the current version of the SEARCH
algorithm, version 2. Active work on the SEARCH algorithm
is continuing. The paper is organized as follows: The Related
Work section provides background and related work of this
research. The SEARCH section describes the SEARCH algo-
rithm in detail. The subsequent sections summarize our pre-
liminary test results over production GEO satellite networks
and WiFi environments. The final section presents our con-
clusions and potential future work.

Related Work
Jasim et al. [1] propose a technique for approximating the
TCP congestion window thresholds for high latency connec-
tions by using a packet-pair technique to estimate bandwidth.
The authors perform experiments using a variety of network
configurations and find that their approach can improve the
performance of TCP when latencies are high. Additionally,
they compare their approach to other existing methods and
find it outperforms them in terms of both efficiency and accu-
racy.

Ye et al. [11] propose a new algorithm, Personalized FAST
TCP, which improves the performance of the FAST TCP con-

1Project page: https://search-ss.wpi.edu/

gestion control for personalized healthcare systems. The al-
gorithm uses the number of remaining link buffers to judge
exit times for slow start, designed to help the queuing de-
lay ratio stays within the expected range and not change with
variations in bandwidth or other parameters, leading to faster
convergence of the system. They also propose a method
for dynamically adjusting the gain parameters of the con-
troller based on local information obtained from each con-
nection source, allowing the system to adjust to changes in
network operation states within the range of relevant protocol
parameters to maintain stability. With this method, they find
the FAST TCP system achieves a small queuing delay and
quickly converges to the equilibrium point.

Gál, et al [3] introduce BIC (Binary Increase Congestion
Control) and Hybla as solutions to improve TCP’s perfor-
mance in high-latency networks. Hybla modifies the slow
start and congestion avoidance phases of New Reno to re-
duce the dependency on RTT, achieving RTT fairness but
with amplified reactions in higher RTT flows. BIC aims to ap-
proximate the optimal congestion window size using a binary
search approach, though it may exhibit RTT fairness issues
comparable to Reno’s. Unlike these loss-based algorithms,
delay-based algorithms preemptively adjust to network con-
ditions.

Kachooei et al [6] present the BEST algorithm, a band-
width estimation technique based on packet-pair measure-
ments for determining the slow start exit point. While show-
ing promise, BEST encounters challenges in environments
with high variability in estimated bandwidth and RTT, leading
to underestimation or overestimation of the available band-
width.

Li et al. [10] present Fast Bandwidth Estimation (FBE),
a solution designed to optimize the slow start phase in high
bandwidth networks like WiFi 6 and 5G. Recognizing the is-
sue of link underutilization due to the slow ramp-up of con-
gestion windows, FBE utilizes the initial ACK feedback to
estimate link capacity without sending extra probe packets.
By refining ACK intervals to reflect true link rates and dy-
namically adjusting the congestion window based on driver
queue feedback, FBE attempts to address the inaccuracies in
bandwidth estimation that are especially prevalent in variable
wireless links. Comparative experiments show FBE outper-
forms traditional slow start methods, cutting down conver-
gence time by more than half and improving short flow com-
pletion times by up to 44% against well-known algorithms
such as CUBIC and BBR.

Kasoro et al. [9] propose ABCSS, a method that combines
the strengths of Appropriate Byte Counting (ABC) and the
Slow Start (SS) algorithm. This approach is designed to in-
crease the congestion window more effectively than the tra-
ditional slow start, aiming to address the invariant congestion
window during initial round trips that lead to TCP burst issues
and potential buffer overflows.

Huang and Olson propose an IETF draft named Hys-
tart++ [5] as an alternative to HyStart [4], and is currently im-
plemented in the Microsoft Windows TCP Cubic stack. HyS-
tart++ removes the ACK train method used by HyStart and
only uses RTT sampling to decide when to exit slow start.
HyStart++ adds a Limited Slow Start (LSS) phase after ex-

iting slow start where the congestion window grows slower
than during legacy slow start but faster than during conges-
tion avoidance. Thus, instead of entering congestion avoid-
ance directly, slow start exits to LSS and then exits LSS to
congestion avoidance only when encountering packet loss.
Thus, HyStart++ likely exits slow start prematurely for the
same scenarios that HyStart does, but may not limit through-
put growth as much and may reduce packet loss compared to
legacy slow start.

While the above approaches are all alternatives, and in
some sense improvements, to traditional slow start, unlike
SEARCH they do not focus on the fundamental problem of
avoiding an early exit to slow start before the link capacity is
reached while still exiting before inducing unnecessary con-
gestion.

Our previous work on SEARCH first explored the algo-
rithm (version 1) over GEO and LEO satellite networks [7].
Experiments used an instrumented kernel and ran the al-
gorithm only after the fact via Python script, and found
SEARCH reliably exits slow start before packet loss but after
congestion. More extensive development (version 2) eval-
uates SEARCH over GEO, LEO, and 4G LTE networks [8],
showing search improves performance compared to TCP with
and without HyStart enabled, and our SEARCH implementa-
tion for QUIC [2] shows the approach effective beyond the
TCP stack. This paper continues to contribute to SEARCH
with a Linux kernel implementation and preliminary evalua-
tion over WiFi.

SEARCH
The concept that during the slow start phase, the delivered
bytes should double each RTT until the congestion point is
reached is core to the SEARCH algorithm. In SEARCH,
when the bytes delivered one RTT prior is half the bytes de-
livered currently, the bitrate is not yet at capacity, whereas
when the bytes delivered prior are more than half the bytes
delivered currently, the link capacity has been reached and
TCP exits slow start.

One challenge in monitoring delivered data across multiple
RTTs is latency variability for some links. Variable latency in
the absence of congestion – common in some wireless links –
can cause RTTs to differ over time even when the network is
not yet at the congestion point. This variability complicates
comparing delivered bytes one RTT prior to those delivered
currently in that a lowered latency can make it seem like the
total bytes delivered currently is too low compared to the total
delivered one RTT ago, making it seem like the link is at the
congestion point when it is not.

To counteract link latency variability, SEARCH tracks de-
livered data over several RTTs in a sliding window providing
a more stable basis for comparison. Since tracking individ-
ual segment delivery times is prohibitive in terms of memory
use, the data within the sliding window is aggregated over
bins representing small, fixed time periods. The window then
slides over bin-by-bin, rather than sliding every ACK, reduc-
ing both the computational load (since SEARCH only trig-
gers at the bin boundary) and the memory requirements (since
delivered byte totals are kept for a bin-sized time interval in-
stead of for each segment).

Algorithm 1 SEARCH 2.0 Algorithm for Linux
Parameters
1: WINDOW FACTOR = 3.5
2: W = 10
3: EXTRA BINS = 15
4: NUM BINS = W + EXTRA BINS
5: THRESH = 0.35

// Set SEARCH variables for new TCP connection.
initialization(initial rtt):
6: window size = initial rtt × WINDOW FACTOR
7: bin duration = window size / W
8: bin[NUM BINS] = {}
9: curr idx = -1

10: prev seq num = 0
11: bin end = now + bin duration

// Update for each ack that arrives.
ack arrival(seq num, rtt):
12: if (now > bin end) then // Passed bin boundary?
13: update bins ()

// Enough data for SEARCH?
14: prev idx = curr idx - (rtt / bin duration)
15: if (prev idx ≥ W and
16: (curr idx - prev idx) ≤ EXTRA BINS) then

// Run SEARCH check.
17: curr delv = sum bins(curr idx - W, curr idx)

18: f =
(rtt % bin duration)

bin duration

19: prev delv = sum bins(prev idx - W, prev idx, f)

20: norm diff =
2 · prev delv − curr delv

2 · prev delv

21: if (norm diff ≥ THRESH) then
22: sthresh = cwnd
23: end if

24: end if // Enough data for SEARCH.
25: end if // Passed bin boundary.

// Update bins - more than one might have passed.
update bins(seq num):

26: passed bins =
(now − bin end)

BIN DURATION
+ 1

27: bin end += passed bins × bin duration
28: for i = curr idx + 1 to curr idx + passed bins do
29: bin[i % NUM BINS] = 0
30: end for
31: curr idx += passed bins
32: bin[curr idx % NUM BINS] = seq num - prev seq num
33: prev seq num = seq num

// Add up bins, interpolating fraction end bins (default is 0).
sum bins(idx1, idx2, fraction = 0):

34: sum = 0
35: for i = idx1 + 1 to idx2 - 1 do
36: sum += bin[i % NUM BINS]
37: end for
38: sum += bin[idx1] × fraction
39: sum += bin[idx2] × (1 - fraction)
40: return sum

The SEARCH algorithm for Linux (that runs on the TCP
sender only) is shown in Algorithm 1.2

The parameters in CAPS (Lines 1 - 5) are constants.
The variables in initialization() (Lines 6 - 11) are set to

their intial values upon establishment of a TCP connection.
The initial rtt (Line 6) is obtained via the first round-trip time
measured in the TCP connection.

The variable now on Lines 11, 12 and 26 is the current
system time when the code is called.

The variable seq num and rtt above Line 12 are ob-
tained upon arrival of an acknowledgement from the receiver.

The variable cwnd on Line 22 is the current congestion
window.

Lines 1 - 5 set the predefined parameters for the SEARCH
algorithm. The window factor (WINDOW FACTOR) is 3.5 ,
which is used to define the window size in Line 6. Ten bins
(W) are used to approximate the delivered rates over the win-
dow size. There are an additional 15 bins (EXTRA BINS)
bins (for a total of 25 (NUM BINS)) to allow comparison of
the current delivered bytes to the previously delivered bytes
one RTT earlier. The bin duration BIN DURATION) is the
window size divided by the number of bins. The threshold
(THRESH) is set to 0.35 and is the upper bound of the permis-
sible difference between the previously delivered bytes and
the current delivered bytes (normalized) above which slow
start exits.

After initialization, SEARCH only acts when acknowledg-
ments (ACKS) are received and even then, only when the cur-
rent time (now) has passed the end of the latest bin boundary
(stored in the variable bin end).

In function update bins() (Lines 26 to 33), Line 26
computes how many bins have passed. Under most TCP con-
nections, the time (now) is in the successive bin, but in some
cases (such as during an RTT spike or a TCP connection with-
out data to send), more than one bin boundary may have been
passed. In Lines 28-30, for each bin passed, the bin[] is set
to 0. For the latest bin, the delivered bytes is updated by tak-
ing the latest sequence number (from the ACK) and subtract-
ing the previously recorded sequence number in the last bin
boundary (Line 32). In Line 33, the current sequence number
is stored into prev seq num) for computing the delivered
bytes the next time when a bin boundary is passed.

Once the bins are updated, Lines 14 - 16 check if enough
bins have been filled to run SEARCH. This requires at least W
(10) bins (i.e., on SEARCH window worth of delivered data),
but also enough bins to shift back by an RTT to compute a
window (10) bins one RTT ago, too.

If there is enough bin data to run SEARCH, Lines 17 and
19 compute the current and previously delivered bytes over
a window (W) of bins, respectively. This sum is computed in
the function sum bins() (Lines 34 - 40). For previously
delivered bytes, shifting by an RTT may mean the SEARCH
window lands between bin boundaries, so the sum is interpo-
lated by the fraction of each of the end bins.

2The code for SEARCH 2.0 kernel module is available
at: https://github.com/Project-Faster/tcp_ss_
search/tree/main/src

In the function sum bins(), idx1 and idx2 are the in-
dices into the bin[] array for the start and end of the bin
summation and, as explained above, fraction is the propor-
tion (from 0 to 1) of the end bins to use in the summation. In
Lines 35 - 37, the summation loops through the bin[] ar-
ray for the middle bins, modulo the number of bins allocated
(NUM BINS) and then adds the fractions of the end bins in
Lines 38 and 39.

Once bin sums are tallied, Line 20 calculates the difference
between the expected delivered bytes (2 * prev delv)
and the current delivered bytes (curr delv), normalized by
dividing by the expected delivered bytes. In Line 21, this nor-
malized difference (norm diff) is compared to the thresh-
old (THRESH). If norm diff is larger than THRESH, that
means the current delivered bytes is lower than expected (i.e.,
the delivered bytes did not double over the previous RTT)
and slow start exits. Slow start exit is acheived by setting the
slow start threshold (ssthresh) to the congestion window
in Line 22.

Parameter Selection
This section provides justification and some sensitivity anal-
ysis for key SEARCH algorithm constants. Details can be
found in our previous paper [8].

Window Factor (WINDOW FACTOR) The SEARCH win-
dow smooths over RTT fluctuations in a connection that are
unrelated to congestion. The window size must be large
enough to encapsulate meaningful link variation, yet small
in order to allow SEARCH to respond near when slow start
reaches link capacity. In order to determine an appropriate
window size, we analyzed RTT variation over time for GEO,
LEO, and 4G LTE links for TCP during slow start.

The SEARCH window size needs to be large enough to
capture the observed periodic oscillations in the RTT values.
In order to determine the oscillation period, we use a Fast
Fourier Transform (FFT) to convert measured RTT values
from the time domain to the frequency domain. For GEO
satellites, the primary peak is at 0.5 Hz, meaning there is
a large, periodic cycle that occurs about every 2 seconds.
Given the minimum RTT for a GEO connection of about 600
ms, this means the RTT cycle occurs about every 3.33 RTTs.
Thus, a window size of about 3.5 times the minimum RTT
should smooth out the latency variation for this type of link.

While the RTT periodicity for LEO links is not as pro-
nounced as they are in GEO links, the analysis yields a similar
window size. The FFT of LEO RTTs has a dominant peak at
10 Hz, so a period of about 0.1 seconds. With LEO’s min-
imum RTT of about 30 ms, the period is about 3.33 RTTs,
similar to that for GEO. Thus, a window size of about 3.5
times the minimum RTT should smooth out the latency vari-
ation for this type of link, too.

Similarly to the LEO link, the LTE network does not have
a strong RTT periodicity. The FFT of LTE RTTs has a domi-
nant peak at 6 Hz, with a period of about 0.17 seconds. With
the minimum RTT of the LTE network of about 60 ms, this
means a window size of about 2.8 times the minimum RTT is
needed. A SEARCH default of 3.5 times the minimum RTT
exceeds this, so it should smooth out the variance for this type

of link as well.
For WiFi, the FFT of RTTs has a dominant peak at 67 Hz,

meaning the periodic cycle occurs about every 0.015 seconds.
Given the minimum initial RTT for our WiFi connections is
about 4 ms, this yields a window factor is 3.75. This supports
using a window factor of 3.5 as a balance across the factors
measured so far – 3.33 for GEO and LEO, 2.8 for LTE, and
3.75 for WiFi.

Threshold (THRESH) The threshold (THRESH) determines
when the difference between the bytes delivered currently and
the bytes delivered during the previous RTT is large enough
to exit the slow start phase. A small threshold is desirable
to exit slow start close to the ‘at capacity’ point (i.e., with-
out overshooting too much), but the threshold must be large
enough not to trigger an exit from slow start prematurely due
to noise in the measurements.

During slow start, the congestion window doubles each
RTT. In ideal conditions and with an initial cwnd of 1 (1
is used as an example, but typical congestion windows start
at 10 or more), this results in a sequence of delivered bytes
that follows a doubling pattern (1, 2, 4, 8, 16, ...). Once the
link capacity is reached, the delivered bytes each RTT cannot
increase despite cwnd growth. For example, consider a win-
dow that is 4x the size of the RTT. After 5 RTTs, the current
delivered window comprises 2, 4, 8, 16, while the previous
delivered window is 1, 2, 4, 8. The current delivered bytes is
30, exactly double the bytes delivered in the previous window.
Thus, SEARCH would compute the normalized difference as
zero.

Once the cwnd ramps up to meet full link capacity, the
delivered bytes plateau. Continuing the example, if the link
capacity is reached when cwnd is 16, the delivered bytes
growth would be 1, 2, 4, 8, 16, 16. The current delivered
window is 4+8+16+16 = 44, while the previously delivered
window is 2+4+8+16 = 30. Here, the normalized differ-
ence between 2x the previously delivered window and the
current delivered window is about (60-44)/60 = 0.27. After
5 more RTTs, the previous delivered and current delivered
bytes would both be 16 + 16 + 16 + 16 = 64 and the normal-
ized difference would be (128 - 64) / 64 = 0.5.

Thus, the norm values typically range from 0 (before the
congestion point) to 0.5 (well after the congestion point) with
values between 0 and 0.5 when the congestion point has been
reached but not surpassed by the full window.

To generalize this relationship, the theoretical underpin-
nings of this behavior can be quantified by integrating the
area under the congestion window curve for a closed-form
equation for both the current delivered bytes (curr delv)
and the previously delivered bytes (prev delv). The nor-
malized difference can be computed based on the RTT round
relative to the “at capacity” round. While SEARCH seeks to
detect the “at capacity” point as soon as possible after reach-
ing it, it must also avoid premature exit in the case of noise on
the link. The 0.35 threshold value chosen does this and can
be detected about 2 RTTs after reaching capacity.

Number of Bins (NUM BINS) Dividing the delivered byte
window into bins reduces the sender’s memory load by ag-
gregating data into manageable segments instead of tracking

each packet. This approach simplifies data handling and min-
imizes the frequency of window updates, enhancing sender
efficiency. However, more bins provide more fidelity to ac-
tual delivered byte totals and allow SEARCH to make deci-
sions (i.e., compute if it should exit slow start) more often,
but require more memory for each flow. The sensitivity anal-
ysis previously conducted aimed to identify the impact of the
number of bins used by SEARCH and the ability to exit slow
start in a timely fashion.

Using a window size of 3.5x the initial RTT and a thresh-
old of 0.35, we varied the number of bins from 5 to 40 and
observed the impact on SEARCH’s performance over GEO,
LEO and 4G LTE downloads. For all three link types, a bin
size 10 of provides nearly identical performance as SEARCH
running with more bins, while 10 also minimizes early exits
from slow start while having an “at chokepoint” percentage
that is close to the maximum.

Previous Performance Evaluation
Evaluation of hundreds of downloads of TCP with SEARCH
across GEO, LEO, and 4G LTE network links compared to
TCP with HyStart and TCP without HyStart shows SEARCH
almost always exits after capacity has been reached but before
packet loss has occurred [8]. This results in capacity limits
being reached quickly while avoiding inefficiencies caused
by lost packets.

Evaluation of a SEARCH implementation in an open
source QUIC library (QUICly) over an emulated GEO
satellite link validates the implementation, illustrating how
SEARCH detects the congestion point and exits slow start
before packet loss occurs [2]. Evaluation over a commercial
GEO satellite link shows SEARCH can provide a median im-
provement of up to 3 seconds (14%) compared to the baseline
by limiting cwnd growth when capacity is reached and delay-
ing any packet loss due to congestion.

Evaluation over GEO Satellite by Example
This section primarily shows and example of our Linux
implementation of SEARCH, describes our measurement
testbed, and comparing TCP Cubic with and without HyStart
to TCP Cubic with SEARCH over a GEO satellite network.

Measurement Setup
We create a measurement testbed to evaluate SEARCH where
the client utilizes a Viasat GEO satellite as the “last mile”
of connectivity, downloading from an Internet server, which
mirrors common satellite user scenarios.

Figure 1 depicts our experiments setup. The client is a PC
with an Intel i7-5820K CPU @ 3.30GHz and 32GB RAM
running with Ubuntu 20.04 with 5.4.0 kernel. The client
connected with a Viasat-2 small beam (beam# 738 11338)
through a Viasat terminal. The server is an 32GB AWS
EC2 instance running Ubuntu 22.04 with 5.13.12 kernel, cus-
tomized to support the SEARCH module and experiments.

The Viasat gateway performs per-client queue manage-
ment, where the queue for each client can grow up to 36
MBytes. Queue lengths are controlled at the gateway by

Figure 1: GEO satellite measurement testbed.

Active Queue Management that randomly drops 25% of in-
coming packets when the queue is over half of the limit (i.e.,
18 MBytes). The GEO performance-enhancing proxy (PEP
or VWA) is deliberately deactivated to simulate conditions
where encryption or other constraints preclude PEP usage.

Both the client and server are instrumented to run tcpdump
for post-experiment analysis. The experiments use TCP Cu-
bic with HyStart enabled (the Linux default), TCP Cubic with
HyStart disabled, and TCP Cubic with SEARCH.

Results
All examples are collected during local “peak” busy hours.

TCP Cubic with HyStart Enabled Figure 2(a-d) illus-
trates the behavior of TCP CUBIC with HyStart over a GEO
satellite link during peak busy hours. Figure 2(a) shows the
congestion window size3 versus time. Because HyStart is de-
signed for wired links with low RTT variance, TCP exits from
slow start prematurely around the 5th second and has less
than exponential growth until the Cubic function in conges-
tion avoidance kicks in. The RTT has oscillation normal for
a GEO link over time (Figure 2(b)) with low retransmissions
computed every 10 ms (Figure 2(d)) but also low throughput
and goodput (Figure 2(c)) until about 30 seconds into the run.

TCP Cubic with HyStart Disabled Figures 2(e-h) shows
an example of TCP Cubic with HyStart disabled over a GEO
satellite link during peak busy hours. In Figure 2(e) shows,
the “bytes in flight” (or congestion window size) exponen-
tially increases during start up after disabling HyStart – the
“bytes in flight” reach 70 MB in less than 15 seconds. Mean-
while, the goodput and throughput reach more than 100
Mbps in about the same time period (Figure 2(g)). How-
ever, such large amount of data (70 MBytes) in flight causes
the Viasat queue to fill, with RTTs spiking at over 5 seconds
(Figure 2(f)) before causing considerable packet loss (Fig-
ure 2(g)). Since all ACKs are duplicated ACKs between the
16th and 20th seconds, the sender could not send new data
(the flat curve after slow start in Figure 2(e)) but has to do
“fast retransmission” to re-transmitted packets (the spikes in
Figure 2(h)). Note, because of the shared nature of satellite
links, the large queue buildup would impact other users traffic
of the same class that share the beam.

3In this report, the congestion window size is interchangeable
with “bytes in flight”.

Figure 2: TCP performance over a GEO link during peak busy hours. (a-d): TCP Cubic w/HyStart enabled, (e-h): TCP Cubic
w/HyStart disabled, (i-l): TCP Cubic w/SEARCH.

TCP Cubic with SEARCH Figures 2(i-l) shows an exam-
ple of TCP Cubic with SEARCH over a GEO satellite link
during peak busy hours. Like TCP Cubic with HyStart dis-
abled, TCP Search’s congestion window (CWND) grows fast
and increases exponentially (Figure 2(i)). Unlike TCP Cu-
bic with HyStart disabled, the CWND growth stops being ex-
ponential around the 12th second because SEARCH detects
that the link reaches its congestion point and exits slow start.
Since TCP exits slow start near capacity, the RTT still in-
creases during CWND growth in congestion avoidance, albeit
less dramatically than the RTT growth during slow start with
HyStart disabled. TCP Cubic with SEARCH has far fewer re-
transmitted packets (Figure 2(l)) than TCP Cubic with HyS-
tart disabled.

We instrumented the TCP search module to report the
kernel-level socket statistics. Figure 3(b) shows the conges-
tion window (cwnd), slow start threshold (ssthresh) and cor-
responding TCP congestion states for a TCP Cubic download
with SEARCH. Different from Figure 2(i) in which “bytes in
flight” is inferred via the pcap captured by wireshark, cwnd
shown in Figure 3(a) is from the struct tcp sock, although
curves approximately match. Figure 3(a) also shows the
slow start threshold (ssthresh) reported and set by SEARCH
(Line 22 around 12 seconds.

The green dots in Figure 3(a) show the TCP states (CA

State) of the sever socket. Note, around 22 seconds, TCP
enters a transient “Disorder” state, because the sender re-
ceives duplicated ACKs caused by out-of-order delivery but
without a negative impact on the cwnd growth- such transient
out-of-order deliveries are quickly recovered from and not as
harmful as packet loss by a congested router.

Figure 3(b) plots the normalized difference (as a percent)
computed by the module (Line 20 in Algorithm 1) with
the horizontal line showing the threshold (set to 25% or a
THRESH of 0.25 although the SEARCH default is 0.35).
TCP with SEARCH exits slow start when the threshold is
surpassed (Line 20 in Algorithm 1).

Comparative Download Performance This section com-
pares download performance over time for SEARCH versus
TCP with HyStart enabled and disabled.

Figure 4(a) shows the time to download a given size file
with TCP Cubic with SEARCH, TCP Cubic with HyStart,
and TCP CUBIC without HyStart. The x-axis is the size of a
file and the y-axis is the time to transfer. The lines are mean
values with the shading showing 95% confidence intervals
around the mean. From the figure, it takes significantly longer
(about 2x over this range) for Cubic with HyStart enabled to
download the same size of file compared to TCP Cubic with-
out HyStart or TCP Cubic with SEARCH. TCP Cubic with

(a) Normalized Diff

(b) Bytes in Flight

Figure 3: TCP Cubic Search Example

SEARCH and TCP Cubic with HyStart disabled have similar
performance – e.g., both deliver a 60 MB file in around 17
seconds.

Figure 4(b) shows the cumulative distribution functions
(CDFs) of retransmitted packets for a 7 seconds window after
the first packet loss. Because TCP Cubic with HyStart ex-
its slow start prematurely and underutilizes the link capacity,
there is almost no packet loss (curve not visible). For TCP
Cubic without HyStart and TCP with SEARCH, generally,
SEARCH has fewer retranmitted packets when loss happens
- nearly 20% of the SEARCH flows have no loss compared to
only 5% for HyStart disabled flows and the SEARCH flows
have a median of about 9600 retransmitted packets compared
to about 13800 for HyStart disabled.

Evaluation over WiFi

This section evaluates the performance of our Linux imple-
mentation of SEARCH over WiFi, comparing TCP Cubic
with and without HyStart and TCP BBR (version 1.0) to TCP
Cubic with SEARCH over 24 hours of downloads in two dif-
ferent WiFi conditions.

(a) Time vs. file size downloaded

(b) Retransmission distributions

Figure 4: Comparative TCP Download Performance

Measurement Setup
Figure 5 depicts our Wi-Fi testbed on the WPI campus. The
campus, spanning 95 acres in an urban setting, has wireless
coverage across virtually every building. The wireless infras-
tructure employs a controller drop-off design, routing all user
traffic through one of six campus controllers via encrypted
tunnels. Each Access Point (AP) is individually wired to the
network, avoiding a mesh network setup.

To manage network traffic, users connecting through guest
or open authentication methods face a bitrate cap to prevent
them from negatively impacting critical academic or research
activities. The network employs typical QoS measures, pri-
oritizing voice, video, and control traffic based on traffic type
classification.

For security, the network incorporates distributed denial-
of-service protection, limiting packets per second for various
protocols and blocking sessions that appear malicious. There
is considerable, legitimate on campus use that competes with
our experiments, and the urban environment of the campus
can also introduce competing wireless signals and potential
signal degradation.

Performance measurements were conducted using a fixed,
dedicated on-campus server and a mobile laptop client for
bulk TCP downloads, with different TCP configurations con-
trolled at the server. The server, a PC with an Intel i5-8500

Figure 5: WiFi measurement testbed.

CPU @ 3GHz and 8 GB RAM, runs Mint-20.3 with Linux
kernel version 5.10.79. The client is an Intel Core Ultra 7
155U×14 CPU and 16 GB of RAM running Ubuntu version
22.04 and Linux kernel version 6.8.0. TCP Segmentation Of-
fload (TSO) was disabled on the server, and Generic Receive
Offload (GRO) was disabled on the client.

During our experiments, we evaluated the performance
of TCP Cubic with the SEARCH algorithm, compiled as a
module and loaded into the server kernel, and compared it
with TCP configurations including TCP Cubic with HyStart
enabled, TCP Cubic with HyStart disabled, and TCP BBR
(version 1.0). These comparisons were conducted using the
iperf3 tool for multiple download sessions.

The client initiated the download sessions with the server
sequentially using one of the following configurations:
1) HyStart enabled, 2) HyStart disabled, 3) BBR, or 4)
SEARCH. Each download session lasted 3 seconds, followed
by a 7-second pause. After completing one download with
each configuration, the client paused for about 6 minutes to
allow system stabilization before repeating the process. This
cycle was repeated 200 times during 24 hours, resulting in a
total of 800 downloads per session. Each session was con-
ducted at two different Received Signal Strength Indicator
(RSSI) locations: strong and weak.

For Wi-Fi connections, the RSSI measures the strength of
the received radio signal from the access point, serving as
a crucial indicator of wireless connection quality. Higher
RSSI values generally indicate stronger signal reception and
better network performance, whereas lower RSSI values can
signal weaker reception and potential connectivity issues.
To find two different locations with suitably-different signal
strenghts, we assessed Wi-Fi performance across various lo-
cations within our campus Wi-Fi environment. Figure 6 il-
lustrates the distribution of RSSI values across different loca-
tions on our campus map. Each pin represents a site where we
took an RSSI measurement as reported by the laptop’s Wi-Fi
driver and then did a 3 second TCP download with iperf3.
Locations with strong signal strength are marked in green,
while those with weak signal strength are marked n red. This
visual representation of RSSI values enables us to identify ar-
eas with strong and weak signal reception, providing insights
into the wireless coverage and performance across the cam-
pus.

We analyzed the relationship between RSSI and download
rates to better understand how RSSI levels correspond to net-
work performance. Figure 7 shows the results, where the x-
axis is the RSSI measured by the client and the y-axis is the
throughput for a 3-second TCP download using the default

Figure 6: RSSI on WPI campus.

Figure 7: Relationship between throughput and Wi-Fi RSSI
across WPI

Linux TCP settings. There is a general correlation between
higher RSSI values and increased throughput. However, at
higher RSSI values the throughput shows significant variabil-
ity likely due to the access point being shared with devices
that have lower RSSI levels.

We identified two key locations on our campus for a closer
examination, marked with red points in Figure 7: one with
strong signal strength (-53dBm) and one with weak signal
strength (-64dBm). These two locations provide a basis for
evaluating the performance of TCP with the SEARCH algo-
rithm in comparison to TCP with HyStart enabled, HyStart
disabled, and BBR (version 1.0).

Figure 8 displays the CDF of median throughput values
aggregated from 200 cases per location over 24 hours, com-
paring selected strong and weak RSSI locations. The x-axis
denotes throughput in Mbps, while the y-axis shows the cu-
mulative distribution. From the CDFs, the median throughput
for strong RSSI locations is generally higher than for weak
RSSI locations. However, the strong RSSI downloads exhibit
more variability in median throughput compared to the weak
location, with overlap in throughput for the lowest 5% of the
distribution.

The goal of the SEARCH algorithm is to exit slow start
once the congestion window has reached the congestion point
but before inducing packet loss. In networks with high RTT,
the one-way delay latency recorded on the client is useful for
estimating when the congestion point is reached [8]. Unfor-

Figure 8: Distribution of median throughputs for strong and
weak RSSI locations.

tunately, this technique is not effective for networks with low
RTT, such as Wi-Fi. Instead, we use the median throughput
after slow start as the bitrate at the congestion point.

Figure 9 shows the performance for the 200 downloads at
the strong RSSI location. This figure compares the perfor-
mance of the SEARCH algorithm (green), HyStart on (red),
HyStart off (purple), and BBR (blue). Figure 9(a) has the
time required to download bytes from 0 to 4 MB for each
configuration. The x-axis is the download size in Megabytes
(MB) and the y-axis is the download time in seconds. Each
point represents the average download time for 200 cases,
measured at 100 KB intervals from 0 to 4 MB. The shaded
areas denote the standard error around the mean. The hori-
zontal dashed lines indicate the average slow start exit times
for each configuration, matching their respective colors. As
shown, HyStart enabled has the earliest exit time from slow
start, resulting in the longest download times. For the other
configurations – SEARCH, BBR, and HyStart off – the down-
load times are close together, with HyStart off the lowest. fol-
lowed closely by SEARCH and then BBR. Figure 9(b) shows
the corresponding slow start exit times for each configura-
tion as mean values bound by standard error bars. HyStart
on exits slow start the earliest at approximately 0.02 seconds
HyStart off delays slow exit times to about 0.2 seconds. BBR
exits start up at about 0.1 seconds, between the two HyS-
tart configurations. TCP with SEARCH exits slow start at
roughly 0.04 seconds, earlier than BBR but later than HyS-
tart on. Figure 9(c) shows the corresponding retransmissions
(mean values with standard error bars). HyStart off shows
the highest number of retransmissions, approximately 2600
packets, whereas the other configurations have substantially
fewer retransmissions, all below 300 packets. HyStart on has
the fewest retransmissions, followed by SEARCH and then
BBR.

Based on these results, enabling HyStart in TCP results in
the lowest packet loss and subsequent retransmissions but re-
quires the most time to download. Disabling HyStart reduces
download times but significantly increases packet loss, as ev-
idenced by the higher number of retransmissions. TCP with
SEARCH strikes a favorable balance, achieving lower down-
load times while maintaining low packet loss. TCP BBR per-

forms better than HyStart enabled in terms of download time
and better than HyStart disabled in terms of packet loss, but
exhibits higher download times and packet loss compared to
SEARCH.

Figure 10 shows the same results from 200 download cases
conducted at the weak RSSI location. In general, downloads
at the weak RSSI location take longer than at the strong RSSI
location, but comparatively, the four experimental conditions
are similar. Similar to the strong RSSI location, SEARCH
has the best performance of the four by balancing download
time and packet loss compared to the other configurations.

Conclusions
In this study, we evaluated the SEARCH algorithm imple-
mented as a congestion control module in the Linux kernel.
We illustrated SEARCH performance compared to TCP Cu-
bic with and without HyStart over a GEO satetellite network.
The examples demonstrate that TCP with SEARCH effec-
tively exits slow start after reaching the congestion point, re-
ducing packet loss and improving throughput compared to
the other methods. We also did extensive evaluation over a
Wi-Fi campus network at two locations with different signal
strengths – strong and weak – comparing TCP Cubic with
SEARCH, TCP Cubic with and without HyStart, and TCP
BBR (version 1.0). Results of 200 downloads at each loca-
tion over a 24 hour period show SEARCH consistently has
lower download times than HyStart enabled, and compara-
ble download times to HyStart disabled and BBR, but lower
packet loss than either.

Current ongoing development of SEARCH algorithm is fo-
cused on refining the slow start exit strategy to more precisely
match the congestion condition, taking into account the delay
inherent in SEARCH upon detecting the chokepoint. Addi-
tionally, our intent is to upstream SEARCH into the Linux
mainstream kernel, as well as integrate it into open-source
QUIC libraries at the user level. Furthermore, we plan to
evaluate the performance of TCP SEARCH implemented in
the Linux kernel over other network environments, such as
cellular networks and LEO satellite links.

Acknowledgments
Thanks to Connor Tam, Jose Manuel Perez Jimenez and Katy
Stuparu for running the experiments for the Wi-Fi heatmap
and doing preliminary experimental design.

References
[1] Abed, G. A., and Jasim, A. M. 2022. An Effective Prac-

tice to Approximating TCP Congestion Window Thresh-
old in High Latency Connections. Al-Iraqia Journal for
Scientific Engineering Research 1.

[2] Cronin, A.; Kachooei, M. A.; Chung, J. W.; Li, F.; Peters,
B.; and Claypool, M. 2024. Improving QUIC Slow Start
Behavior in Wireless Networks with SEARCH. In Pro-
ceedings of the IEEE Local and Metropolitan Area Con-
ference (LANMAN).

[3] Gál, Z.; Kocsis, G.; Tajti, T.; and Tornai, R. 2021. Perfor-
mance Evaluation of Massively Parallel and High Speed

(a) Time vs. bytes downloaded (b) Average slow start exit time (c) Average retransmissions

Figure 9: Strong RSSI.

(a) Time vs. bytes downloaded (b) Average slow start exit time (c) Average retransmissions

Figure 10: Weak RSSI.

Connectionless vs. Connection Oriented Communication
Sessions. Advanced Engineering Software 157(C).

[4] Ha, S., and Rhee, I. 2011. Taming the Elephants: New
TCP Slow Start. Computer Networks 55(9):2092–2110.

[5] Huang, Y., and Olson, M. 2023. HyStart++: Modified
Slow Start for TCP. RFC 9406, RFC Editor.

[6] Kachooei, M. A.; Zhao, P.; Li, F.; Chung, J.; and Clay-
pool, M. 2022. Fixing TCP Slow Start for Slow Fat Links.
In Proceedings of the 0x16 Netdev Conference.

[7] Kachooei, M. A.; Chung, J.; Li, F.; Peters, B.; and
Claypool, M. 2023. SEARCH: Robust TCP Slow Start
Performance over Satellite Networks. In Proceedings of
the IEEE 48th Conference on Local Computer Networks
(LCN), 1–4.

[8] Kachooei, M. A.; Chung, J.; Cronin, A.; Chung, J.; Li, F.;
Peters, B.; and Claypool, M. 2024. Improving TCP Slow

Start Performance in Wireless Networks with SEARCH.
In Proceedings of the IEEE World of Wireless, Mobile and
Multimedia Networks (WoWMoM).

[9] Kasoro, N.; Kasereka, S.; Alpha, G.; and Kyamakya, K.
2021. ABCSS: A Novel Approach for Increasing the TCP
Congestion Window in a Network. Procedia Computer
Science 191(C).

[10] Li, L.; Chen, Y.; and Li, Z. 2023. Small Chunks can
Talk: Fast Bandwidth Estimation without Filling up the
Bottleneck Link. In IEEE/ACM 31st International Sympo-
sium on Quality of Service (IWQoS).

[11] Ye, J.; Huang, B.; Chen, X.; and Sangaiah, A. K. 2021.
An Improved Algorithm to Enhance the Performance of
FAST TCP Congestion Control for Personalized Health-
care Systems. Wireless Communication and Mobile Com-
puting 2021.

