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Abstract

In Situ Operations, Administration, and Maintenance (IOAM)
provides a way to collect telemetry data on devices, e.g.,
switches and routers, in so-called limited domains (e.g., a dat-
acenter or a service provider). Recently standardized in the
IETF, IOAM has been developed with various operation modes
(i.e., option-types) in order to be suitable for as many poten-
tial use cases as possible. One of the option-types, namely the
Pre-allocated Trace Option-Type (PTO), has already been im-
plemented in the Linux kernel and is part of the mainline tree
since version 5.15.
IOAM comes with another option-type, namely the IOAM
Direct EXporting (DEX). It allows each network device on the
path to locally aggregate and/or export telemetry data towards
one or more collector(s). This paper proposes the very first
implementation of IOAM DEX in the Linux kernel, with sup-
port in ubiquitous user space tools. The paper discusses our
implementation and presents performance results of our im-
plementation. Our source code is publicly available.
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Introduction
The last ten to fifteen years have witnessed a strong evo-

lution of the Internet: from a hierarchical, relatively sparsely
interconnected network to a flatter and much more densely
interconnected network [11, 8, 24] in which hyper giant dis-
tribution networks (HGDNs, - e.g., Meta, Google, or Netflix)
are responsible for a large portion of the world traffic [4].
HGDNs are becoming the de facto main actors of the modern
Internet. The very same set of actors have fueled the move to
very large data center networks (DCNs).

In parallel, throughout the years, multiple Operations, Ad-
ministration, and Maintenance (OAM) tools have been devel-
oped, for various layers in the protocol stack [17], going from
basic traceroute to Bidirectional Forwarding Detection
(BFD [15]) or recent UdpPinger [10] and Fbtracert [9]. The
measurement techniques developed under the OAM frame-
work have the potential for performing fault detection, iso-
lation, and performance measurements.

Telemetry information (e.g., timestamps, sequence num-
bers, or even generic data such as queue size and geoloca-
tion of the node that forwarded the packet) is key to HGDNs,

DCNs, and Internet operators in order to tackle two partic-
ular challenges. First, the network infrastructure must be
running all the time, even in the presence of (unavoidable)
equipment failure, congestion, or change of traffic patterns.
Second, customers want to enjoy their content in whatever
context they access it (e.g., at home on one or more device(s)
or on a mobile device in public transportation) with the high-
est possible quality and the lowest delay. Consequently,
HGDNs, DCNs, and classical Internet operators must care-
fully engineer their network to ensure the highest Quality-
of-Experience (QoE) on the user side. Thus, network mon-
itoring and measurements are of the highest importance for
network operators [16, 23], although the available tools and
methods [10, 9] have not kept up with the pace of growth in
speed and complexity.

One of the new telemetry solutions under the OAM frame-
work is In Situ Operations, Administration, and Maintenance
(IOAM) [6], which is standardized by the IETF. IOAM extends
existing data packets to collect operational and telemetry in-
formation inside a restricted network domain. It has many
operation modes, referred to as option-types, that specify how
the telemetry data is processed. IOAM can work on top of ex-
isting protocols such as IPV6 [3] or NSH [5].

In this paper, we present and evaluate the performance of
our Linux kernel implementation of IOAM Direct EXporting
(DEX) [19], which is one of the operation modes of IOAM.
IOAM DEX triggers network nodes (i.e., routers) on path to
locally collect and/or export to one or more receiving entities
rather than gathering telemetry data of each network node in-
side the packet header. Our implementation builds on the ex-
isting one for IOAM PTO, another IOAM option-type, which
itself relies on the lightweight tunnel feature of the Linux ker-
nel. As specified in RFC 9326 [19], our implementation sup-
ports the insertion of IOAM DEX into a subset of packets.
Due to this feature, we are able to limit the impact on net-
work performance for a limited injection rate as the subse-
quently presented results of the evaluation of our implemen-
tation highlight. For instance, for an injection rate of 1%, the
maximal loss in performance, across all operations pertain-
ing to IOAM DEX, is 7.49%. However, at an injection rate of
100% (i.e., worst-case scenario, which should not be encoun-
tered in a realistic deployment), we reach a maximal loss of
66.59%.

Furthermore, we explain how we add support to some ex-



isting user space tools (i.e., iproute2 and Wireshark) to
complement the kernel implementation. Finally, our work is
open source for the community.

Background
IOAM

In Situ Operations, Administration, and Maintenance
(IOAM) [6] is an IETF proposed standard that provides a
way to collect telemetry data on devices, e.g., switches and
routers, in so-called limited domains (e.g., a datacenter or a
service provider). In this context, such limited domains are
called IOAM domains. IOAM cannot be considered as an ac-
tive method because it relies on existing packets without gen-
erating new ones dedicated to telemetry. However, it needs
to modify the existing packets to add pieces of information
for collecting and processing telemetry data. Thus, it can-
not be considered as a passive method either. Consequently,
IOAM can be classified as an hybrid type 1 method based on
the classification presented in RFC 7799 [18] because it is
in-between a passive and an active method.

The INGRESS of an IOAM domain is called the encapsu-
lating node, while the EGRESS is known as the decapsulating
node. All IOAM nodes in-between are called transit nodes.
For security reasons, the decapsulating node must be config-
ured to properly remove any IOAM headers from packets to
avoid leaking potentially sensitive telemetry information.

IOAM can be encapsulated in different network proto-
cols [3, 5], such as IPV6 or NSH. In this paper, the imple-
mentation focuses on IOAM with IPV6, which uses an IPV6
Extension Header (either an IPV6 Hop-By-Hop or IPV6 Des-
tination option) to carry the IOAM header. RFC 9197 [6]
specifies different metrics (i.e., IOAM data fields) that can be
collected within an IOAM domain. For example, one can col-
lect node and interface identifiers, timestamps, queue depths,
etc. RFC 9197 also defines a list of operation modes (i.e.,
Option-Types) as follows:
• Pre-allocated Trace Option-Type (PTO). In this mode, the

space to store the IOAM data fields of all the nodes on the
path is pre-allocated by the encapsulating node. This mode
has been implemented [14] and is available in the Linux
kernel since version 5.15;

• Incremental Trace Option-Type. In this mode, each node
extends the space before storing its IOAM data fields;

• Proof-of-Transit (PoT). This mode is used for proving that
a packet followed a specific path;

• Edge-to-Edge (E2E). In this mode, transit nodes may pro-
cess the IOAM data added by the encapsulating node but
cannot modify it.

IOAM DEX
RFC 9326 [19] introduces a new IOAM Option-Type,

called IOAM Direct EXporting (DEX). With this mode, each
IOAM node along a path within an IOAM domain may trigger
a local aggregation and/or export of its IOAM data, without
adding IOAM data inside packets.

The IOAM DEX header is represented in Fig. 1. The
Namespace-ID represents the IOAM namespace, which
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Namespace-ID Flags Extension-Flags
IOAM-Trace-Type Reserved

Flow ID (optional)
Sequence Number (optional)

Figure 1: IOAM DEX header.

is not to be confused with a Linux network names-
pace1. The bits inside the Flags byte are allocated by
IANA [13]. However, none are currently standardized. The
Extension-Flags is an 8-bit field where each bit repre-
sents the presence of an optional 4-byte field in the header.
Currently, only the Flow ID, which is the flow identifier
that can be used to identify packets belonging to a same
flow, and the Sequence Number, which is an incremen-
tal counter of each packet in the flow, are specified. Finally,
the IOAM-Trace-Type is a 24-bit field representing the
expected IOAM data (see RFC 9197 [6]).

Fig. 2 illustrates how the IOAM Direct EXporting (DEX)
works. The first hop, labeled R1, represents the encapsu-
lating node and is responsible for inserting both the IOAM
(IOAM H) and IOAM DEX (DEX H) headers between the
packet header “H” and the packet payload “P”. The encap-
sulating node may then locally aggregate and/or export its
IOAM data, based on the IOAM-Trace-Type in the header.
Similarly, transit hops respectively labeled R2 and R3, and
the last hop labeled R4 representing the decapsulating node,
may locally aggregate and/or export their IOAM data. Transit
nodes cannot modify or remove the DEX header. Finally, the
decapsulating node removes both the IOAM and IOAM DEX
headers to avoid leaking data.

RFC 9326 [19] does not specify the functionality of local
processing, or exporting methods and format. Thus, our ker-
nel space implementation, which we present subsequently, is
intentionally as generic as possible in order to leave these de-
cisions to the network operators that may want to use IOAM
DEX. However, we propose a user space solution, which we
detail later on, for exporting the IOAM data under the IP Flow
Information eXport (IPFIX) protocol [2]. IPFIX is a protocol
for exporting flow information from routers inside a network.
This proposed solution is inspired by a work in progress in
the IETF. An expired draft [20] suggesting this approach will
soon be replaced by a new one.

Kernel Space Implementation
As previously mentioned, one of the operation modes (i.e.,

option-types) of IOAM, namely Pre-allocated Trace Option-
Type (PTO), has already been implemented in the Linux ker-
nel [14]. However, the version described in the referenced
paper is an old one and does not reflect the current imple-
mentation. In this paper, we focus on the implementation of
Direct EXporting (DEX) by relying on the existing one while
ensuring backward compatibility.

1Note that the existing implementation for the PTO and the new
one for the DEX are both compatible with Linux network names-
paces.
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Figure 2: Packet across an IOAM domain using IOAM DEX with the proposed exporting of IOAM data under the IPFIX
format [2].

Encapsulation
For encapsulating the IOAM DEX header, we enhance the

current implementation for the IOAM PTO option-type that
relies on the lightweight tunnel API. It allows one to attach
the tunnel attributes to the route as depicted in Listing 4.

The data structure representing the tunnel state
(ioam6_lwt) has been extended with a reference to a
new structure, named ioam6_lwt_dex and depicted
in Listing 1, containing the IPV6 Hop-By-Hop op-
tion (struct ipv6_hopopt_hdr) with both IOAM
(struct ioam6_hdr) and IOAM DEX (struct
ioam6_dex_hdr) headers. Doing so, we ensure backward
compatibility with the PTO while leading to the minimal
number of modifications to existing code. The structure
ioam6_dex_hdr is the IOAM DEX header as depicted in
Fig. 1. Similarly, the function initializing the tunnel state
(ioam6_build_state), which is called when the route
is configured from user space with iproute2 (more details
in the following section), has been updated to support the
parameters required for the DEX and to store them in the
new structure.

struct ioam6_lwt_dex {
struct ipv6_hopopt_hdr eh;
u8 pad[2]; /* 2-octet padding for 4n-alignment */
struct ioam6_hdr ioamh;
struct ioam6_dex_hdr dexh;

} __packed;

Listing 1: ioam6_lwt_dex.

As detailed previously, the IOAM DEX header can con-
tain optional data fields depending on the value of the 8-
bit field Extension-Flags (see Fig. 1). Currently, two
such fields are standardized by IANA, namely Flow ID and
Sequence Number. However, the RFC 9326 [19] does not
specify how to calculate the flow ID. We decided to compute
the flow ID similarly to how the flow label is calculated in the
implementation of Segment Routing with IPV6 as forwarding
plane (SRv6) in the kernel2 with the function represented in
Listing 2.

2See function seg6_make_flowlabel in
seg6_iptunnel.c.

static __be32 ioam6_dex_flowid(struct sk_buff *skb)
{

u32 hash = skb_get_hash(skb);
hash = rol32(hash, 16);
return (__force __be32)hash;

}

Listing 2: Computation of flow ID based on packet.

Then, in order to store the mappings between the flow
ID and the current value of the sequence number, we added
an extra resizable hash table, named dex_flows, to the
structure ioam6_pernet_data (see Listing 3) saving the
IOAM data per Linux network namespace. The flow ID is
used as the key while the sequence number is the stored value.

struct ioam6_pernet_data {
struct mutex lock;
struct rhashtable namesapces;
struct rhashtable schemas;
struct rhashtable dex_flows;

};

Listing 3: ioam6_pernet_data.

We decided to enable the automatic shrinking op-
tion in the parameters of the resizable hash table, represented
by the structure rhashtable_params3, that enables the
dynamic and automatic reduction in size of the hash table. In
our code, we do not remove any element from the hash ta-
ble. Thus, the automatic shrinking feature does not change
the performance. We have validated this hypothesis by eval-
uating the performance when automatic shrinking is disabled
and the results are marginally the same whether the automatic
shrinking is enabled or not.

Afterwards, packets going through the created lightweight
tunnel, based on route configuration, will have the IPV6 DEX
header as an IPV6 Hop-By-Hop Extension Header by going
through the updated ioam6_output function, which uses
ioam6_do_inline or ioam6_do_encap depending on
whether the encapsulation is in inline (i.e., modification of
the IPV6 header) or encapsulation (i.e., leading to the creation
of an IPV6-in-IPV6 tunnel) mode. The two aforementioned
functions are used for both the PTO and DEX, but they are

3In file include/linux/rhashtable-types.h.



capable to add the appropriate header based on the route con-
figuration.

Finally, for every packet entering the lightweight tunnel,
the kernel will trigger, using the method ioam6_event, a
Generic Netlink [21] multicast event, as depicted in Fig. 2,
containing the values inside the IOAM DEX header combined
with IOAM data depending on the IOAM-Trace-Type field
in the header. We chose to report the IOAM data using
Generic Netlink to have a solution as generic as possible that
leaves the decision on the inner workings of the local pro-
cessing and/or exporting to end users since the RFC does not
specify how to do so.

Transit
The function, namely ipv6_hop_ioam, handling in-

transit packets containing IOAM headers as IPV6 Hop-By-
Hop options has been modified to select the code path de-
pending on the IOAM option-type, being either PTO (option-
type 0) or DEX (option-type 4). If IOAM is enabled on the
input interface and an IOAM namespace is configured on the
node with a value matching the one in the DEX header, the
same function, namely ioam6_event, as for the encapsu-
lation code path will be called to generate a Generic Netlink
multicast event containing the values in the IOAM DEX
header with IOAM data. The types of the Generic Netlink
attributes are described in the ioam6_genl.h uapi.

Decapsulation
For the decapsulation process, two operations need to

be performed. First, the IOAM data must be reported us-
ing Generic Netlink. This is performed in the same code
path as for the encapsulation and transit operations us-
ing the ioam6_event function with the same conditions
(i.e., IOAM enabled on input interface and configured IOAM
namespace). Then, both IOAM and IOAM DEX headers must
be removed to prevent the leakage of potentially sensitive
telemetry information. If the destination of the packet is the
decapsulating node and the encapsulation was done in in-
line node (i.e., IOAM headers attached to the existing IPV6
header), the packet has reached its destination and will be
handled by the existing receiving function of the kernel with-
out being forwarded. If the destination of the packet is not
the decapsulating node and the encapsulation was done in en-
capsulation mode (i.e., leading to the creation of an IPV6-in-
IPV6 tunnel), both IOAM headers will be removed by existing
code in the kernel since the headers are attached to the outer
IPV6 header having the decapsulating node as its destination.

User APIs
Three user APIs (uapi) have been updated, which will be

used in iproute2 to interact with the kernel space imple-
mentation.

First, the structure ioam6_dex_hdr representing the
IOAM DEX header has been added to the uapi ioam6.h.

Then, ioam6_iptunnel.h, used for the configuration
of the lightweight tunnel, is updated by adding an enumera-
tion representing the IOAM option-type being used. Addition-
ally, another constant is added in the enumeration represent-

ing the data provided when creating the tunnel for specifying
the content of the IOAM DEX header.

Finally, a constant for IOAM DEX has been added to the
enumeration representing the type of IOAM Generic Netlink
multicast event with new Generic Netlink attribute types for
IOAM DEX in the uapi ioam6_genl.h.

No breaking change has been done to the user APIs in order
to ensure backward compatibility. So, existing tools will be
functional, without any modification, on the patched version
of the kernel.

User Space Implementation
For facilitating the usage of our kernel space imple-

mentation, we updated two existing user space tools (i.e.,
iproute2 and Wireshark) and created a new one to con-
vert IOAM telemetry data to IPFIX [2, 20].

Route Configuration with iproute2
In order to append the IOAM DEX header as an IPV6 Ex-

tension Header using Linux’s lightweight tunnel API, the
encapsulating node needs to configure the route using the
Linux routing socket (rtnetlink). It relies on the up-
dated ioam6_iptunnel.h uapi. To facilitate the con-
figuration of the route, we extended the support for IOAM in
iproute2, which was introduced for supporting the encap-
sulation of the IOAM PTO, by adding the possibility to con-
figure a route using IOAM Direct EXporting (DEX) with the
following syntax:

$> ip -6 route add {} encap ioam6 [freq {}/{}] [mode inline | encap
| auto] [tundst {}] dex ns {} trace-type {} ext-flags {} via

{}

Listing 4: Adding route with IOAM DEX.

The values for the IOAM namespace4 (ns), extension flags
(ext-flags), and trace-type will be used to fill the
header, which is depicted in Fig. 1. iproute2 does not take
the flags as a parameter since, at the time of writing, none
are currently defined and the byte in the header will be set to
0 by the kernel space implementation.

The provided parameters will be retained in kernel space
inside the state of the created lightweight tunnel for append-
ing the IOAM DEX header in subsequent packets.

Node Configuration
Every router on the path, including both encapsulating and

decapsulating nodes, must be configured for the processing
related to IOAM DEX to happen. We rely on the following
settings that were implemented for the addition of the IOAM
PTO to the kernel [14].

First, each node must enable IOAM and configure their
IOAM node identifier, which can either be the same for every
interface or per-interface dependent. For both these settings,
the network operators can configure them using sysctl to

4Remind that an IOAM namespace and a Linux (network) names-
pace are two different concepts that must not be confused.



modify the kernel parameters, which are the following where
{iface} is the name of an existing network interface5:

• net.ipv6.ioam6_id;

• net.ipv6.ioam6_id_wide;

• net.ipv6.conf.{iface}.ioam6_enabled;

• net.ipv6.conf.{iface}.ioam6_id;

• net.ipv6.conf.{iface}.ioam6_id_wide.

Furthermore, the IOAM namespace must be
configured on the nodes. This configuration re-
lies on iproute2, which uses the updated
ioam6_genl.h uapi, with the following command:
$> ip ioam namespace add ID [data DATA32] [data DATA64]

Listing 5: Configuring an IOAM namespace.

If, on any IOAM node in the domain, the namespace is con-
figured and IOAM is enabled on the input interface, the kernel
of the node will generate a Generic Netlink multicast event
for every packet containing the IOAM DEX header under the
condition that the value of one of the configured namespaces
on the node matches the ns value in the header (see Fig. 1).

Wireshark

Wireshark [22] is the leading software for capturing
and analyzing network packets. It supports a continuously
increasing amount of protocols thanks to contributions by
countless developers. Due to the prevalence of Wireshark,
we decided to contribute to it by enhancing the IPV6 dissec-
tor, allowing one to properly inspect IPV6 packets, to support
the decoding of the IOAM DEX header.

Our contribution [12] has been merged in the mainline
repository. Yet, at the time of writing this paper, a new
version has not been released. Thus, one needs to compile
Wireshark from the sources to benefit from our patch.

IPFIX Exporter
As mentioned earlier, RFC 9326 [19] does not specify the

inner workings of local processing nor the exporting meth-
ods and format. Thus, as explained in the presentation of our
kernel space implementation, we trigger a Generic Netlink
multicast event for every packet with the IOAM DEX header
under some aforementioned conditions. This allows our solu-
tion to be as generic as possible and let end-users decide how
to process and/or export the telemetry data.

Yet, we propose a solution, as depicted in Fig. 2, which
relies on a IPFIX exporter. This exporter is a Golang appli-
cation that listens for Generic Netlink events related to IOAM
DEX and converts them to IPFIX. Furthermore, it can dis-
play the received events and/or send them to an IPFIX col-
lector over UDP depending on the given parameters. We
open-source this piece of software with our implementation
of IOAM DEX.

5The interface can be all for all the interfaces or default for
setting a default value.

Evaluation
Methodology

To evaluate the performance of IOAM DEX, we built a
testbed made of two servers. The first one is used as a traf-
fic generator, using TREX [7], while the second one served
as a Device Under Test (DUT). The characteristics of both
machines are summarized in Table 1. Both servers are con-
nected with two direct attach copper cables through an Intel
XL710 network interface card equipped with two ports, each
capable of 40Gb/s. The DUT is configured to maximize the
performance (e.g., CPU in performance mode and network
optimized settings).

Metric Traffic Generator DUT
RAM 32GB DDR4 16GB DDR4
Kernel Linux 5.17 Patched Linux 6.12
CPU Intel Xeon E5-2630v3 (8c/16t - 2.4GHz/3.2GHz)

Table 1: Specification of machines used for the evaluation.

In this section, the term “baseline” refers to the maximum
number of IPV6 packets per second (pps) that our DUT can
forward. The value of the baseline is 1.07 million pps per
CPU core (equivalent to 12.84Gb/s per CPU core)6. For
comparison purposes, the baseline packets are IPV6 packets,
without IOAM headers, of the same size (i.e., 1,500 bytes,
which is the default MTU in Linux) as the IOAM enabled
packets. Abdelsalam et al. [1] obtained 1.119 million packets
per second with a similar setup, confirming so our results.

We intentionally focused on a single flow on a single CPU
core to establish a stable comparison basis. The DUT is con-
figured to use a single queue for all incoming traffic with a
single core responsible for that queue. This setup allows us
to accurately measure the proportional impact of IOAM DEX.
Scaling to multiple flows across multiple cores would have
partially hidden our evaluation objective and can be deduced
from our basis.

Results
We measured the number of packets per second processed

by the DUT when performing the three operations pertaining
to IOAM DEX independently (i.e., encapsulation, transit, and
decapsulation) depending on the percentage of packets being
expanded with or containing the IOAM DEX header because
the percentage of injection to use in a real-world deployment
is operator and scenario-dependent.

We repeated each experiment 10 times, each one lasted for
30 seconds, and calculated the mean. On the subsequent fig-
ures, the standard deviations are also depicted. Yet, there are
too small to be distinguishable.

Encapsulation We decided to evaluate the performance
when the DUT is acting as the encapsulating node depend-
ing on three variables: (i) the IOAM trace-type representing
the IOAM data to be collected and/or exported; (ii) the ex-
tension-flags for the optional inclusion of the flow ID and/or

6We were able to reach the line rate (i.e., 40Gb/s) using four
flows distributed across four CPU cores.



sequence number; (iii) the mode of IOAM being either inline
(i.e., modification of existing IPV6 header) or encapsulation
(i.e., IOAM DEX header in an additional IPV6 header leading
to the creation of an IPV6-in-IPV6 tunnel) with or without
specifying the source of the tunnel.

As depicted in Fig. 3, the IOAM trace-type has no impact
on the encapsulation performance for a given injection rate.
This is an expected result since the size of the IOAM DEX
header, as represented in Fig. 1, does not depend on the trace-
type and all the IOAM data fields have a size of either 4 or 8
bytes, so the impact on the reporting of IOAM telemetry with
Generic Netlink is negligible.
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Figure 3: IOAM DEX encapsulation depending on IOAM
trace-type.

When using an injection rate greater or equal to 10%, not
using extension-flags provides a marginally better encapsu-
lation performance compared to using them as represented
in Fig. 4. In general, using extension-flags requires to com-
pute the flow ID based on the packet, a hash table lookup
to verify if the flow is already known by the kernel, and po-
tentially a hash table insertion if it is a new flow. Thus, the
only difference between using only the flow ID or both the
flow ID and the sequence number lies in the appending of
one or two 4-byte integer(s) in the header. So, it justifies the
lack of difference in performance between the usage of one
or two extension-flag(s) and the marginal benefit of not using
extension-flags.
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Figure 4: IOAM DEX encapsulation depending on DEX
extension-flags.

However, there is a clear difference in performance de-
pending on whether the source of the tunnel for the encapsu-
lation mode (i.e., leading to the creation of an IPV6-in-IPV6
tunnel) is specified from user space as pictured in Fig. 5. If
the source of the tunnel is not given (orange line in Fig. 5),
the kernel needs to perform a dynamic resolution to deter-
mine the source IPV6 address of the new header, which is a
costly operation. We reached the same conclusion during the
evaluation of the implementation of the IOAM PTO in the ker-
nel. The uplift in performance by specifying the source of the
tunnel compared to dynamic resolution ranges from 3.3% at
a 5% injection rate to 33.8% at a 100% injection rate.
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Figure 5: IOAM DEX encapsulation depending on IOAM en-
capsulation type.

Transit We decided to evaluate the performance when the
DUT is acting as the transit node (i.e., exporting IOAM
telemetry data) in inline mode depending on two variables:
(i) the IOAM trace-type representing the IOAM data to be col-
lected and/or exported; (ii) the extension-flags for the optional
inclusion of the flow ID and/or sequence number.

For the transit depending on the IOAM trace-type, based on
Fig. 6, we reached the same conclusion than for the encap-
sulation, i.e., the trace-type does not impact the performance
for a given injection rate. However, for an injection rate less
than 25%, the performance for the transit is better than the
encapsulation because the transit node does not need to add
an IPV6 Hop-By-Hop option to the packet.
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Figure 6: IOAM DEX transit depending on IOAM trace-type.

Similarly, the optional usage of extension-flags does not



impact the transit performance for a given injection rate, as
depicted in Fig. 7, since it pertains to copying zero, one, or
two 4-byte integer(s) to the triggered Generic Netlink mes-
sage. Additionally, as for the IOAM trace-type and injec-
tion rate less than 25%, the transit exhibits better perfor-
mance than the encapsulation because it only needs to trigger
a Generic Netlink event.
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Figure 7: IOAM DEX transit depending on DEX extension-
flags.

Decapsulation As for the transit, we decided to evaluate
the performance when the DUT is acting as the decapsulat-
ing node (i.e., exporting IOAM telemetry data and removing
both IOAM and IOAM DEX headers) depending on two vari-
ables: (i) the IOAM trace-type representing the IOAM data to
be collected and/or exported; (ii) the extension-flags for the
optional inclusion of the flow ID and/or sequence number.

Due to our methodology, it is only possible to accurately
measure the decapsulation operation when the IOAM DEX
header is in encapsulation mode (i.e., IPV6-in-IPV6 tunnel).

Once again, we reach the conclusion that the IOAM trace-
type has no impact on the decapsulation performance for a
given injection rate as depicted in Fig. 8. This is expected
since the decapsulating node needs to report the IOAM data
over Generic Netlink as the encapsulating and transit nodes
(i.e., same code path in the kernel). Then, the removal of the
additional IPV6 header inserted by the creation of the tunnel
is the same as for any tunnel in the kernel without any op-
erations dedicated to IOAM DEX. This additional operation
leads to worse performance compared to the transit starting
from an injection rate of 5%.

The extension-flags do not impact the performance of the
decapsulating node as represented in Fig. 9. However, it is
more costly to perform the decapsulation compared to the
transit (see Fig. 7) starting from an injection rate of 10%
because, additionally to the reporting of IOAM data over
Generic Netlink as for the transit node, the decapsulating
node also needs to remove the additional IPV6 header in-
duced by the usage of the IPV6-in-IPV6 tunnel.

Conclusion
IOAM Direct EXporting (DEX) lets routers along a path

collect telemetry data related to in-transit packets. Then, this
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Figure 8: IOAM DEX decapsulation depending on IOAM
trace-type.
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Figure 9: IOAM DEX decapsulation depending on DEX
extension-flags.

data can be locally aggregated and/or exported depending on
the needs of the network operators.

In this paper, we presented a kernel space implementation
of IOAM DEX that does not make any assumption on the pro-
cessing and/or exporting of the telemetry data. However, we
propose and provide the implementation for a solution that
exports the telemetry data towards an IPFIX collector by sup-
plying an exporter that converts the IOAM data received from
the kernel to IPFIX format. Additionally, our kernel space
implementation does not brake any existing implementation
to ensure full backward compatibility. Finally, we provide
support for well-known user space tools (i.e., iproute2 and
Wireshark) to facilitate the adoption of our kernel space
implementation.

In the future, we hope to get some feedback on our imple-
mentation in order to create a new version suitable for being
integrated in the mainline Linux kernel repository.

Source code
The repository gathering the source code for both

kernel and user space implementations described in
this paper, as well as an explanation on how it works,
is freely available at the following URL: https:
//github.com/Advanced-Observability/
ioam-direct-exporting
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