
Version number here V00000

Or “how Linux Tracing can use net/ subsystem”

Idea of “networkingfy”
Linux tracing

Alexander Aring

1

● -ENOCODE yet - I am sorry!
● It’s just an idea - Moonshot
● Any kind of feedback is welcome!
● Helps me: “Can this work? Good idea?”
● Is it too “crazy”?

Why this talk idea?

2

● Components
● Buffer Handling
● Common Filtering mechanism
● In reality everything is more complex

Tracing Basics

3

Tracefs

4

● Special Filesystem
● UAPI to control Linux Tracing subsystem
● Low-Level controllable via coreutils
● Usually /sys/kernel/tracing

TracePoint Declaration

5

Source:
Linux Kernel “include/trace/events/sock.h”

TRACE_EVENT(sk_data_ready,
TP_PROTO(const struct sock *sk),

TP_ARGS(sk),

TP_STRUCT__entry(
__field(const void *, skaddr)
__field(__u16, family)
__field(__u16, protocol)
__field(unsigned long, ip)

),

TP_fast_assign(
__entry->skaddr = sk;
__entry->family = sk->sk_family;
__entry->protocol = sk->sk_protocol;
__entry->ip = _RET_IP_;

),

TP_printk("family=%u protocol=%u func=%ps",
 __entry->family, __entry->protocol, (void *)__entry->ip)

);

Name

Fields

Pretty Printer

TraceEvent

6

void my_data_ready(struct sock *sk)
{

trace_sk_data_ready(sk);
}

TracePoint generates
multiple Events

Simplified: “Stream of Events”

TraceEvent #1

Name Field
TLV #0

Field
TLV #1

Field
TLV #N

TraceEvent #N

Name Field
TLV #0

Field
TLV #1

Field
TLV #N

TraceEvent #1

Name Field
TLV #0

Field
TLV #1

Field
TLV #N

TraceBuffer - PagePool Producer

7

CPU
#N

Page
#0

Page
#1

Page
#N

Hits TracePoint

CPU
#M

Page
#0

Page
#1

Page
#N

Hits TracePoint

PerCPU
PagePool

writes

writes

TraceBuffer - PagePool Consumer

8

PerCPU
PagePool

User
Tracer
Application

reads
Page

#0
Page

#1
Page

#Nfd

fd

reads
Page

#0
Page

#1
Page

#N

Tracefs pipe:
“per_cpu/cpu%d/trace_pipe_raw”

In-Kernel Event Filtering

9

Common solution
In-Kernel Interpreter (yes there is one!)

“kernel/trace/trace_events_filter.c”
Mostly work on TLVs (numbers, strings)

Kernel Tracer vs User Tracer

10
1) https://kernelshark.org/
2) https://trace-cmd.org/

● Kernel Tracer
○ Lives in the Kernel
○ E.g. ftrace “kernel/trace/trace_functions.c”

● User Tracer
○ Lives in the Userspace “trace-pipe-raw”
○ Kernelshark 1), trace-cmd 2)

https://kernelshark.org/
https://trace-cmd.org/

Local vs Remote Tracing

11

Local Remote

Local Tracer Generates
TraceEvents
for Local
Tracer

Remote Tracer
receives
generated
TraceEvents

Switch
Generating
TraceEvents

Time
Synchronized

How we can adapt this to net/ ?

12

● Producer and Consumer
○ Operate directly on NIC DMA Rings
○ Abstract a Tracing Interface/Sockets?
○ Use net/core/page_pool, AF_XDP?

● Offload Filtering
○ Use existing Filtering Infrastructure
○ TC, eBPF Action, even P4?

How we can adapt this to net/ ?

13

● Encapsulate LinkLayer e.g. Ethernet around raw data?
● Even TCP/IP based? If necessary?
● Local Tracing

○ Internal Loopback to RX Buffer?
○ Loopback cable?

● Remote Tracing
○ Send the data directly to remote Machine
○ Time Synchronized Tracing

NUMA Node

Tracing - Producer

14

1) https://commons.wikimedia.org/wiki/File:Network_card.jpg
2) https://commons.wikimedia.org/wiki/File:Circular_buffer.svg

CPU
#N

Hits TracePoint

TX
Buffer

Writes TraceEvent
Raw Data into

Pinned to a CPU?
Possible?ASIC

1)

2)

https://commons.wikimedia.org/wiki/File:Network_card.jpg
https://commons.wikimedia.org/wiki/File:Circular_buffer.svg

DMA Ring as Tracing Buffer

15
1) https://netdevconf.info/0x18/sessions/talk/multi-pf-single-netdev.html

● Pin DMA Ring to CPU? (Our Page Pool)
● NUMA Node requirement

○ CPU and NIC on same NUMA Node
○ Avoid Traversing over internal Bus
○ See other Netdev Talk 1)

https://netdevconf.info/0x18/sessions/talk/multi-pf-single-netdev.html

User
Tracer
Application
E.g. wireshark

Tracing - Consumer

16

1) https://commons.wikimedia.org/wiki/File:Network_card.jpg
2) https://commons.wikimedia.org/wiki/File:Circular_buffer.svg

RX
Buffer

Socket
API

AF_XDP?

Linux
Network
Interface

“trace%d”

Reads TraceEvent
Raw Data

ASIC

1)

2)

https://commons.wikimedia.org/wiki/File:Network_card.jpg
https://commons.wikimedia.org/wiki/File:Circular_buffer.svg

Tracing Filtering and net/

17

● Kernel knows the Metadata!
● Can be “discovered” by Tracefs
● Userspace Application only (Control Plane)

○ Easy to use Key-Value (Events) pairs
○ u32 (offload?), eBPF -> Action DROP
○ In Software - May faster than Interpreter?

Traceevent Dropping and net/

18

● TraceEvent Dropping
○ It is a topic in Linux Tracing (avoid buffer bloating)
○ Unreliable e.g. currently PagePool is Full
○ Reliable Protocols for Tracing Data?
○ Which event to drop?

● Qdisc for Linux Tracing?

Next steps? Proof of Concept?

19

● Ignore the DMA Ring-Buffer for now
● Focus on the virtual Tracing networking Interface
● Local Tracing only (put Events in a skb)
● Avoid recursion tracing cases
● Wireshark as Linux Tracer (AF_PACKET)

○ Shows Traceevent TLVs
○ Dissector configurable during runtime?

Future steps? Try to Filtering!

20

● Create user space app to configure Tracing Filter
○ Operates on Tracefs
○ Reads Metadata configure existing Networking

Filtering techniques to apply filtering
○ Observe Wireshark Tracer

● Simulate “Remote Tracing” over veth?

Future steps? Look for Performance?

21

● Try to use real hardware
● Use DMA TX/RX Rings

(AF_XDP/”net/core/page_pool.c”)?
● Try to offload Filtering on NICs ASIC

Future steps? Time synchronization?

22

1) https://netdevconf.org/0x17/sessions/talk/so_timestamping-powering-fleetwide-rpc-monitoring.html

● SO_TIMESTAMPING 1) ? Willem de Bruijn
● Additional metadata TLV required?
● Causality requirement (Events in Order

as they appeared in the Network)

Version number here V00000

23

Thank you

