
Mitigating the Double-Reallocation Issue
for IPv6 Lightweight Tunnel Encapsulations

Anonymous Author(s)

Abstract

Lightweight Tunnels (LWTs) in the Linux kernel enable ef-
ficient per-route tunneling and are widely used by protocols
such as In Situ Operations, Administration, and Maintenance
(IOAM), Segment Routing over IPV6 (SRv6), and Routing
Protocol for Low-Power and Lossy Networks (RPL). How-
ever, a performance issue was detected in their implemen-
tations, where a double-reallocation of socket buffers occurs
under specific conditions, leading to significant throughput
degradation. This paper investigates the root cause of the is-
sue, which depends on the architecture of the Central Pro-
cessing Unit (CPU) and the Network Interface Card (NIC).
We propose a patch for the Linux kernel to fix this problem,
replacing the double-reallocation with a single, efficient one.
Performance evaluation demonstrates that the patch eliminates
the inefficiency, improving forwarding rates by up to 28.8%
for affected protocols.

Keywords
Linux, Networking, Performance, IOAM, SRv6, RPL

Introduction
In the Linux kernel, IP tunnels are commonly implemented

using Lightweight Tunnels (LWTs) [17]. LWTs enable the
creation of tunnels on a per-route basis, allowing custom en-
capsulation mechanisms to be defined through user-specified
functions based on the packet destination. Various kernel net-
working units leverage LWTs, including:
• In Situ Operations, Administration, and Maintenance

(IOAM) [4], a network telemetry protocol carrying oper-
ational data from devices (e.g., routers or switches), such
as latency and buffer size, directly into packet headers as
they traverse the network.

• Segment Routing over IPV6 (SRv6) [8], a source routing
protocol encoding the routing path into IPV6 headers, en-
abling simplified traffic engineering and flexible network
programmability.

• Routing Protocol for Low-Power and Lossy Networks
(RPL) [1], a routing protocol designed for resource-
constrained networks, particularly in Internet-of-Things
(IoT) building optimized multi-hop tree-like structures for
reliable communication in dynamic and lossy environ-
ments.

• MultiProtocol Label Switching (MPLS) [20], a technology
designed to speedup forwarding decisions (through exact
label matching instead of longest prefix matching on IP
addresses) but is nowadays mainly deployed for provid-
ing IGP/BGP scalability and virtual private network (VPN)
services [16].

• Identifier Locator Addressing for IPV6 (ILA) [12], a way
to differentiate between location and identity of a network
node.

• Virtual xfrm interfaces [15] used for route-based VPN
tunnels.

When running some IOAM performance evaluations, we
detected an issue in its implementation. The problem lied
in the LWT encapsulation of IOAM and occurs exclusively in
this mode of operation. Such a behavior was particularly hard
to understand since it occurred only under some conditions,
that depend on the architecture of the Central Processing Unit
(CPU) and the Network Interface Card (NIC). For those spe-
cific cases, and during the LWT encapsulation in packets, the
kernel performs a double-reallocation of socket buffers in-
stead of a single one, leading to obvious performance degra-
dation. After some investigations, we found similar code pat-
terns causing the exact same issue in the SRv6 and RPL im-
plementations. To quantify the impact on performance, we
measured the packet forwarding rate on a recent kernel ver-
sion and observed up to 28.8% degradation.

This paper aims at addressing the aforementioned issue
by proposing a Linux kernel patch that eliminates this inef-
ficiency. Our patch replaces the double-reallocation with a
single, optimized one. In addition, to validate its effective-
ness, we conduct a performance evaluation of the three af-
fected protocols, comparing the original implementation with
our patched version, demonstrating its ability to improve for-
warding efficiency.

Background
This paper focuses on a bug in the Lightweight Tunnel

(LWT) implementation of IOAM, SRv6, and RPL protocols.
In this section, we provide some background to readers by
describing the aforementioned protocols, the structure of a
socket buffer, and the role of the skb_cow_head() func-
tion in the Linux kernel.



Figure 1: Generic example of IOAM data insertion. “H” cor-
responds to the IPV6 header, while ”P“ is the IPV6 payload.

IPV6 Header IOAM Option IPV6 Payload

0 7 15 23 31

Next Header Hdr Ext Len Padding

Option-Type Opt Data Len Reserved IOAM Opt-Type

Namespace-ID NodeLen Flags RemainingLen

IOAM Trace-Type Reserved

node data list [0..n]

Figure 2: Hop-by-Hop with an IOAM PTO Option [4].

In Situ Operations, Administration, and
Maintenance (IOAM)

In Situ Operations, Administration, and Maintenance
(IOAM) [4] provides a way to collect telemetry data from net-
work devices (e.g., routers or switches) along a path inside
a given IOAM domain (e.g., within an ISP or Data Center
Networks). “In Situ” refers to the fact that IOAM does not
use dedicated packets for carrying the telemetry data. Rather,
it relies on existing user traffic. IOAM telemetry can be en-
capsulated in a variety of protocols, including IPV6 [2] or
Network Service Header (NSH) [3]. In this paper, we only
consider the IPV6 encapsulation.

An IOAM domain contains three types of nodes. First, the
encapsulating nodes, located at the entry points (or INGRESS)
of the domain, are responsible for appending the IPV6 Ex-
tension Header required for storing IOAM telemetry (node A
in Fig. 1). Second, the transit nodes add telemetry data in-
side the existing IPV6 Extension Header (nodes B and C in
Fig. 1). Finally, the decapsulating nodes, positioned at the
exit points (or EGRESS) of the domain, are responsible for re-
moving the IPV6 Extension Header (node D in Fig. 1). The
format of the IPV6 Extension Header to carry IOAM teleme-
try is represented in Fig. 2.

There are two possibilities for encapsulating the IOAM data
in IPV6. If the packet source is the encapsulating node,
the IOAM data fields can be embedded in the existing IPV6
header. Otherwise, the IOAM data must be added inside an
additional IPV6 header, since in-transit modification of ex-

IPV6 Header SRv6 Header IPV6 Payload

0 7 15 23 31

Next Header Hdr Ext Len Routing Type Segments Left

Last Entry Flags Tag

Segment List[0] (128-bit IPV6 address)

Segment List[1] (128-bit IPV6 address)

. . .

Segment List[n] (128-bit IPV6 address)

Optional TLVs (variable size)

Figure 3: SRv6 Header [9].

isting headers is forbidden [6]. This approach leads to the
creation of an IPV6-in-IPV6 tunnel across the IOAM domain.
IOAM telemetry inside IPV6 can be encapsulated in either a
Hop-by-Hop Extension Header, which is processed by every
node, or a Destination Extension Header, which is only pro-
cessed by the destination [2].

While IOAM defines several possibilities for adding
telemetry data to packets [4, 18], this paper only considers
the Pre-allocated Trace Option (PTO) in which encapsulating
nodes allocate the required space inside the IPV6 Extension
Header in advance. PTO is illustrated in Fig. 1, where node
A pre-allocates the required space for adding IOAM data.

In the kernel, the following encapsulation modes are sup-
ported for IPV6 IOAM:

• Inline mode: Directly added into the original packet
header, which allows telemetry data to be included with-
out creating an additional encapsulating header.

• Encapsulation (or Tunnel) mode: The original packet is en-
capsulated within a new IPV6 outer header, which contains
telemetry data. This creates an IPV6-in-IPV6 tunnel.

• Automatic mode: The kernel either applies the Inline or
Tunnel mode depending on the source of packets (i.e., In-
line mode if it is the source, Tunnel mode otherwise).

Segment Routing over IPV6 (SRv6)

In a nutshell, Segment Routing [8] is a loose source rout-
ing paradigm based on an ordered list of segments (i.e., one
or more instructions). Each segment can enforce a topolog-
ical requirement (e.g., pass through a node or an interface)
or a service requirement (e.g., execute an operation on the
packet). Over the years, Segment Routing has found a suit-
able usage for many use cases such as network monitoring,
traffic engineering, or failure recovery [19], among others.
Two forwarding plane implementations are proposed for Seg-
ment Routing: Segment Routing over MPLS– SR-MPLS [7]



IPV6 Header RPL Header IPV6 Payload

0 7 15 23 31

Next Header Hdr Ext Len Routing Type Segments Left

CmprI CmprE Pad Reserved

Addresses[1...n]

Figure 4: RPL Header [13].

and Segment Routing over IPV6– SRv6 [10]. SR-MPLS re-
quires no change to the MPLS forwarding plane, while SRv6
is based on an Extension Header called SRv6 Header. In this
paper, we only consider SRv6.

Segment Routing defines multiple types of segments, but
the two most common are node segments and adjacency seg-
ments. A node segment represents the IGP least cost path be-
tween any router and a specified prefix. These segments can
contain one or multiple IGP hops and have domain-wide sig-
nificance. In normal Segment Routing operations, every Seg-
ment Routing router will announce a node segment for itself,
allowing any router in the domain to know how to reach it.
An adjacency segment represents an IGP adjacency between
two routers and will cause a packet to traverse that specified
link. These segments only have local significance. In normal
Segment Routing operations, every Segment Routing router
advertises an adjacency segment for each of its links.

Each segment is identified by a unique number, a Segment
IDentifier (SID) implemented as a 128-bit IPV6 address in
SRv6, enabling deployments over non-MPLS networks or ar-
eas without MPLS, such as data centers. This implementation
simplifies deployments as it only requires advertising IPV6
prefixes. SIDs are encoded within the Routing Extension
Header known as SRv6 Header [9] (see Fig. 3).

In the fashion of IOAM, the Linux kernel supports both the
Inline and Tunnel encapsulation modes for SRv6. Addition-
ally, SRv6 features a reduced encapsulation variant (referred
to as “Red”) to optimize header size. It also offers a Layer-
2 (“L2”) encapsulation variant, where the received frame is
encapsulated within the IPV6 packet.

Routing Protocol for Low-Power and Lossy
Networks (RPL)

RPL [1] is a routing protocol for wireless networks, es-
pecially suitable for resources-constrained networks such as
Internet-of-Things (IoT). It is a Distance Vector Routing Pro-
tocol that creates a tree-like routing topology called the Des-
tination Oriented Directed Acyclic Graph (DODAG), rooted
towards one or more nodes called the root node or sink node.

For downward routing in non-storing mode (one of RPL’s
modes of operation), RPL uses a Source Routing header to
deliver datagrams, as shown in Fig. 4. Just like SRv6, this

Figure 5: Basic sk_buff diagram [14].

header contains a list of addresses that the packet must tra-
verse to reach its destination. It comes with a compression
mechanism, called Address Abbreviation, designed to reduce
the size of the Routing header. If all nodes in the path share a
common prefix, only the unique interface identifiers of each
node are included. Therefore, the RPL header introduces
the CmprI, CmprE, and Pad fields to allow compaction of
the Addresses[1...n] vector when all entries share the
same prefix as the IPV6 destination address of the packet.
The CmprI and CmprE fields indicate the number of pre-
fix octets that are shared with the IPV6 destination address of
the packet. The shared prefix octets are not carried within the
RPL header. The Pad field indicates the number of unused
octets that are used for padding.

On the contrary to IOAM and SRv6, the Linux kernel only
supports the Inline encapsulation mode for RPL.

Linux Kernel Socket Buffer
A socket buffer (sk_buff) in the Linux kernel is a core

networking structure used to represent network packets. It
acts as a container for the packet’s metadata, enabling effi-
cient processing, routing, and management of network traffic.

Fig. 5 illustrates the layout of the sk_buff structure. It
consists of several key components:

• headroom: Free space available for prepending headers.

• data: This area holds the headers and payload.

• tailroom: Free space available for adding trailing data
if necessary.

• skb_shared_info: This structure holds an array of
pointers to read-only data.

This design allows the kernel to modify headers or add en-
capsulations while minimizing memory reallocations.

The skb_cow_head() function
Listing 1 shows the definition of the skb_cow_head()

function. Its purpose is to make sure that a socket buffer
(i.e., skb argument) has at least the desired headroom size
(i.e., headroom argument). It is usually used when one only



static inline int skb_cow_head(

struct sk_buff *skb,

unsigned int headroom

);

Listing 1: Definition of the skb_cow_head() function.

1 err = skb_cow_head(skb, hdrlen + skb->mac_len);

2 // add the new header ("hdrlen" bytes)

3 // determine the output device "dev"

4 err = skb_cow_head(skb, LL_RESERVED_SPACE(dev));

Listing 2: Simplified code pattern that triggers a double-
reallocation of socket buffers in some cases.

needs to add headers but does not need to modify the data.
This function does nothing when there is enough headroom.
Otherwise, it reallocates more space to accommodate for the
required headroom. In that case, the desired headroom size
(in bytes) is aligned to the next multiple of a specific value
which is totally dependent on the architecture of the CPU
and represents its cache line size. In the Linux kernel, the
minimum allowed size for a cache line is 32 bytes and can
typically be either 64, 128 or even 256 bytes depending on
the CPU.

As an example and in order to illustrate, let us assume
we want to add 112 bytes to the header of a socket buffer
(skb), whose current headroom size is 64. Let us also as-
sume a CPU with a 32-byte cache line size. After a call to
skb_cow_head(skb, 112), the new headroom size would be
128. The reasoning is the following: (i) the CPU cache line
size is added to the current headroom size (64 + 32 = 96),
which is smaller than 112 bytes; (ii) the CPU cache line size
is re-added to that value (96 + 32 = 128), which is now big-
ger or equal to 112 bytes. Note that after the insertion of the
112 bytes in the header, the new headroom size would be 16
bytes (128− 112).

Double-Reallocation Issue
This paper investigates an issue in the LWT implementation

of IOAM, SRv6, and RPL protocols. In normal cases, when
an extra header is added to an existing packet, the kernel trig-
gers a reallocation of the socket buffer if its headroom cannot
accommodate it. However, in some cases and under specific
conditions (see below), the kernel triggers two consecutive
reallocations, resulting in performance degradation.

Listing 2 shows the problematic code pattern that is com-
mon to the LWT implementation of IOAM, SRv6, and RPL
protocols. First, line 1 ensures sufficient headroom in the
socket buffer (skb) before adding a new header (hdrlen bytes),
and anticipates the Layer-2 header reconstruction (mac_len
bytes, e.g., 14 for Ethernet). Then, line 2 inserts the new
header in the socket buffer, while line 3 fetches the output
device (dev) based on the new packet header. This is be-
cause the original output device may no longer be the correct
one (e.g., an IPV6-IPV6 tunnel encapsulation with different
source or destination addresses than the original packet, lead-

IOAM
Inline mode PTO of 236 or 240 bytes
Encap. mode PTO of 196 or 200 bytes

SRv6
Inline mode None
Encap. mode For 13, 17, 21, 25, 29, 33, .. segments
Encap. L2 mode For 13, 17, 21, 25, 29, 33, .. segments
Encap. Red mode For 14, 18, 22, 26, 30, 34, .. segments
Encap. L2 Red mode For 14, 18, 22, 26, 30, 34, .. segments

RPL
Inline mode None

Table 1: Cases triggering the double-reallocation for an x86
architecture and an Intel XL710 NIC.

ing to a different egress interface). Finally, line 4 ensures suf-
ficient headroom in the socket buffer (skb) to accommodate
the maximum hardware header length of the output device
(dev), including any extra headroom the NIC may need. The
total length returned by the macro LL_RESERVED_SPACE()
is aligned to 16-byte multiples for machine alignment needs.
Indeed, CPUS often take a performance hit when accessing
unaligned memory locations. For instance, since an Ethernet
header is 14 bytes long, network drivers often end up with the
IPV6 header at an unaligned offset. The IPV6 header can be
aligned by shifting the start of the packet by 2 bytes.

To illustrate a case that would trigger a double-reallocation
based on Listing 2, let us assume we want to add an extra
header (40 bytes) in the socket buffer, whose current head-
room size is 22. Let us also assume a CPU with a 32-byte
cache line size, and Ethernet as Layer-2. First, in line 1,
hdrlen is 40 (the extra header size) and mac_len is 14 (Eth-
ernet header size). After that, the headroom size becomes
54 (i.e., 22 + 32, the old headroom size plus the cache line
size). Then, in line 2, we insert the extra 40-byte header.
Therefore, the headroom size is now 14 (i.e., 54 − 40, the
old headroom size minus the extra header size). Finally, in
line 4, we ensure that the headroom can accommodate the
hardware header length (i.e., 16 bytes in this case). Since
the current headroom size is too small (14 < 16), a sec-
ond reallocation is performed. As a result, the headroom size
becomes 46 (i.e., 14 + 32, the old headroom size plus the
cache line size). The root cause of the double-reallocation
comes from the difference between line 1 and line 4 in list-
ing 2, where mac_len is too generic and often smaller than
LL_RESERVED_SPACE() due to alignment requirements. A
solution to avoid this problem would be to use the latter in
both lines, instead of mac_len. However, as already men-
tioned, the output device in line 1 may not be the same after
line 3. Therefore, this solution cannot work as is.

As discussed, the double-reallocation mainly depends on
the CPU architecture (i.e., L1 cache line size) and, to a lesser
extent, on the NIC (i.e., for alignment requirements and head-
room allocation). Headroom allocation depends on the NIC.
In our case, the network driver (i40e) allocates 192 bytes for
the headroom1. Therefore, before calling skb_cow_head()

1With legacy-rx disabled by default. Otherwise, a cache line
sized (i.e., 64-byte for x86) headroom is allocated. In both cases,



for the LWT encapsulation, the headroom size of all socket
buffers is 206 bytes (i.e., 192 + 14, because the data pointer
was moved beyond the 14-byte Ethernet header). Table 1
summarizes the cases where a double-reallocation happens
for the LWT encapsulation of IOAM, SRv6, and RPL proto-
cols. It is based on an x86 architecture (i.e., 64-byte cache
line size), and an Intel XL710 NIC (i40e driver).

Let us take IOAM in Table 1 to illustrate the problem. All
four cases produce the same overhead (i.e., hdrlen provided
to skb_cow_head()), that is 256 bytes for the entire Extension
Header. Indeed, the Encap mode must include the extra IPV6
header (+40 bytes), which is identical to the Inline mode in
terms of overhead. Moreover, a 236-byte and a 240-byte PTO
both produce the same overhead, as padding is added to the
Extension Header. If we apply the code in Listing 2 to this
case, we have: (i) an extra 256-byte header to add and the
14-byte Ethernet header to rebuild later, (ii) a 206-byte head-
room, and (iii) a 32-byte cache line size. After line 1, the
headroom becomes 270 (i.e., 206+64, the old headroom size
plus the cache line size). Then, in line 2, we insert the ex-
tra 256-byte header. Therefore, the headroom size is now 14
(i.e., 270−256, the old headroom size minus the extra header
size). Finally, in line 4, we ensure that the headroom can ac-
commodate the hardware header length (i.e., 16 bytes in this
case). Since the current headroom size is too small (14 < 16),
a second reallocation is performed. As a result, the headroom
size becomes 78 (i.e., 14+64, the old headroom size plus the
cache line size).

Because the IOAM PTO is limited to a maximum of
244 bytes, there are no repeated values2 with a double-
reallocation like for SRv6 and RPL (i.e. maximum 127 seg-
ments, meaning 2, 040 bytes). Nevertheless, the exact same
logic applies based on the total overhead for each case, e.g.,
the total overhead of 21 SRv6 segments (Encap mode) is 384
bytes (i.e., extra IPV6 header plus SRv6 Routing header).
Note that the double-reallocation does not happen for SRv6
with the Inline mode because it does not fall on the same
boundaries anymore (i.e., -40 bytes compared to the Encap
mode with the extra IPV6 header). On the other hand, RPL
(only the Inline mode is implemented in the kernel) comes
with a compression mechanism, which makes it theoretically
possible to trigger the double-reallocation issue. However,
because iproute2 [11] has an input buffer limited to a
maximum of 1, 024 characters, we could not add enough seg-
ments to make the total overhead large enough to trigger the
issue.

Overall, it is possible to generalize the problem to other
CPU architectures: the smaller the cache line size, the more
often the double-reallocation of socket buffers will occur. For
instance, having a 32-byte cache line would trigger the issue
twice as frequently compared to a 64-byte cache line. E.g.,
with a 32-byte cache line, the double-reallocation would hap-
pen with SRv6 (Encap mode) for the following number of
segments: 11, 13, 15, 17, 19, 21, 23, 25, etc (instead of 13,
17, 21, 25, etc with a 64-byte cache line as in Table 1).

the double-reallocation happens because 192 is a multiple of 64.
2There would be more with legacy-rx enabled, depending on the

cache line size.

1 err = skb_cow_head(skb, hdrlen + dst_dev_overhead(cache

, skb));

2 // add the new header ("hdrlen" bytes)

3 // determine the output device "dev" if cache empty

4 err = skb_cow_head(skb, LL_RESERVED_SPACE(dev));

Listing 3: Simplified code pattern to mitigate the double-
reallocation of socket buffers.

static inline unsigned int dst_dev_overhead(

struct dst_entry *dst, struct sk_buff *skb)

{

if (likely(dst))

return LL_RESERVED_SPACE(dst->dev);

return skb->mac_len;

}

Listing 4: Code of the new dst_dev_overhead() function.

Mitigation Solution
The solution proposed in this paper leverages the existing

cache system in the LWT implementation of IOAM, SRv6, and
RPL protocols. As a reminder, a LWT encapsulation is at-
tached to a route. Therefore, before a packet matches such a
route, the cache which is supposed to contain the correspond-
ing output device is empty. Once a first packet matches the
route, the LWT encapsulation is applied to the packet, and the
output device is fetched and stored in the cache. After that,
the cache is directly used every time another packet matches
the same route, without fetching the output device after the
LWT encapsulation anymore.

Listing 3 shows the simplified code pattern found in list-
ing 2, with the mitigation solution applied. Line 1 uses a new
function named dst_dev_overhead(). The code of this new
function is shown in listing 4. Its purpose is to return the
headroom size required by the output device (for the Layer-
2 header and any extra data needed by the NIC) when the
cache is not empty. Otherwise, if the cache is empty, the
function returns the generic mac_len. Therefore, the cache
is now checked before the LWT encapsulation. The logic be-
hind lines 2, 3 and 4 is the same as previously.

As a result, the first packet that matches a route with an at-
tached LWT encapsulation would see an empty cache. Should
all specific conditions be met for the double-reallocation to
happen, the issue would persist for that first packet only. In-
deed, it is impossible to avoid it in that case because the cache
is needed, which is not possible for the very first packet. On
the other hand, subsequent packets are not impacted by the
double-reallocation anymore, thanks to the proposed mitiga-
tion solution that leverages the cache.

Performance Results
Methodology

Performance evaluation follows the same methodology
across all experiments. We use Trex [5], a high-performance
traffic generator, to transmit at line rate hand-crafted packets



0 50 100 150 200 250
PTO Size (bytes)

0

2

4

6

8

10
p

p
s

re
ce

iv
e
d

(1
05

)

Vanilla Inline

Vanilla Encap

Patched Inline

Patched Encap

Baseline

(a) IOAM

0 5 10 15 20
Number of Segments

0

2

4

6

8

10

p
p

s
re

ce
iv

e
d

(1
05

)

Vanilla Inline

Vanilla Encap

Vanilla Encap Reduced

Patched Inline

Patched Encap

Patched Encap Reduced

Baseline

(b) SRv6

0 5 10 15 20
Number of Segments

0

2

4

6

8

10

p
p

s
re

ce
iv

e
d

(1
05

)

Vanilla L2 Encap

Vanilla L2 Encap Reduced

Patched L2 Encap

Patched L2 Encap Reduced

Baseline

(c) SRv6 (L2 mode)

0 5 10 15 20
Number of Segments

0

2

4

6

8

10

p
p

s
re

ce
iv

e
d

(1
05

)
Vanilla Inline Patched Inline Baseline

(d) RPL

Figure 6: Performance evaluation.

to the Device Under Test (DUT)3, which is a Linux machine
with a recent kernel4 configured to forward traffic back to the
generator in a port-to-port setup.

The key performance metric is the maximum number of
packets per second (pps) the DUT can forward. We compare
performance of a vanilla Linux kernel with our patched ver-
sion. The DUT baseline (IPV6 packet forwarding rate) on
a vanilla kernel is 1,000,000 packets per second, as indicated
by the red lines in Fig. 6. For each value on the plots, 5 exper-
iments are performed. Confidence intervals around the mean
are computed but too tight to appear in the plots.

Results
Fig. 6a shows the forwarding capabilities for increasing

sizes of the IOAM PTO. Performance degradation due to the
double-reallocation issue is clearly visible with a vanilla ker-
nel: one can see a forwarding rate drop occurring for PTOs of
196 bytes with the Encap mode, and for PTOs of 236 bytes
with the Inline mode. On average, performance decreases by
27.1% with a vanilla kernel when the issue occurs. The issue
is completely mitigated in the patched version.

3DUT specifications: x86 Intel(R) Xeon(R) CPU E5-2630 v3 @
2.40GHz, 16 GB RAM, and Intel XL710 Dual Port 40G QSFP+ NIC
(i40e driver)

4Linux kernel version 6.12.

Fig. 6b and 6c show the forwarding capabilities for increas-
ing number of segments in the SRv6 header. In particular,
Fig. 6c specifically shows performance of SRv6 in L2 mode.
In both figures, the vanilla kernel exhibits noticeable perfor-
mance drops at specific segment counts. These drops occur at
segment counts of 13 and 17 for the Encap mode (both nor-
mal and L2 versions), and at segment counts of 14 and 18 for
the reduced (“Red”) Encap mode (both normal and L2 ver-
sions). On average, the vanilla kernel experiences a 28.8%
reduction in performance when the issue occurs. The issue is
completely mitigated in the patched version.

Fig. 6d demonstrates that performance remains consistent
across the vanilla and patched kernels for RPL. This is be-
cause RPL is unaffected by the double-reallocation issue, as
explained previously.

As a summary, one can conclude that the patch proposed
in this paper effectively mitigates the double-reallocation is-
sue, without affecting performance for normal cases where
the double-reallocation does not happen.

Conclusion
In this paper, we investigated a performance issue in the

Linux kernel LWT implementation of IOAM, SRv6, and RPL
protocols. The issue, which occurs under specific conditions,
causes a double-reallocation of socket buffers instead of a sin-



gle one, resulting in significant performance degradation of
up to 28.8%.

We proposed a patch to mitigate the double-reallocation is-
sue and, through performance comparisons between a vanilla
kernel and the patched version, we demonstrated that the ob-
served performance degradation was effectively mitigated in
IOAM and SRv6. Although RPL was not directly affected by
the issue, its implementation shared similar code patterns. As
a preventive measure, we applied the patch to RPL as well,
ensuring that potential future problems are avoided.

Source Code
The patch proposed in this paper has been merged in the

Linux kernel. A link to the corresponding thread on the mail-
ing list archive will be provided when the paper is accepted.

Acknowledgments
This work has been supported by the CyberExcellence

project, funded by the Walloon Region, under number
2110186, and the Feder CyberGalaxia project.

References
[1] Alexander, R.; Brandt, A.; Vasseur, J.; Hui, J.; Poster, K.; Thu-

bert, P.; Levis, P.; Struik, R.; Kelsey, R.; and Winter, T. 2012.
RPL: IPv6 routing protocol for low-power and lossy networks.
RFC 6550, Internet Engineering Task Force.

[2] Bhandari, S., and Brockners, F. 2023. IPv6 Options for In
Situ Operations, Administration, and Maintenance (IOAM). RFC
9486, Internet Engineering Task Force.

[3] Brockners, F., and Bhandari, S. 2023. Network Service Header
(NSH) Encapsulation for In Situ OAM (IOAM) Data. RFC 9452,
Internet Engineering Task Force.

[4] Brockners, F.; Bhandari, S.; and Mizrahi, T. 2022. Data
Fields for In Situ Operations, Administration, and Maintenance
(IOAM). RFC 9197, Internet Engineering Task Force.

[5] Cisco. 2015. Trex. [Last Accessed: April 29th, 2024].

[6] Deering, S., and Hinden, B. 2017. Internet protocol, version 6
(IPv6) specification. RFC 8200, Internet Engineering Task Force.

[7] Farrel, A., and Bonica, R. 2017. Segment routing: Cutting
through the hype and finding the IETF’s innovative nugget of
gold. IETF Journal 13(1).

[8] Filsfils, C.; Previdi, S.; Grinsberg, L.; Decraene, B.; Likowski,
S.; and Shakir, R. 2018. Segment routing architecture. RFC
8402, Internet Engineering Task Force.

[9] Filsfils, C.; Dukes, D.; Previdi, S.; Leddy, J.; Matsushima, S.;
and Voyer, D. 2020. Ipv6 segment routing header (srh). RFC
8754, Internet Engineering Task Force.

[10] Filsfils, C.; Camarillo, P.; Leddy, J.; Voyer, D.; Matsushima,
S.; and Li, Z. 2021. Segment routing over IPv6 (SRv6) network
programming. RFC 8986, Internet Engineering Task Force.

[11] Hemminger, S., and contributors. 2024. iproute2. https:
//wiki.linuxfoundation.org/networking/
iproute2. Linux networking utilities.

[12] Herbert, T., and Lapukhov, P. 2018. Identifier-locator address-
ing for IPv6. Internet Draft (Work in Progress) draft-herbert-
intarea-ila-01, Internet Engineering Task Force.

[13] Hui, J.; Vasseur, J.; Culler, D.; and Manral, V. 2012. An IPv6
Routing Header for Source Routes with the Routing Protocol for
Low-Power and Lossy Networks (RPL). RFC 6554, Internet En-
gineering Task Force.

[14] kernel development community, T. 2024. struct
sk_buff. https://docs.kernel.org/networking/
skbuff.html.

[15] Klassert, S., et al. 2018. Virtual xfrm interfaces.

[16] Muthukrishnan, K., and Malis, A. 2000. A core MPLS IP VPN
architecture. RFC 2917, Internet Engineering Task Force.

[17] Roopa, R., and G., T. 2015. Lightweight & flow based tunnel-
ing.

[18] Song, H.; Gafni, B.; Brockners, F.; Bhandari, S.; and Mizrahi,
T. 2022. In Situ Operations, Administration, and Maintenance
(IOAM) Direct Exporting. RFC 9326, Internet Engineering Task
Force.

[19] Ventre, P. L.; Salsano, S.; Polverini, M.; Cianfrani, A.; Abdel-
salam, A.; Filsfils, C.; Camarillo, P.; and Clad, F. 2020. Segment
routing: A comprehensive survey of research activities, standard-
ization efforts, and implementation results. IEEE Communica-
tions Surveys & Tutorials 23(1):182–221.

[20] Viswanathan, A.; Rosen, E. C.; and Callon, R. 2001. Multi-
protocol label switching architecture. RFC 3031, Internet Engi-
neering Task Force.


