
Falcon: A Reliable and Low Latency
Hardware Transport

Nandita Dukkipati, Neelesh Bansod, Chen Zhao (Google)
Yadong Li, Jay Bhat, Shiraz Saleem, Anjali Singhai Jain (Intel)
Netdev Conference, Santa Clara
15th July, 2024

Falcon: Motivation, Overview and
Performance

This Talk:

● Falcon: Motivation, Overview and Performance
● RDMA/Falcon SW Components
● Relationship to netdev

Datacenter Network (RDMA)

Accelerator Slices (with tightly coupled
interconnects), Compute Servers, Storage

Scheduler (per island)

Host (many per island)
Resource Manager (global)

Rethinking Transport in NICs - Why?

Satisfy demands of new workloads (massive scale AI/ML
training, High Performance Computing, Real-time
Analytics) and existing ones (Storage, RPCs).

New and demanding workloads - high burst
bandwidth, high Op rate, low latency.

Need order of magnitude improvements over highly
optimized Software Transports.

Incremental gains of software stack
optimizations.

Deployment Experiences at scale give us a glimpse of the
possibilities.

Modernising Ethernet for low latency and
high bandwidth.

Falcon technology: A reliable, low latency hardware transport for the ecosystem
to advance modern hyperscaler infrastructure

2015

Lessons Learned
Bandwidth, Latency,

Scale, Utilization Needs

2017

Carousel
Published at SIGCOMM

2020

Swift
Published at SIGCOMM

2019

Snap
Published at SOSP

2020

HW Journey
 Collaborate with Intel to
implement in hardware

2022

Protective Load
Balancing

Published at SIGCOMM

2023

Congestion
Signaling (CSIG)

IETF Draft

2024

Open Falcon
Contribute to OCP

2021

RecentAck-
Tail Loss Probe

(RACK-TLP)
Published at IETF

Bringing 10 years of advances in low latency, isolation and efficiency to hardware

Protective ReRoute
Published at SIGCOMM

IP

UDP

Falcon

Tail Latency in Ethernet networks
➔ HW assisted delay-based Congestion

Control
➔ Selective ACKs for fast loss recovery
➔ Multipath capable connections
➔ Bundled under Programmable Engine

Isolation and Visibility at scale
➔ µs-granularity per-flow Traffic Shaping
➔ Fine-grained Stats for Debuggability,

Software Defined Network control

Efficiency and Security
➔ Implemented in HW for Low Latency,

High Op Rate using Industry-standard
Interfaces, and PSP encryption

RDMA NVMe Custom
ULP

Falcon: Multi-protocol
Reliable Transport

https://cloud.google.com/blog/products/identity-security/announcing-psp-security-protocol-is-now-open-source

Falcon Layers

Resource Management,
Ordering, Scheduling

Congestion Control, Reliability,
Load Balancing, Pacing/Shaping

Upper Layer
Protocol Mapping

Upper Layer
Protocol Mapping

ULP Operations, Flow Control

Transaction
Layer

Packet Delivery
Layer

Transaction
Layer

Packet Delivery
Layer

Multipathing

Mapping Upper Layer Protocols (ULP) to Falcon

Industry Standard Interface

● RDMA InfiniBand Verbs Compatible ULP

● Supports Reliable Connected (RC) and
Unreliable Datagram (UD) Queue Pair types.

● Strictly Ordered: in-order data placement,
in-order completions.

● On-NIC reorder buffer to support OOO
delivery from the network.

Enhanced Interface

● Introduces Relaxed Ordering Modes: weakly
and unordered.

● Graceful Error Handling with
Complete-in-Error and continue (CIE):
signals errors to applications without tearing
down the connection.

Industry standard interfaces are extended in support of warehouse-scale applications.

Falcon Transaction Layer

Transaction
Layer

Network

Packet Delivery
Layer

Request
from ULP

Response
to ULP

Upper Layer
Protocol

Exposes request/response interface to ULPs.
IB Verbs Reads, Atomics, Writes, Sends are mapped to
request-response transactions.

Orders Transactions due to out-of-order network
arrivals.
Ensures ordering semantics expected by the ULP.

Schedules transactions on the wire per QoS-policies.

Manages finite Falcon resources for isolation and
deadlock prevention.

Falcon Packet Delivery Layer

Falcon Packet Delivery Layer between Transaction Layer and the Network.
Performs the more canonical responsibilities of a typical transport -
● Ensures end-to-end reliable delivery from transmitter to receiver.
● Does congestion control and multipath network load balancing to ensure

low-latency and high utilization.

Transaction
Layer Reliability

CC / Multipathing

ULP Network

Packet Delivery
Layer

Swift is a delay based congestion-control for Datacenters that achieves low-latency,
high-utilization, near-zero loss implemented completely at end-hosts and NICs
supporting diverse workloads like large-scale incast across latency-sensitive, bursty
and IOPS-intensive applications working seamlessly in heterogeneous datacenters.

Swift Congestion Control as Baseline

5. Remote NIC Tx Delay

3. Remote NIC Rx Delay

2. Forward Fabric Delay

Lo
ca

l E
nd

po
in

t

Tx
Rem

ote Endpoint

Tx

Rx

Switch Queue

Switch Queue

6. Reverse Fabric Delay

1. Local NIC Tx Delay

7. Local NIC Rx Delay

Rx

4. Rem
ote Turnaround Delay

T1 T2

T3T4
Fabric RTT =

(T4 - T1) - (T3 - T2)

Congestion Aware Multipath Network Load Balancing

Src host

Dst host

Step 1
Congestion!

Step 2
FL: 0x123 -> FL: 0x45

RDMA/Falcon applications leverage multiple paths for load balancing in the network fabric transparently.

ToR ToR

Packet Delivery Layer

Upper Layer Protocol

Transaction Layer

Packet Delivery Layer

Upper Layer Protocol

Transaction Layer Repaths upon
sustained congestion
to find a congestion

free path.

Congestion Signaling (CSIG): Practical & Effective In-band Signaling Protocol

Host ToR HostToRAgg Core Agg

20 Gbps
Extract signal
value, optionally
reflect to sender

100 Gbps 95 Gbps 70 Gbps 90 GbpsSend CSIG packet

Initialize signal header
● Choose signal type to

request

Reverse path
(ack)

Forward path

50%12.5% 95% 70% 90%

18us10us 3us 8us5us

800G 100G 100G 100G 40G

ABW

ABW/C

Hop delay

Bottlenecks

C

Minimum Available Bandwidth: min(ABW) Minimum Available Bandwidth in bps across all links on
the packet path.

Maximum Link Utilization: max(U/C) or min(ABW/C) Maximum Link Utilization in percentage of link speed
across all links on the path.

Maximum Per-Hop Delay: max(PD) Maximum per-hop delay across all hops in the path.

Timely and Precise Loss Recovery via Selective Retransmissions

Falcon Receiver
● Indicates to the sender which packets are received.
● Acknowledgement coalescing and piggybacking for

high Op rate.

Falcon Sender
● Leverages relayed information to retransmit lost

packets in a timely manner.
● Hardware-based retransmission - no firmware.
● Recent Acknowledgement (RACK) and Tail Loss

Probe (TLP) can further enhance loss recovery.

Sender
Falcon

Receiver
Falcon

Push Data
[PSN = 1 to 4]

Drop

Enhanced-ACK

0 1 1 1
Base-PSN = 1, [

[

Early Retx Push Data [PSN = 1]

Goal: Ideally retransmit -- only once -- the lost packets in a timely manner.

Programmability in Rate Update Engine (RUE)

Mailbox
Queues

Swift, Load Balancing
and Multipathing
computations

Packet
Delivery Layer

network

Connection id
Type: ACK/NACK/Rxmit
HW Timestamps
Remote Buffer occupancy
NACK code
Num. Acked

Event

Response Response

Event

SW Rate Update
Engine

Connection id
fCwnd (fabric)
nCwnd (NIC)
Inter-packet gap
Retransmit timeout
Randomize path

Timing Wheel

Single Queue Pair Latency

Setup:
Measure message completion time
(round-trip time from application
posting Op to receiving completion)
over message sizes.

Takeaway:
Tight tail latency: p99 latency,
median and ideal latency match
across message sizes.

Incast with increasing #connections

Goodput is saturated at max link speed.
Median and Tail latencies are close to the
ideal achievable.

Fabric congestion window modulates per
#connections. Round-trip time settles at
Swift target delay.

Scalability under Packet Losses

Setup: induced packet losses on one
Queue Pair from 0 to 5%.

Takeaways:

Stable goodput and message latency as
loss rate increases; graceful degradation
at higher losses.

Low retransmission overhead even under
high packet loss rate

Predictable performance for warehouse-scale: low
tail latency, massive application bandwidth, mitigating
congestion and efficient network utilization.

Efficiency @scale: HW acceleration enables
high-bandwidth (200 Gbps), low-latency (~2.0μs
one-way) and high Op rate (150Mpps) and
connection scaling.

Need of the day: meets requirements of critical
workloads, HPC and AI/ML; also good for offloading
Storage and RPC.

Why Falcon Matters

RDMA/Falcon SW Components

This Talk:

● Falcon: Motivation, Overview and Performance
● RDMA/Falcon SW Components
● Relationship to netdev

SW Components

● Falcon supports Standard IB Verbs Interface.
○ Applications work w/o modifications: Userspace verbs under libibverbs using RC (Reliable

Connected) and UD (Unreliable Datagram) Queue Pairs.
○ Kernel verbs used for RDMA Connection Management.
○ Control plane is offloaded from the Compute Node to the IPU cores.
○ HW datapath offloaded under SR-IOV.

● Optional SW/HW features available over RDMA-Falcon
○ Optimized libfabric provider from Intel, PSM3.
○ Virtual traffic class for selecting performance profiles.
○ 8K MTU support.
○ Completions indicating dropped UD datagrams.
○ Unordered Queue Pairs with Out of Order completions and data placement for large

operations .

Application Interface

Falcon Control Plane and Connection Management
Key functions
Manages resource policies for SR-IOV PCIE functions.
● E.g. Resource isolation for multi-tenancy, cap on HW

resources consumed by a Virtual Function.

Connection setup done as a “bump-in-the-wire” model.
● Transparent to on-host RDMA drivers/applications.
● Optional business logic for connection management,

e.g., Virtual Function (VF) lifecycle, VF - VNET
mapping, VIP to PIP translation.

Manage the datapath performance.
● Telemetry for monitoring and troubleshooting.
● Configuration management for RDMA-Falcon.

Implementation philosophy
● Runs on IPU cores to enable Cloud Service Providers

to operate RDMA.
● Host and VM RDMA SW stacks are Falcon agnostic to

ease lift-and-shift applications.

IPU Cores

Falcon Control
Plane and
Connection

Management (app)

RUE
(app)

RDMA Config
Assist
(rca.ko)

Falcon CSR
Driver

IXD

Linux Kernel
User Space

Platform
Drivers

RDMA over Falcon: Connection Setup Protocol

Guest VM / Host View:
● Step 1: RDMA endpoint allocation, ibv_create_{pd, cq, mr, qp}.
● Step 2: Handshake with peer (rdma_cm or out-of-band).
● Step 3: QP setup with peer info, ibv_modify_qp.
● No changes to upstream (RoCE) software.
● Scalable control ops per second with large number of QPs.

Falcon View:
● Step 1: Intercept ibv_{create, modify, destroy}_{qp, ah}.
● Step 2: CID allocation, congestion control initialization, QoS controls, etc.
● Step 3: Security tunnel assignment (PSP, IP-SEC).
● Step 4: Handshake with peer (optional integration with VPC control plane).
● Step 5: Bring up connection and update RDMA QP/AH context with Falcon

connection info.

● QP commands are
intercepted

● The Falcon CM allocates
one CID per RC QP

● Similar flows work for
RDMA-CM* as well as
most OOB schemes

Falcon RC Connection Setup (part 1: Resource Allocation)

* A separate connection setup
flow for CID - AH binding is
necessary to support UD traffic in
RDMA-CM

● The Falcon CM initiates
handshake when
possible

● Optional: VPC /
business logic
integration

● ModifyQP (RTR) shall
always be completed
no matter if the Falcon
connection setup is
successful or not.

Falcon RC Connection Setup (part 2: Early Handshake)

Parallel handshakes
improve connection
setup performance

Falcon RC Connection Setup (part 3: Falcon Setup)

Falcon CSR Driver and RCA.ko

Falcon CSR driver, RDMA Configuration Assistant (RCA) and IXD
(Control Plane Driver for Intel IPU) are kernel modules.
● Falcon CSR driver provides memory bar and CSR register

access to the Connection Manager and SW Rate Update
Engine.

● RCA intercepts control path verbs such as QP/AH
create/modify/destroy and forwards the commands to
Falcon Connection Manager.
○ rca.ko is implemented as a IXD driver auxiliary

device.
○ rca.ko takes ownership of a command queue for

intercepting ibverbs from host RDMA driver.
○ rca.ko uses netlink for communications with the

connection manager running in user space.

IPU Cores

Falcon Control
Plane and
Connection

Management (app)

RUE
(app)

RDMA Config
Assist
(rca.ko)

Falcon CSR
Driver

IXD

Linux Kernel
User Space

Platform
Drivers

Programmable Congestion Control

● Implements Swift for fabric and NIC/host congestion.
● Implements congestion-aware Multipathing, and Load

Balancing.
● Provides API for per-connection level congestion stats.

Implementation
● C++ Engine running on IPU Compute Complex.
● Can be upgraded in a hitless manner.
● Processes per-connection Datapath Events.

○ Generates congestion response for connection.
○ One response per RTT for each connection.

● Processes 18M events/sec on one core
○ Minimum DRAM interactions.
○ Batched event processing to reduce barriers.

● Can be scaled upto more cores if needed.

IPU Cores

Falcon Control
Plane and
Connection

Management (app)

RUE
(app)

RDMA Config
Assist
(rca.ko)

Falcon CSR
Driver

IXD

Linux Kernel
User Space

Platform
Drivers

Rate Update Engine (RUE)

Telemetry (1/2)

Use-cases
● Production fleet monitoring.
● Debugging network performance and availability.

○ E.g., when an application (on physical host/VM) reports that the network is slow.
● Surface telemetry to applications for monitoring and debuggability.
● E2E network performance tuning.

Our approach
● Latency histograms for visibility into tail latencies.
● Granular telemetry for precise debugging.

○ Per-connection statistics.
○ Per VM-pair statistics for virtualized applications.

● Telemetry collection has minimal impact on NIC performance.

Telemetry (2/2)
Telemetry collected across layers works coherently to identify bottlenecks in end-to-end paths.

Relationship to Netdev

This Talk:

● Falcon: Motivation, Overview and Performance
● RDMA/Falcon SW Components
● Relationship to netdev

SW Components

Host Drivers and Providers - Upstreaming Status

iRDMA driver and Verbs provider patches to support
Intel(R) IPU E2100 adapters to be submitted for
review in this quarter.

iRDMA driver runs on an auxiliary device created by
the IDPF driver.

IDPF driver is already in upstream kernel.

PSM3 OFI provider to include additional
optimizations for HPC, AI/ML Workloads running on
top of Falcon Transport.

Falcon SW Components - Upstreaming Plan
RCA.ko runs on top of an auxiliary
device created by the IXD driver (Intel
Control Plane Driver).

IXD driver to be upstreamed.

Plan to upstream both RCA.ko and
Falcon CSR driver.

User space SW (Falcon control plane,
connection management, SW-RUE)
will be open-sourced.

Falcon technology brings 10 years of advances in Low Latency, Isolation and Efficiency to hardware.

Open Technology:
● Falcon @OCP 2023 [slides][talk][Google Cloud blog post].
● Falcon Specifications released in Q1 ’24

[https://github.com/opencomputeproject/OCP-NET-Falcon].
○ v0.9 of Falcon Transport, RDMA-over-Falcon, NVMe-over-Falcon.
○ v1.0 of Falcon Transport and RDMA-over-Falcon.

● Further advancements in protocol to be released in future specifications.
● RDMA/Falcon Simulator to be opened up.

Upstreaming changes to use advanced capabilities from Falcon:
● 8KB MTU support. Approach IBTA for inclusion of 8KB MTU support into the specification – could

be used by RoCEv2 as well.
● iRDMA driver changes to expose basic telemetry information from Falcon.
● Expose unordered connection and Complete-in-Error to advanced applications.
● Use DirectVerbs as a baseline solution for exposing such new capabilities.

Going Forward

https://drive.google.com/file/d/1Xfcz4dMNd1tUjCHxHMSG5G8DMKlw8wsF/view
https://www.youtube.com/watch?v=je1BnXNE670
https://cloud.google.com/blog/topics/systems/introducing-falcon-a-reliable-low-latency-hardware-transport?e=13802955
https://github.com/opencomputeproject/OCP-NET-Falcon
https://github.com/opencomputeproject/OCP-NET-Falcon
https://www.opencompute.org/contributions?contributions%5Bquery%5D=Falcon

Acknowledgements

Many Google and Intel team members worked on bringing Falcon Technology to the Industry.

Google Team:

Abhishek Agarwal, Prashant Chandra, Kai Huang, Kyuho Jeong, Huadong Liu, Julian Mentasti Mesa,
Behnam Montazeri, Ashwin Murthy, Jessica Ramirez, Henry Schuh, Hyojeong Seibert, Naveen Sharma,
Kaiyu Shen, Arjun Singhvi, Huangze Tang, Akshat Thakkar, Jaswinder Singh, Sarin Thomas, Hassan Wassel,
David Wetherall, Baijun Wu, Matt Wycklendt, Jian Yang, Rui Yang, Kira Yin, and many members of the
RDMA-Falcon HW and SW teams.

Intel Team:

Suresh Kumar P Venkata, Purna Chandra Mandal, Abhishek Maheshwari, Arun Kumar Acharya, Pawel
Kaminski, Krzysztof Czurylo, Chris Bednarz, Eran Rosenthal, Benny Sum, Animesh Pan, Deb Chatterjee,
and many members of the RDMA-Falcon Architecture, HW and SW teams.

