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● -ENOCODE yet - I am sorry!
● It’s just an idea - Moonshot
● Any kind of feedback is welcome!
● Helps me: “Can this work? Good idea?”
● Is it too “crazy”?

Why this talk idea?
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● Components
● Buffer Handling
● Common Filtering mechanism
● In reality everything is more complex

Tracing Basics
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Tracefs
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● Special Filesystem
● UAPI to control Linux Tracing subsystem
● Low-Level controllable via coreutils
● Usually /sys/kernel/tracing



TracePoint Declaration

5

Source:
Linux Kernel “include/trace/events/sock.h”

TRACE_EVENT(sk_data_ready,
TP_PROTO(const struct sock *sk),

TP_ARGS(sk),

TP_STRUCT__entry(
__field(const void *, skaddr)
__field(__u16, family)
__field(__u16, protocol)
__field(unsigned long, ip)

),

TP_fast_assign(
__entry->skaddr = sk;
__entry->family = sk->sk_family;
__entry->protocol = sk->sk_protocol;
__entry->ip = _RET_IP_;

),

TP_printk("family=%u protocol=%u func=%ps",
     __entry->family, __entry->protocol, (void *)__entry->ip)

);

Name

Fields

Pretty Printer



TraceEvent
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void my_data_ready(struct sock *sk)
{

trace_sk_data_ready(sk);
}

TracePoint generates 
multiple Events

Simplified: “Stream of Events”

TraceEvent #1

Name Field 
TLV #0

Field 
TLV #1

Field 
TLV #N

TraceEvent #N

Name Field 
TLV #0

Field 
TLV #1

Field 
TLV #N

TraceEvent #1

Name Field 
TLV #0

Field 
TLV #1

Field 
TLV #N



TraceBuffer - PagePool Producer
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TraceBuffer - PagePool Consumer
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In-Kernel Event Filtering
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Common solution
In-Kernel Interpreter (yes there is one!)

“kernel/trace/trace_events_filter.c”
Mostly work on TLVs (numbers, strings)



Kernel Tracer vs User Tracer
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1) https://kernelshark.org/
2) https://trace-cmd.org/

● Kernel Tracer
○ Lives in the Kernel
○ E.g. ftrace “kernel/trace/trace_functions.c”

● User Tracer
○ Lives in the Userspace “trace-pipe-raw”
○ Kernelshark 1), trace-cmd 2)

https://kernelshark.org/
https://trace-cmd.org/


Local vs Remote Tracing
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How we can adapt this to net/ ?
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● Producer and Consumer
○ Operate directly on NIC DMA Rings
○ Abstract a Tracing Interface/Sockets?
○ Use net/core/page_pool, AF_XDP?

● Offload Filtering
○ Use existing Filtering Infrastructure
○ TC, eBPF Action, even P4?



How we can adapt this to net/ ?
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● Encapsulate LinkLayer e.g. Ethernet around raw data?
● Even TCP/IP based? If necessary?
● Local Tracing

○ Internal Loopback to RX Buffer?
○ Loopback cable?

● Remote Tracing
○ Send the data directly to remote Machine
○ Time Synchronized Tracing 



NUMA Node

Tracing - Producer
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1) https://commons.wikimedia.org/wiki/File:Network_card.jpg
2) https://commons.wikimedia.org/wiki/File:Circular_buffer.svg 
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DMA Ring as Tracing Buffer
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1) https://netdevconf.info/0x18/sessions/talk/multi-pf-single-netdev.html

● Pin DMA Ring to CPU? (Our Page Pool)
● NUMA Node requirement

○ CPU and NIC on same NUMA Node
○ Avoid Traversing over internal Bus
○ See other Netdev Talk 1)

https://netdevconf.info/0x18/sessions/talk/multi-pf-single-netdev.html


User
Tracer
Application
E.g. wireshark

Tracing - Consumer
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1) https://commons.wikimedia.org/wiki/File:Network_card.jpg
2) https://commons.wikimedia.org/wiki/File:Circular_buffer.svg 
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Tracing Filtering and net/
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● Kernel knows the Metadata!
● Can be “discovered” by Tracefs
● Userspace Application only (Control Plane)

○ Easy to use Key-Value (Events) pairs
○ u32 (offload?), eBPF -> Action DROP
○ In Software - May faster than Interpreter?



Traceevent Dropping and net/
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● TraceEvent Dropping
○ It is a topic in Linux Tracing (avoid buffer bloating)
○ Unreliable e.g. currently PagePool is Full
○ Reliable Protocols for Tracing Data?
○ Which event to drop?

● Qdisc for Linux Tracing?



Next steps? Proof of Concept?
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● Ignore the DMA Ring-Buffer for now
● Focus on the virtual Tracing networking Interface
● Local Tracing only (put Events in a skb)
● Avoid recursion tracing cases
● Wireshark as Linux Tracer (AF_PACKET)

○ Shows Traceevent TLVs
○ Dissector configurable during runtime?



Future steps? Try to Filtering!
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● Create user space app to configure Tracing Filter
○ Operates on Tracefs
○ Reads Metadata configure existing Networking 

Filtering techniques to apply filtering
○ Observe Wireshark Tracer

● Simulate “Remote Tracing” over veth?



Future steps? Look for Performance?
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● Try to use real hardware
● Use DMA TX/RX Rings 

(AF_XDP/”net/core/page_pool.c”)?
● Try to offload Filtering on NICs ASIC



Future steps? Time synchronization?
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1) https://netdevconf.org/0x17/sessions/talk/so_timestamping-powering-fleetwide-rpc-monitoring.html

● SO_TIMESTAMPING 1) ? Willem de Bruijn
● Additional metadata TLV required?
● Causality requirement (Events in Order 

as they appeared in the Network)



Version number here V00000
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Thank you


