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Agenda

• HFT Requirements
• 3 Use cases

• Low latency, low jitter dedicated TC in HW with other offloads for HFT
• Per flow Fixed Delay
• EDT (Earliest Departure Time) using Fair Queue Scheduling offload onto 

the NIC



1. HFT (High frequency trading) Workload NIC requirements

• Very low Latency
• Very little deviation in latency per packet per flow (Very tight tail latency, 

low jitter)
• Low latency and High Priority Traffic class in Device to separate the HFT 

flows from rest of the flows
• Time synchronization between system and Network Device (PTM and PTP)
• Flow Identification and flow scheduling/fixed delay etc (EDT offload on 

devices through linux kernel.)
• Inline Crypto offload
• Multicast replication



HFT: Low latency, High Priority TC
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HFT flow through the NIC 

• Flows to be identified belonging to low latency TC and then a 
different ordering domain selected for the low latency flows so 
that they are not Head of line blocked by the regular flows.

• HW Port 2 Port queue support
• Queue and the buffers for low latency are mapped on OCM (ARM)  

and so they avoid PCIE latency and jitter.
• PTP helps in making sure, the packets get timestamped at ingress 

and egress to monitor the packet latency needed for user logs.



2. Per flow fixed delay HW offload

• Helps with scaling to large number of flows and achieving line 
rate, requires the device to handle large number of inflight packets 
waiting to be scheduled.

• Flow identification
• Packet timestamping and delay add using ALU operations
• Packet delays achieved using Timing Wheel in HW



Timing Wheel : HW Design for flow pacing
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Fixed delay packet flow

• Flexible packet processor identifies packet 
flow and adds fixed delay per packet flow.

• Packet shaper timing wheel schedules and 
buffers delayed packets in HW.

• AF XDP busy-poll with zero copy 
applications.

PHY
(2x 100G)

Packet Buffer

Traffic Shaper
Timing Wheel 

FPP
Packet Processor

LAN

PCIex4 x16

XDP Busypoll
Zero-Copy

 IDPF (xdp)

q0 q1 q2 .. qx

Packet Flows
{dip,sip,dp,sp}

Ring Desc Desc/Pkt
Compl

Fixed delay per flow

XDP PROD  RING

Host

Intel 
IPU



Enabling More than TxQ[size] AF_XDP Packets in Flight
• Completion queue is used to process descriptor completions 

and buffer completions
o Descriptor completions tell driver that HW is done reading the descriptors 
o Packet completions tell driver the HW has DMA’ed the packet data 

(essentially when the packet goes on the wire)

• With this decoupling, driver can reuse the Tx queue descriptors 
to send more packets while waiting for the paced packet buffer 
completions

o Number of completion queue descriptors dictates how many times TxQ can 
be reused before TX is halted

▪ Track pending completions and stop TxQ if there are too many in flight

• Packet completions can arrive in any order (e.g. if different flows 
are paced at different intervals)

o Use new API to mark individual XSK frames as completed
 xsk_tx_complete_ooo(struct xsk_buff_pool *pool, u64 addr)

• To look for Descriptor completion when posting new tx packets
bool xsk_tx_peek_desc_ooo(struct xsk_buff_pool *pool, struct 

xdp_desc *desc);

 



3. EDT enabling in Linux kernel for flow pacing 



EDT enabling in Linux kernel for flow pacing 

• FQ Qdisc TC Offload (Partial changes  are already in kernel)
• IDPF Driver exposes HW capability Maximum offload Horizon to FQ qdisc
• Various ways to insert timestamp in skb, congestion control algorithm, pacing rate, 

SO_MAX_PACING_RATE and TCP_TX_DELAY socket options
• FQ qdisc dequeues all packets that fits within offload horizon window and rest are throttled 

to be dequeued later.
• IDPF driver converts skb->tstamp monotonic time to device time. Device time is put into skb 

descriptor to be used by Timing Wheel HW block
• TCP, FQ and TCP congestion algorithm uses monotonic timer clock for timestamp instead 

of Real timer clock
• TBD: PTP hooks are used to sync Device timer and Real timer. In future, instead of converting 

monotonic time to device time (very expensive), a handler will be added in IDPF driver to 
convert monotonic time to real time, assuming PTP crosstimestamping, PTM etc has synced 
device and real clock   

• PTM PCIe capability provides higher accuracy and low latency for time synchronization. 



Offload benefits 

• Lower CPU utilization or
• Higher Throughput



PTM (PCIe Precision Time 
Measurement protocol)

• PTM is periodically initiated by HW
• Host TSC/ ART copy is sent over PCIe
• ART copy and Device time are captured together 

upon PCIe strobe. That results in great accuracy 
of both Timer's snapshot at a moment

• PTP SW stack in absence of PTM does not show 
accuracy, as taking Device time and System time 
cannot be done in same snapshot. 

• Linux PTP Cross-timestamp framework is used to 
capture ART copy and device timer. Using delta 
b/w ART copy and device time, Real time clock 
can be adjusted.

• Prior to PTM, SW mechanisms were used, and the 
accuracy was in the order of ~1 microsec vs with 
PTM its ~400 nanoseconds.



Multicast replication

Mirror all incoming multicast packets on eth0 to eth1 interface

# tc qdisc add dev eth0 handle ffff: clsact
# tc filter add dev eth0 ingress protocol ip  prior 1\
                   flower src_mac 49:aa:bb:cc:dd:ee  \
                   action mirred egress mirror dev eth1

https://man7.org/linux/man-pages/man8/tc-mirred.8.html

https://man7.org/linux/man-pages/man8/tc-mirred.8.html
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