
Challenges of time sync in
Datacenters
Maciek Machnikowski (NVIDIA)
Oleg Obleukhov (Meta)
Vadim Fedorenko (Meta)
Wojciech Waśko (NVIDIA)

Agenda

•PTP in datacenters

•Multi-NIC setups

•Client-server IEEE 1588

•Window of uncertainty

•PTP clocks and the userland

Time is the fourth dimension of the data center

uniformizes distributed environments

profiling

high-frequency telemetry

accelerates workloads

distributed databases (Google Spanner)

k-v stores (Cassandra)

connects the compute to the physical world

Telco - 5G/6G virtual base station

Far edge - streaming data to/from sensors

Automotive - MIMO radars

ProViz - massive video walls

sphere uses timesync to display coherent imaging.
Behind the curtains, it’s a small datacenter.

Photo: Michael Bittle via Sphere Facebook.

the better the accuracy,
the more usecases are unlocked.

https://www.instagram.com/michaelbittle/?hl=en
https://www.facebook.com/photo.php?fbid=313036014998543&set=pb.100088764407477.-2207520000&type=3

PTP in datacenters

•Significantly larger scale

• tens to hundreds of thousands of nodes

•More unpredictable failures

•Custom software stacks and distributions

•Heterogeneous environments

•Synchronized servers coexist with unsynchronized

Event tracing in AI clusters

Tracing job start

•Unknown sources of job duration discrepancies
• Network?

• GPU?

• Clocks?

•Wasting the compute power of the "fastest”
hosts.

•NTP lacks accuracy

Host 1

Host 2

Host 3

t1

Job 1 ?

Job 2

Job 1 ? Job 2

Job 2

Job 1 ?

t2 t3 t4

Distribution of job start time of NTP –synchronized tasks

Distribution of job start time of PTP –synchronized tasks

Distribution of latency measurements using NTP time

m
ic

ro
se

co
nd

s

Distribution of latency measurements using PTP time

m
ic

ro
se

co
nd

s

Multiple NIC challenges

NIC Challenges

• Datacenter endpoints might feature several NICs.

• Alternatively, a single NIC could accommodate multiple hosts or clients.

Multi-NIC setups

• A host must agree on the best time source.

• Current solutions do not fulfill the requirements

• Chrony can read and monitor multiple PHCs,

• but it does not connect with the PTP stack to determine its state and quality

Single NIC may serve multiple hosts

•A single NIC may serve multiple:

• Containers

• VMs

• Or even Hosts

•Only one entity can steer the clock

•But all need information about the sync state

Client-server 1588

PTP Unicast messaging

Client Server Client Server

t1

t2

t3

t4

Client-server IEEE 1588

• Eliminates the need for

• unicast negotiation

• maintaining the per-client state

•Reduce network bandwidth

•Server responds to each request

Client-server IEEE 1588

•At least three projects implement this idea

• SPTP

• FlashPTP

• NTP-over-PTP (currently in Chrony)

https://engineering.fb.com/2024/02/07/production-engineering/simple-precision-time-protocol-sptp-meta/
https://github.com/meinberg-sync/flashptpd
https://datatracker.ietf.org/doc/draft-ietf-ntp-over-ptp/04/

SPTP

• Client sends a Delay Request

• Server responds with a Sync

• Server sends FollowUp and Announce

Window of uncertainty

Window of uncertainty

•Applications must know not only the time

•But also the associated uncertainty of it

•Earliest-latest

•Kernel_timex:

• Maxerror

• Esterror

Different error sources

•Class of a GM

• And its error

•Local oscillator drift

• And holdover

•clock read delays

•Clock resolution

•Accumulated path elements delays

•Link asymmetry

Window of uncertainty

Synchronous workload task start relative time offsets
ntpd-synchronized cluster

us

PTP Hardware Clocks
and friends userspace

Access permissions

•no permissions checks for POSIX dynamic clocks ioctls

 -> only root granted any access

•even read-only apps had to have write permissions

•fixed in net-next

How userland tells the time
and how long it can take, under system/PCIe load – very roughly

• TSC (x86), CNTPCT_EL0 (arm), …

• arch-dependent CPU cycle counter

• free-running; starts at 0 on boot

• system clock (vDSO)

• kernel exports page with GTOD (Generic Time Of Day) data

• userspace reconstructs clock (_REALTIME, _MONOTONIC, …) with GTOD data and CPU counter

• system clock (syscall)

• userspace calls kernel

• kernel calculates and returns value (similar math to vDSO)

• device clock (syscall)

• userspace calls kernel

• device driver retrieves time from device

< 10 nsec

< 30 nsec

< 200 nsec

< 30’000 nsec

Let’s improve that

vDSO for dynamic clocks
(eliminating syscall)

•can save ~100-200 nsec

•much work

•smol reward

•can save 10s of microseconds

•?? work

•much reward

• reading clock without going to PCIe
(TBD)

read clock without PCIe access
(??)

Proof of Concept
Hermóðr

test_app benchmark

libhermod.so
- extrapolates device clock

using CPU clock

Hermod daemon
- CPU/device clock drift estimation

- CPU/device cross-timestamp

shared
memory

< fast, async communication >

PCIe
device

calculate correlation
CPU
clock

How much faster?

approx. /dev/ptpX

Diff between consecutive clock readings (ns):

p0.01 36
p01: 36
Avg: 59
p99: 61
p99.9 174

/dev/ptpX (syscall + PCIe)

Diff between consecutive clock readings (ns):

p0.01 1432
p01: 1466
Avg: 5334
p99: 4252
p99.9 403882

/dev/ptpX (syscall + PCIe) Diff between consecutive clock readings: Min: 1098 p01: 1388 p00.1 1380 Avg: 1612 p99: 3016 p99.9 28986 Max: 2119606 Avg call cost: 1612

kernel 6.13

load:

• 5x iperf3 bidir (external loopback between ports)

• stress-ng cpu (32) iomix (32) pci (32) vm (32) fork (32)

HW: HPE DL380 Gen11 + Intel Xeon Gold 6426Y + NVIDIA ConnectX-7 2x200G

How do we verify the quality?
Enter… PCIe PTM

• Precise

• Time

• Measurement

• PCIe link-local Message protocol

• timestamped in HW

•an atomic cross-timestamp of CPU and
PCIe device clock counters

• that’s an oversimplification, but good enough for our
purposes

• this gives us ground truth

Verification via PCIe PTM

test
app

hermod
PoC

Linux
kernel

test
app

hermod
PoC

Linux
kernel

this can be forced to
not use PCIe PTM,

emulating an older system

get cross-timestamp

Si Di

calculate
sys/dev

correlation

repeat

get cross-timestamp

Sk Dk

get device clock approximation
corresponding to Sk

Dest
k

err:

Dk - D
est

k

Approximation error histogram

kernel 6.13. Load: 5x iperf3 bidir (external loopback between ports) + stress-ng cpu (32) iomix (32) pci (32) vm (32) fork (32)

HW: HPE DL380 Gen11 + Intel Xeon Gold 6426Y + NVIDIA ConnectX-7 2x200G

Wrapping up…

What’s next

• should the PHC approximation functionality be provided by the kernel?

• an “approximation driver”

• aliases existing PHC, provides approximated value in clock_gettime()

• now that apps rely on clocks more and more, how do they know what’s happening to the clock?

• not only window of uncertainty

• did someone change the clock while I wasn’t watching?

• NETLINK messages for clock modification events

• API for time uncertainty

• Use adjtimex esterror presented on netdev 0x18

https://netdevconf.info/0x18/sessions/workshop/driver-and-hw-apis-workshop.html

	Default Section
	Slide 1: Challenges of time sync in Datacenters
	Slide 2: Agenda

	Intro
	Slide 3: Time is the fourth dimension of the data center
	Slide 4: PTP in datacenters
	Slide 5
	Slide 6: Tracing job start
	Slide 7: Distribution of job start time of NTP –synchronized tasks
	Slide 8: Distribution of job start time of PTP –synchronized tasks
	Slide 9

	Multi-NIC
	Slide 11
	Slide 12: NIC Challenges
	Slide 13: Multi-NIC setups
	Slide 14: Single NIC may serve multiple hosts

	Client-server IEEE 1588
	Slide 15
	Slide 16: PTP Unicast messaging
	Slide 17: Client-server IEEE 1588
	Slide 18: Client-server IEEE 1588
	Slide 20: SPTP

	Window of uncertainty
	Slide 22
	Slide 23: Window of uncertainty
	Slide 24: Different error sources
	Slide 25: Window of uncertainty

	PTP and userland
	Slide 26
	Slide 27: Access permissions
	Slide 28: How userland tells the time
	Slide 29: Let’s improve that
	Slide 30: Proof of Concept
	Slide 31: How much faster?
	Slide 32: How do we verify the quality?
	Slide 33: Verification via PCIe PTM
	Slide 34: Approximation error histogram
	Slide 35
	Slide 36: What’s next
	Slide 37

