
Accelerating an eBPF Network Stack
Our journey in completely offloading eBPF based Cilium CNI to DPU

Vijay Ram Inavolu

NetDevConf 2025

Alkama Hasan
Balakrishna Bhamidipati
Nagendra Puthane

• Introduction and Background

• In Context: K8s & Cilium

• Offload Solution Goals

• Architecture

• eBPF DP Packet paths

• IPsec & Plain Traffic Offload Handling

• SW components & HW acceleration

• Demo

• Quantifying results

• Opensource details & References

2

AGENDA

WHY K8S/CILIUM OFFLOAD ?

3

AI Generated Image

• Kubernetes is the backbone of modern cloud infrastructure,
ranking as the most active and rapidly growing open-source
project—second only to Linux.

• It dominates the market with a 90% share, making it the de facto
standard for container orchestration.

• All major cloud providers offer Kubernetes-native services,
including Google’s GKE, Microsoft’s AKS, Amazon’s EKS, and
OpenShift for enterprises.

• Cilium is a leading Kubernetes networking provider and the
default CNI (Container Network Interface) for many of these
deployments.

• It powers 65% of all Kubernetes deployments, proving its
widespread adoption.

• Cilium’s data plane is built on eBPF, enabling high-performance,
secure, and scalable networking.

Reference links at the end of the presentation

• CNI is a Specification under CNCF

• Philosophy

• Networking separation from K8s core

• Vendor Neutral

• Flexibility

• Typical Services of a CNI Plugin

• Pod Networking

• IP address management

• Services connectivity

• Policy enforcement

• Security: IPsec/Wire guard

and .. Dynamic + Massively scalable

4

BACKGROUND: CNI

• Cilium Agent is the control plane
entity that gets deployed on every
node

• Watches all Kubernetes APIs

• Programs eBPF data path

• Real time policy enforcement and
load balancing

• Connects pods to node/external
networking

5

CILIUM ARCHITECTURE

Reference: https://cilium.io/

• Minimal Impact on Existing Cilium: Aim to keep changes to the Cilium
agent and eBPF code as minimal as possible

• Seamless User Experience: No modifications to user-level configurations

• Vendor-Neutral Architecture: Open-source design that avoids locking in
to any single DPU vendor

• DPUs as Cluster Nodes: Optionally treat DPUs themselves as Kubernetes
nodes

• Flexible Deployment: Support mixed environments where some nodes
have DPUs and others do not

6

OFFLOAD SOLUTION: GOALS & OVERVIEW

7

• HostAgent : On New Pod creation, moves VF as primary
network to pod NS and configures it. Sends gRPC request
to DPU Agent, to configure DPU side VF. Similarly Delete

• DPU Agent(cni-offload-agent): Listens and serves CNI
requests from host. Call Cilium-Offload-CNI binary to
create cilium endpoint with DPU side VF for host pod.
Allocates IPAM for host pod

• Plugins: An Abstraction layer accommodate multiple DPU
vendors/HW.

• Vendor Layer: An Abstraction layer to select multiple CNI

• Cilium Offload CNI binary : Creates cilium endpoints on
DPU side for the pod on the host.

SOLUTION ARCHITECTURE
D
PU

PCIe

Cilium
Agent

H
O
ST

DPU AGENT

Ku
be

rn
et

es
 C

lu
st

er

APPLICATION
PODsHOST AGENT

Network

VF PairsgRPC

VENDOR LAYER

D
Plugins

Cilium
CNI

Cilium
Offload

CNI Cilium
Data
Path

PODs

• from_container:
1. service load balancing(backend
pod)
2. Perform DNAT

• to_container:ingress policy checking
for the pod and allow/deny the
packet

• from_host: changes src ip to
cilium_host src ip

• to_host : changes cilium_host ip to
src ip of the src pod

• from_overlay: encapsulates pkt to
send over overlay network using
vxlan tunnel

• to_overlay: decapsulates packet at
receiver side node

PACKET PATH IN DEFAULT CILIUM
H
O
ST

Ku
be

rn
et

es
 C

lu
st

er

Network

Pod 1
10.0.2.34

TC @ lxc

bpf_overlay

eth0

bpf_host
10.0.2.4

H
O
ST

Pod 2
1(backend)
10.0.3.45

TC @ lxc

eth0

bpf_overlay

eth0

bpf_host
10.0.3.7

Pod 1 trying to Access services through wget

curl 10.111.45.78

Dst nated to
backend pod(eg:
10.0.3.45)

Cilium_vxlan
Cilium_vxlan

lxc
lxc

Cilium_host

Node 2Node 1

Se
rv

ic
e

IP
10

.1
11

.4
5.

78

from_container

eth0

to_container:

from_host
Change the src ip to cilium_host
ip:10.0.2.4 and send packet to
either overlay or eth0 of node

from_overlay

Cilium_host

to_overlay

to_host

Green boxes represent linux network interfaces

 blue boxes are Cilium eBPF hooks

Check ingress policy

Decapsulates packet
at receiver node

Changes cilium_host
ip to src ip of the src
pod

Encapsulates pkt to
send over overlay
network using vxlan
tunnel

9

• Host and DPU are
connected via PCIe

• Pod is assigned SDP VF
• DPU end of SDP VF sits

in DPU Cilium DP
• No bpf hooks are

present in host as CA is
not running on host

• SocketLB.HostNameSpa
ceOnly=true is set to
enable service lookup
in the tc bpf program
instead in socketLB.

PACKET PATH WITH OFFLOADED CILIUM
H
O
ST

Ku
be

rn
et

es
 C

lu
st

er

Network

Pod 1
10.0.2.34

eth0

O
C
TE
O
N

eth0

PCIe

eth0

H
O
ST

Pod 2
(backend pod)

10.0.2.34

eth0

O
C
TE
O
N

TC @ lxc

bpf_overlay

eth0

bpf_host
10.0.2.4

eth0

PCIe

Cilium_vxlan

sdp-vf

Cilium_host

TC @ lxc

bpf_overlay

bpf_host
10.0.2.4

Cilium_vxlan

sdp-vf

Cilium_host

Pod 1 trying to Access services through wget

to_container

to_overlay

to_host

Dst nated to
backend pod(eg:
10.0.3.45)

from_container

from_host
Change the src ip to cilium_host
ip:10.0.2.4 and send packet to
either overlay or eth0 of node

from_overlay

wget 10.111.45.78

Green boxes represent linux network interfaces

 Grey boxes are Cilium eBPF hooks

Node 1 Node 2

Encapsulates pkt
with vxlan

Check ingress policy

Changes cilium_host
ip to src ip of the src
pod

Decapsulates packet
at receiver node

10

• In egress bpf_network
encrypts pkt using xfrm
framework.

• In ingress, bpf_network
decrypts the ipsec pkt
using xfrm framework.

PACKET PATH IN DEFAULT CILIUM WITH IPSEC ENCRYPTION
H
O
ST

Ku
be

rn
et

es
 C

lu
st

er

Network

Pod 1
10.0.2.34

TC @ lxc

TC @ NIC
Bpf_network

xfrm

route

eth0

bpf_overlay

eth0

bpf_host
10.0.2.4

H
O
ST

Pod 2
10.0.2.34

TC @ lxc

TC @ NIC
Bpf_network

xfrm

route

eth0

bpf_overlay

eth0

bpf_host
10.0.2.4

lxc
lxc

Cilium_vxlan

Cilium_host Cilium_host

Cilium_vxlan

Green boxes represent linux network interfaces

 Blue boxes are Cilium eBPF hooks

Pod 1 to pod 2 traffic is encrypted using IPSec policy

Node 1 Node 2

11

PACKET PATH IN OFFLOADED CILIUM WITH IPSEC ENCRYPTION
H
O
ST

Ku
be

rn
et

es
 C

lu
st

er

Network

Pod 1
10.0.2.34

eth0

O
C
TE
O
N

eth0

TC @ NIC
Bpf_network

route

xfrm

PCIe

eth0 H
O
ST Pod 2

10.0.2.34

eth0

O
C
TE
O
N

eth0

TC @ NIC
bpf_network

route

xfrm

eth0

PCIe

TC @ lxc

bpf_overlay

bpf_host
10.0.2.4

Cilium_vxlan

sdp-vf

Cilium_host

TC @ lxc

bpf_overlay

bpf_host
10.0.2.4

Cilium_vxlan

lxc

Cilium_host

Green boxes represent linux network interfaces Crypto HW Accelerator

 Blue boxes are Cilium eBPF hooks

Node 1 Node 2

Pod 1 to Pod 2 traffic is encrypted using IPSec

CPT
HW

CPT
HW

CPT
HW

• Cilium can exploit DPU
HW capabilities such as
CPT HW using xfrm

• No extra configuration
in IPSec SAs and
policies

• Linux xfrm framework
can detect underlying
HW support and
perform IPSec offload
processing

• Cilium transparent
encryption is offloaded
using xfrm + CPT HW

12

•

•

OCTEON DPU: IPSEC ACCELERATION AND MORE

OCTEON DPU
24 ARM Neoverse N2 cores
Crypto, IPsec, TLS Accelerators
Packet Parsing & Classification
Flow Ordering and Sync
Traffic Management and QoS
Inline AI/ML Inferencing
PCIe 5.0 and 56G SerDes
Virtualized Accelerators

PCIe and
Ethernet ports

EBPF FROM X86 TO ARM: ARCHITECTURE TRANSPARENCY

Unified eBPF Model

• Cilium logic remains architecture-independent.

• No changes in logic, as end-points visibility is same between host/DPU

Docker-based eBPF Compilation

• Utilizes Docker containers to compile eBPF code.

• Container architecture matches underlying hardware (x86 or ARM).

No change for eBPF Bytecode Generation

• eBPF bytecode compilation tailored to host architecture.

• Bytecode injected via standard Linux kernel BPF hooks.

Simplified Management

• eBPF compilation and injection managed transparently by Cilium-agent.

• Architecture-specific details abstracted away, treated as a "black box."

13

NEW SW COMPONENTS

14

Component Name Location Details

Host Agent Host CRI Calls Host Agent during Pod creation on host.
Host Agent with its CNI handles CNI Add/Del/Check,
sends down Pod Spec and Interface details to DPU
Agent.
Parses IPAM allocated from DPU CA , and configures
Pod linux interface.

DPU Agent DPU Serves gRPC requests from Host.
Invokes Offload Cilium CNI with details such as CNI
Spec, Pod details and Interface Details as CNI
Request.
From the CNI result, parses the allocated IPAM, sends
back to the Host Agent.

Offload Cilium CNI DPU Called from DPU Agent to handle CNI Add/del/check
request for the pod launched on Host.

On CNI Add request, it will
post endpointCreateRequest to CA to create endpoint
for host pod. It will also post IPAM request to allocate
IPAM for host pod.

CHANGES TO CILIUM

15

Functionality Details Files modified

A DPU to know and handle
pod launch events on it’s
host

CA should create endpoint for each pod running on
host. It needs pod identities. CA runs on DPU, is not
aware of K8s events on host, and lacks pod identities.

To watch host node events, an extra listener,
watchRemotePods() is added.
It watches k8s.PodResource using
spec.nodeName=hostName.

Pkg/cilium/daemon/k8s/resources.go
Pkg/cilium/pkg/k8s/watchers/pod.go
pkg/cilium/pkg/k8s/watchers/watcher.go

Nodes to use DPU IP to
reach to host

Pod with host VF runs in Host. Its lxc interface (DPU
VF) is managed by CA in DPU. Hence, Pod traffic
should be forwarded to DPU instead of host.

endpointUpdated() Upserts ipcache on endpoint
creation. This should set nodeIP to DPU address.

pkg/k8s/watchers/cilium_endpoint.go

16

DEMO SETUP

O
C
TE
O
N

PCIe

Cilium Agent
IP:10.29.45.83

H
O
ST

cni-offload-agent
10.29.45.83

Ku
be

rn
et

es
 C

lu
st

er

cni-offload-host
10.29.44.103

Network

VF PairsgRPC

Cilium
/eBPF
Data
Path

IPerf-Server
Pod

IP: 10.0.4.59

H
O
ST

cni-offload-host
IP:10.29.44.104

PCIe

O
C
TE
O
N

IPerf-Client
Pod

IP: 10.0.3.188

VF Pairs

Master Node
IP:10.29.45.61 (master)

cni-offload-agent
IP 10.29.45.6

IP:10.29.44.103 (worker1)

IP:10.29.45.83 (worker1-dpu)

IP:10.29.44.104(worker2)

IP:10.29.45.6(worker2-dpu)

Cilium Agent
IP:10.29.45.6

Cilium
/eBPF
Data
Path

gRPC

QUANTIFYING EBPF DP OFFLOAD: OPEX SAVINGS

17

0.24

1.56

2.8

0.09 0.09

1.4

0

0.5

1

1.5

2

2.5

3

x86 3400 MHz with 128 Cores x86 1600 MHz with 128 Cores DPU 2500 MHz with 8 cores

Performance/Watt

Performance/Watt Plain Performance/Watt IPSec

POWER DATA CALCULATIONS

18

• Host power is measured at idle and at load conditions using server’s BMC

• For offload and non-offload cases iPerf traffic generator pod is running on host, only data path is moved.

• This is accounted in calculation: Data path power on host = Total power – iPerf power

• Since application-level power can’t be differentiated using BMC, the ratio of iPerf vs DP is derived from CPU utilization of both of these.

• On DPU power is measured at load for cilium data path using Linux kernel hardware monitor

• cat /sys/class/hwmon/hwmon0/power1_input

• Constant test parameters for all measurements: Streams 32, MTU 1500, IPsec Algo AES-GCM 128, host cpus 128, dpu cpus 24, power in watts

• Power measurements rely on 3rd party tooling & deriving estimates from CPU utilization, so although we’ve taken steps to minimize inaccuracies,
these measurements inherently carry a margin of error that should be acknowledged.

Device Traffic
Type

Gbps CPU % iPerf CPU % Power @idle Power @test Total
Power

In % CPU
Ratio:
iPerf
Power

Data Plane
Power

Performance/Watt

Host @1600 MHz Plain 25 3 34 210 234 24 8 16 1.56

Host @1600 MHz IPsec 20 14.5 7 210 434 224 15 209 0.09

Host @3400 MHz Plain 27 1.5 6 290 412 122 8 114 0.24

Host @3400 MHz IPsec 20 13.5 6 290 514 224 13 211 0.09

DPU @2500 MHz Plain 20 44.3 N/A 10 17 7 N/A 7 2.8

DPU @2500 MHz IPsec 20 72.6 N/A 10 24 14 N/A 14 1.4

Ubuntu/RHEL packages for
DAO Components

Linux
Kernel DPDK VPP OVS

OpenSSL
engine

Internal repo mirrored at GitHub

D
ev

 C
I (

Bu
ild

 a
nd

 R
un

 t
es

t)
 GitHub

Issue
reporting

GitHub Pull
Request

DAO libs

OVS
Backend TLS Proxy

Machine Learning

IDS IPsec Offload

G
en

er
ic

 o
pe

n-
so

ur
ce

pa

ck
ag

es
 s

uc
h

as
 S

N
O

RT

Marvell’s OCTEON SOC

Classifier

NIC

Crypto

SchedulerTimer

Hardware
Accelerators

ARM Cores

DMA
Engines

Buffer Pool

Baseband

ML device

Cilium Offload

DAO Apps

Prebuilt binaries

FW

BMC

Roadmap:
- Internal requirements

 - Driven from customer
requirements

- Driven from GitHub
feature request

DAO SOFTWARE SUITE

• Software Opensource Link (DAO)

https://github.com/MarvellEmbeddedProcessors/dao

• Hardware:

https://www.marvell.com/products/data-processing-units.html

https://www.hawkeyetech.com.tw/products/hardware-acceleration/

• Cloud SW and References

https://kubernetes.io

https://cilium.io

https://www.cncf.io/wp-content/uploads/2020/12/CNCF_Survey_Report_2020.pdf

https://enlyft.com/tech/products/kubernetes
https://docs.cilium.io/en/stable/overview/component-overview/

20

REFERENCES

https://github.com/MarvellEmbeddedProcessors/dao
https://www.marvell.com/products/data-processing-units.html
https://www.hawkeyetech.com.tw/products/hardware-acceleration/
https://kubernetes.io/
https://cilium.io/
https://www.cncf.io/wp-content/uploads/2020/12/CNCF_Survey_Report_2020.pdf
https://enlyft.com/tech/products/kubernetes
https://docs.cilium.io/en/stable/overview/component-overview/

21

Q N A

THANK YOU

