
The Battle Of The
ZCs

Who Is The Prettiest of
Them All?

Jamal Hadi Salim | Nabil Bitar | Victor Nogueira | Pedro Tammela

Gemini: draw an image of two DRAM sticks playing a role in the theme of "mirror mirror on the wall, who is the prettiest of them all?"

Work Done At Bloomberg

Goals: RX+TX TCP ZC
Investigate two new RX+TX TCP ZC techniques from an application perspective
● Baseline: traditional socket API app without any zero copy
● TCP Devmem and io_uring ZC: development in motion at time of preparing this talk

Note: There are other established ZC techniques we are not going to look at
● Total Kernel bypass: DPDK and friends
● Semi-kernel bypass: AF_XDP
● Sendfile (TX only)

Zero Copy High Level
Abstraction

RX Control:
User memory(Blue) is bound to NIC
buffers on rx of a queue pair

RX Fast path:
1. Incoming frame parsed for headers
2. header matched or hashed
3. Action: Header placed onto kernel

memory(red) and payload placed on
user mapped memory(blue)

4. Header goes over standard net stack
and user app gets notified using
either devmem or io_uring

Zero Copy

Zero Copy High Level
Abstraction

User-space memory bound to NIC using
udmabuf (Devmem)

io_uring memory mapped ring

- Accelerator (e.g., GPU) memory bound
to NIC using dmabuf
- Devmem
- Not currently supported by io_uring

Setup

Traffic Patterns Used
To quote David Ahern @netdevconf 0x18:

“The ultimate test is to fill ~x00 gbps with one flow”

● Asymmetric Client-Server
○ MTU large enough to cover MSS++
○ IPv4
○ TCP Advertised mss: 4108B (4096B + 12B TCP options)
○ Very long flow analogous to Netperf TCP_STREAM- single flow runs for 100s
○ 64MB app message
○ udmabuf used for devmem (both sides)

Setup: CPU
● Motherboard: Intel Ruby Pass
● CPU: Single Intel(R) Sapphire Rapids CPU

○ Eagle Stream platform TDP 350W
○ 48C, Hyper-Threading off

● RAM: DDR5 128GB 4800 MT/s
● Application

○ We use our own home-brewed test program
○ CPU binding

■ Networking bound to 1 Core
■ User app bound to a different Core

○ Traffic: Single flow lands on queue 0

Setup: NIC
Intel IPU E2100:
(https://www.intel.com/content/www/us/en/products/details/network-io/ipu/adapter-e2100.html)

Used Single port connection back to back (2x100G Intel IPU E2100)
○ using PCIE4x16 slot (should be able to handle 200Gbps)
○ 2x100G with Port 0 at 200G config and Port 1 not in use
○ Header split, SG, csum offload, TSO, HW GRO capability
○ Ring size:

■ RX:4096
■ TX:4096

General settings

Receiver

Sender

General settings
● Kernel: 6.14.0_rc1
● Extra patches for driver

○ Adapt idpf driver to devmem tcp (From Sridhar)
○ Fix issue in RSC flow (From Sridhar)
○ Enable BIG TCP

■ Driver change to 131072B
■ Kernel config: CONFIG_MAX_SKB_FRAGS to 45

● io_uring: zcrx v13 (from Pavel's repo)
● devmem: RFC V1 (December 2024 from Mina)

○ Bug fixes on devmem TX

Setup: Measurement
● Interested in 3 metrics

○ Throughput, Power Consumption and CPU Usage
○ Results computed based on these 3 metrics

● Power consumption measured by an external device
○ Server as a ‘black box’
○ Baseline power around 230 Watts

● Test duration: 100 seconds (> 1TB of data exchanged, so glitches even out)
○ Repeated 5 times, throw 1st and last and middle 3 averaged

● Governor: starts in power-save mode but ramps up within 100 seconds

 Experiments

Experiment Matrix
❖ MTU Fixed: 4148B (4K MSS)
❖ Receiver side setup: permutation of SW GRO, HW GRO, BigTCP, no BigTCP

➢ Baseline (no ZC)
➢ ZC

■ Devmem
■ io_uring

❖ Sender side: BigTCP and no BigTCP
➢ Baseline (no ZC)
➢ ZC

■ Devmem
■ io_uring

Here Be Dragons

Gemini prompt: " Draw an old map with dragons and other creatures "

Some Bugs Were Fixed!
● Rewind the global binding tx_iter by the dmabuf offset after tcp_sendmsg_locked

finished
● Only return -EOPNOTSUPP if (!pool->dma_map || !pool->dma_sync) in

page_pool_init (as it was before commit b400f4b8743)
● Add page pool stats to idpf driver

io_uring - iowait accounting
● io-uring trips the iowait cpu meta state - gets worse with more CPUs

○ On RX 2 cpus this accounts for up to ~35% but for 1 cpu it accounts for ~5%
○ On TX (2 cpus) it accounts for ~87%
○ Pavel provided us a patch (back in 0x18) but it was not used in these tests

IO_URing - iowait accounting

Improved idle states
Reduced power
consumption

CPU POLL C1 C1E C6

0 0 0.01 57.06 26.14

1 13.09 6.68 41.16 19.2

2 11.47 5.41 43.19 45.38

3 1.01 1.23 58.13 20.56

4 7.07 4.23 40.04 37.66

5 0 0.01 51.67 30.73

6 20.91 9.43 27.83 13.34

7 12.81 3.16 40.48 42.64

8 0.02 0 38.25 73.54

9 21.96 10.02 23.68 46.14

10 15.1 8.6 33.94 45.59

11 0 0.01 33.22 47.47

12 11.98 5.41 33.17 30.66

13 22.29 9.16 23.86 44.8

14 14.34 6.04 35.44 44.07

15 11.31 5.67 32.77 57.62

CPU POLL C1 C1E C6

0 0 0 0.58 67.21

1 0.47 1.56 49.8 27.06

2 0.98 1.4 42.03 29.86

3 1.56 1.66 49.61 22.85

4 0.82 1.61 30.51 33.81

5 0.02 0.04 19.82 63.87

6 0 0 0.67 99.29

7 0 0 0.6 82.31

8 0.99 1.61 50.61 36.51

9 0 0 0.32 83.25

10 0.06 0.11 25.89 52.4

11 0.47 1.59 40.61 53.88

12 0.9 1.72 46.9 44.29

13 1.11 1.16 42.77 42.01

14 0.79 1.67 42.32 52.22

15 0 0 0.58 89.64

Getting The Plumbing Right

200Gbps @0.1ms RTT implies we
need to fill a tank of ~2MB to cover
BDP (Bandwidth delay product)

Assuming ~2MB inflight to the
application, use 2xBDP (~4MB)

Fix RX ring: 4096 (per qp) x page
size(4096B) = 16MB.

Compensate for app sitting on
accepted data (48MB): overprovision
to 64MB per qp for udmabuf

Page pool

Incoming traffic

Application

Devmem RX: Receive Size
● We allocated Udmabuf size of 64MB

○ 4x the DMA RX size to factor in that
the app may sit on the buffers for a
while

● We observed varying recvmsg() read size
also affects performance
○ Started with app read size of 512KB
○ In this scenario, buffers are not

recycled fast enough, which triggers
the page allocator more frequently
(see “Bad”)

● Read as much as 64MB improved our
throughput by 30%
○ On average we are seeing ~875 tokens

(recall each payload is 4KB)

Bad:

Good:

io_uring ring resizing
● In our tests we may have encountered cq events drops when testing on 1 CPU

○ This should not be possible, the default IORING_FEAT_NODROP is always on
○ Likely a bug, did not have time to investigate. Pavel gave us a tip:

Note: Anytime we exhaust the page pool, the incoming data is wrapped in skbs and stored
in socket queue then posted on CQ when space becomes available

○ This approach is taken by both io_uring and devmem

However best results are always achieved with proper provisioning

First Impressions: Throughput

Hmmm..

CPU Usage
HW-GRO HW-GRO

Power

Devmem vs io_uring: S/W vs H/W GRO

Devmem

io_uring

Syscall Costs
Devmem: 2 CPUs

io_uring: 2 CPUs

Throughput (1 CPU)

Fixed!

Throughput (1 vs 2 CPU)

Perf Devmem GRO (1 vs 2 CPUs)

Syscall Costs (All In One Core)

Devmem Syscall Costs (2 vs 1 CPU)
2 CPUs

1 CPU

Devmem Recycling Cost

The IDPF HW GRO Dragon …
HDS implies two page pools: Header and payload pool
● Simple lifecycle management: 1-1 mapping

○ IDPF uses 1 page per header page per payload
● Unfortunately when you have HW GRO, you only need 1 header for X payloads..

For sake of discussion, say we receive a GRO size of 16(*4K payload)
● it means only the first header is relevant i.e the others are dummies

○ libeth_rx_recycle_slow() recycles these dummy (15) header pages back to the
header page pool at softirq context
■ foreach page {hdr producer lock, recycle, release hdr producer lock}
■ The page with header is only recycled when recvmsg() completes and

skb_release kicks in at user context (contends for hdr producer lock)*
■ In the meantime more and more GRO’ed packets are coming in and contend

for that same lock..

Slaying The IDPF HW GRO Dragon …
● We did not have time to slay this dragon

Potential approach:
● Keep single page for X headers and use refcounts
● For IPv4, no more than 64B is really needed

○ so 4096/64 should be much higher than max GRO size…

The Payload Recycle Dragon
On single CPU we observed that the cost of setsockopt was higher both in the syscall
trace as well as in perf
➔ Recycling of the payload happens with setsockopt
After looking at the kernel code, we observed that although the uapi allows for a batch of
buffers from user space to be sent to the kernel, the kernel would still do:

 foreach page {grab payload producer lock, recycle, release payload producer lock}

We made two changes:
1. Application collects as many as X consumed buffers for recycling (max 1024)
2. Changed the kernel code to amortize the cost of the lock:

 grab payload producer lock,
 for each page: recycle
 release payload producer lock

Devmem RX Fix 1: App buffer recycle
batching
● The kernel allows up to 128 token containers with a max of up to 1024 tokens to free

at once
○ The common case is only 1 token container with up to 1024 tokens

● recvmsg() will likely receive more than one token per call, up to the provided control
space
○ The number of tokens will vary depending on the bandwidth and tcp buffer

conditions
○ At 200G, our average token was at ~875 per recvmsg

● In our tests we accumulate small recvmsgs up to 512 tokens and then issue a
setsockopt to release them
○ It reduces our setsockopt usage by 15% but did not show visible improvements

on throughput a cpu utilization

Devmem recv read size distribution
--- System Call Analysis ---
Number of recvmsg calls: 253592
Number of setsockopt calls: 315547
--- Frags Analysis ---
Average frags per recvmsg: 874.644
Minimum frags received: 1
Maximum frags received: 1499
Number of times accumulated frags > 1024: 111714
Number of recvmsg with frags > 1024: 97418
Number of recvmsg with frags >= 512 && < 1024: 102476
Number of recvmsg with frags < 512: 53698
Number of setsockopt avoided (accumulated up to 512): 42242
Percentage >1024/recvmsg: 38.42%
Percentage >1024/acc(>1024): 87.20%
Percentage <512/recvmsg: 21.17%

On average we are getting more
than 512 pages per recvmsg

Throughput Devmem - (Batch vs No Batch)

Syscall Costs Before Batching

Syscall Costs After Batching

2 CPUs

2 CPUs

Syscall Costs Before Batching

Syscall Costs After Batching
1 CPU

1 CPU

Perf Devmem (Batch x No Batch)

 Results
Putting app + softirq on one core

Throughput - 1 CPU

CPU Usage - 1 CPU - Receiver vs Sender

HW-GRO HW-GRO

CPU Usage - 1 CPU
HW-GRO

Power - 1 CPU

Hmmm....

Power Total - 1 CPU

ROI Performance Metrics
When comparing different results for throughput, it is often hard to say which results gives
you the best return on investmen(ROI). We came up with two ROI formulas:

T=Throughput achieved in Gbp/s. n=2
C=compute cost to achieve the throughput. Summed across all CPUs

 T=Throughput achieved in Gbp/s. n=2
 P=Power consumed by in watts. m=1

We pick n=2 to emphasize throughput as the goal. So 10 gbps using 200% cpu is
considered to be better ROI than 5 gbps using 100% cpu

ROI Receiver - 1 CPU

ROI Sender - 1 CPU

ROI Total - 1 CPU

Conclusions And Recommendations
● The two ZC interfaces are still fluid but nevertheless deliver on the message
● Devmem is syscall heavy while io_uring is kernel/softirq heavy
● io_uring demonstrates a clear advantage over devmem, however we need to test

scaling to much higher rates (>200Gbps)
● Page pool API or perhaps driver use of the PP API could be improved
● HW GRO clearly provides a big advantage

Acknowledgements
We could not have done it without their help and patience. Appreciated!

● Anjali S. Jain - Instrumental for anything Intel!
● Sridhar Samudrala for driver patches
● Mina Almasry for Devmem and guidance into gpud/nccl integration
● Pavel Bengukov for io_uring

 Back Slides

Throughput - 2 CPUs

CPU Usage - 2 CPUs
HW-GRO

ROI Total - 2 CPUs

CPU Usage - 2 CPUs - Receiver vs Sender

HW-GRO HW-GRO

Power - 2 CPUs

Hmmm....

ROI Receiver - 2 CPUs

ROI Sender - 2 CPUs

Sample Accelerator
Cheap GPU: NVidia T1000
● Sitting on a PCIE3 x16 riser card (max expected ~100Gbps)
● 4G RAM
● Run some dummy CUDA code to keep the GPU awake

Throughput - 1 CPU - GPU Mem

Nvtop - Receiver

CPU Usage - 1 CPU - GPU Mem

Power - 1 CPU - GPU Mem

Hmmm....

ROI Receiver - 1 CPU - GPU Mem

ROI Sender - 1 CPU - GPU Mem

CPU Usage Total - 1 CPU - GPU Mem

Power Total - 1 CPU - GPU Mem

ROI Total - 1 CPU - GPU Mem

