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Introduce BoF purpose and format

● Background for BoF
● Existing bottlenecks observed in kernel network-stack
● Not about finished / completed work

● The presentation format
● Each topic 2-5 slides

● Purpose: discuss
● How to address and tackle current bottlenecks
● Come up with new ideas
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Overview: Topics and presenters
● Topic: Cloudflare (Gilberto) 

● Topic: RX bottleneck (Jesper) 

● Topic: TX powers (Jesper) 

● Topic: Small devices (Felix) 

● Topic: Netfilter hooks (Florian)

● Topic: icache, stage processing (Jesper) 

● Topic: TC/qdisc (Jamal/John)  

● Topic: packet-page (Jesper/Hannes) 

● Topic: RX-MM-allocator (Jesper) 

● Topic: MM-bulk (Jesper) 

● Topic: Bind namespace (Hannes) 
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Topic: Linux at CloudFlare – Background

● CloudFlare hits bottlenecks in Linux
● Packets floods can really stress our Linux boxes

● Issue: using just the Linux kernel it would be much 
harder to mitigate all the DDoS traffic we see everyday

● Even with not-so-big packets floods (2M UDP PPS)
● Even with Iptables drop rules in the raw table
● RX queue saturated

● Traffic sharing that RX queue is dropped… :-(
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Topic: Linux at CloudFlare – Solution

● Userspace offloading with Netmap or ef_vi
● Flow Steering to redirect bad traffic to a RX queue
● The queue is detached from the network stack
● A userspace program poll()s the queue, inspects the 

packets and reinjects the good ones
● It's fast! (And so maybe we can learn something)

● Circular buffers: no need to kmalloc and free sk_buffs
● BPF: no need to fully parse the packet if we are likely going to 

discard it
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Topic: CloudFlare – Idea (Jesper)

● Idea: Use RPS (Recv Packet Steering)

● Evaluate potential: approx 4Mpps at RPS level
● After mlx5 optimizations (next slides)

● Measured: 7 Mpps for RPS → remote CPU drop 4Mpps

● RPS bulk enqueue to backlog
● Measured (PoC code): 9 Mpps 

● Solution: 1 CPU handle RX level
● Multiple remote CPUs handle filtering (less-than 4Mpps each)

● RX CPU handle (PoC) 9Mpps
● Still not handle full 14.8Mpps DoS
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Topic: RX bottleneck – measurements

● Is lower RX levels a bottleneck?(test: drop as early as possible)

● IPv4-Forwarding speed, (all single core tests)

● Ixgbe: 2Mpps – Mlx5: 1.6Mpps

● Early drop in iptables RAW table
● Ixgbe: 5.8Mpps – Mlx5: 4.5Mpps

● Drop in driver (call dev_kfree_skb_any, instead of napi_gro_receive)

● Ixgbe: 9.6 Mpps – Mlx5: 6.3Mpps

● Shows early drop:
● Not fast-enough for DDoS use-case 
● And still gap to DPDK
● Need to fix lower RX layers
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Topic: RX bottleneck – drop in driver(ixgbe)
● ixgbe drop with dev_kfree_skb_any()

● 9,620,713 pps → 104 ns
● Perf report:

● 43.19% memcpy (cache-miss, copy headers, to “page_frag”)

● 20.29% Memory related

● 14.78% ixgbe_clean_rx_irq (ok: driver routine)

● 11.78% __build_skb (60% spend on memset 0 skb)

● 2.02% DMA sync calls

● 1.83% eth_type_trans (no cache-miss due to memcpy)

● See: later topic: RX-MM-allocator

● Explains why this happens, and propose:

● Implementing a new allocator for RX
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Topic: RX bottleneck – drop in driver(mlx5)
● mlx5 drop with dev_kfree_skb_any()

● 6,253,970 pps → 159.9 ns
● Perf report:

● 29.85% Memory related (Bad case of MM slow-path)

● 29.67% eth_type_trans (cache-miss)

● 16.71% mlx5e_{poll_rx_cq,post_rx_wqes,get_cqe}

● 9.96% __build_skb (memset 0 skb)

● This driver need: use MM-layer better: Prime candidate for MM-bulk API

● Jesper's experiment:  12,088,767 → 82.7 ns

1) Avoid cache-miss on eth_type_trans,

2) and (icache) loop calling napi_consume_skb (replaced: napi_gro_receive())

3) Use SLUB/SKB bulk alloc+free API (with tuned SLUB)
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Topic: RX bottleneck – Solutions?

● Solving the RX bottleneck is multi-fold

1) Latency hide cache-miss (in eth_type_trans)

2) RX ring-buffer bulking in drivers,

3) Use MM-bulk alloc+free API,

4) icache optimizations (processing stages),

5) New memory alloc strategy on RX?
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Topic: TX powers – background

● Solved TX bottleneck with xmit_more API
● See: http://netoptimizer.blogspot.dk/2014/10/unlocked-10gbps-tx-wirespeed-smallest.html

● 10G wirespeed: Pktgen 14.8Mpps single core
● Spinning same SKB (no mem allocs)

● Primary trick: Bulk packet (descriptors) to HW
● Delays HW NIC tailptr write

● Interacts with Qdisc bulk dequeue
● Issue: hard to “activate”
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Topic: TX powers – performance gain

● Only artificial benchmarks realize gain 
● like pktgen

● How big is the difference?
● with pktgen, ixgbe, single core E5-2630 @2.30GHz

● TX  2.9 Mpps (clone_skb 0, burst 0) (343 nanosec)

↑ Alloc+free SKB+page on for every packet

● TX  6.6 Mpps (clone_skb 10000) (151 nanosec)

↑ x2 performance: Reuse same SKB 10000 times

● TX 13.4 Mpps (pktgen burst 32) (74 nanosec)

↑ x2 performance: Use xmit_more with 32 packet bursts
● Faster CPU can reach wirespeed 14.8 Mpps (single core)
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Topic: TX powers – Issue

● Only realized for artificial benchmarks, like pktgen

● Issue: For practical use-cases
● Very hard to "activate" qdisc bulk dequeue

● Need a queue in qdisc layer

● Need to hit HW bandwidth limit to “kick-in”
● Seen TCP hit BW limit, result lower CPU utilization
● Want to realized gain earlier...
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Topic: TX powers – Solutions?

● Solutions for
● Activating qdisc bulk dequeue / xmit_more

● Idea(1): Change feedback from driver to qdisc/stack

● If HW have enough pkts in TX ring queue
● (To keep busy), then queue instead

● 1.1 Use BQL numbers, or
● 1.2 New driver return code

● Idea(2): Allow user-space APIs to bulk send/enqueue

● Idea(3): Connect with RX level SKB bundle abstraction
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Topic: TX powers – Experiment BQL push back

● IP-forward performance, single core i7-6700K, mlx5 driver

● 1.55Mpps (1,554,754 pps) ← much lower than expected

● Perf report showed: 39.87 % _raw_spin_lock
● (called by __dev_queue_xmit) => 256.4 ns

● Something really wrong
● lock+unlock only cost 6.6ns (26 cycles) on this CPU
● Clear sign of stalling on TX tailptr write

● Experiment adjust BQL: /sys/class/net/mlx5p1/queues/tx-0/byte_queue_limits/limit_max

● manually lower until qdisc queue kick in
● Result: 2.55 Mpps (2,556,346 pps) ← more than expected!

● +1Mpps and -252 ns
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Topic: Small devices – Background

● Optimizing too much for high-end Intel CPUs?!
● Low-end OpenWRT router boxes is large market
● ARM based Android devices also run our network stack

● Smaller devices characteristics 
● I-cache size comparable to Intel 32KiB,

● but no smart prefetchers, and slower access

● D-cache sizes significantly smaller
● e.g. avoid large prefetch loops

● Smaller cache-line sizes (Typical: 16, 32 or 64 bytes)
● some of our cacheline optimization might be wrong?
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Topic: Small devices – Benchmarks(1)

● Benchmarks on QCA9558 SoC (MIPS 74Kc, 720 MHz)

● 64 KiB icache, 32 KiB dcache, linesize: 32 bytes

● Example: Routing/NAT speed, base: 268 Mbit/s
● After insmod nf_conntrack_rtcache: 360 Mbit/s
● After rmmod iptable_mangle: 390 Mbit/s
● After rmmod iptable_raw: 400 Mbit/s

● Optimization approaches:
● remove (or conditionally disable) unnecessary hooks
● eliminate redundant access to kernel or packet data
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Topic: Small devices – Benchmarks(2)

    10.13%  [ip_tables]     [k] ipt_do_table            
     6.21%  [kernel]        [k] __netif_receive_skb_core
     4.19%  [kernel]        [k] __dev_queue_xmit        
     3.07%  [kernel]        [k] ag71xx_hard_start_xmit  
     2.99%  [nf_conntrack]  [k] nf_conntrack_in         
     2.93%  [kernel]        [k] ip_rcv                  
     2.81%  [kernel]        [k] ag71xx_poll             
     2.49%  [kernel]        [k] nf_iterate              
     2.02%  [kernel]        [k] eth_type_trans          
     1.96%  [kernel]        [k] r4k_dma_cache_inv       
     1.95%  [nf_conntrack]  [k] __nf_conntrack_find_get 
     1.71%  [nf_conntrack]  [k] tcp_error               
     1.66%  [kernel]        [k] inet_proto_csum_replace4
     1.61%  [kernel]        [k] dev_hard_start_xmit     
     1.59%  [nf_conntrack]  [k] tcp_packet              
     1.45%  perf            [.] _ftext                  
     1.43%  [xt_tcpudp]     [k] tcp_mt                  
     1.43%  [kernel]        [k] br_pass_frame_up        
     1.42%  [kernel]        [k] ip_forward              
     1.41%  [kernel]        [k] __local_bh_enable_ip

Iptables related: 22.29%    
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Topic: Small devices – Out-of-tree hacks

● Lightweight SKB structures 
● Used for forwarding, allocate "meta" bookkeeping SKBs

● dedicated kmem_cache pool for predictable latency 
● or recycle tricks

● D-cache savings by "dirty pointer" tricks
● Useful trick for forwarding

● Avoid invalidate D-cache, entire 1500 bytes Ethernet frame
● change NIC driver DMA-API calls
● packet contents are "valid" up until a dirty pointer
● forwarding don't need to touch most of data section

● (e.g. see https://code.google.com/p/gfiber-gflt100/ meta types nbuff/fkbuff/skbuff)
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Topic: Netfilter Hooks – Background

● Background: Netfilter hook infrastructure
● iptables uses netfilter hooks (many places in stack)
● static_key constructs avoid jump/branch, if not used

● thus, zero cost if not activated

● Issue: Hooks registered on module load time
● Empty rulesets still “cost” hook overhead
● Every new namespaces inherits the hooks

● Regardless whether the functionality is needed

● Loading conntrack is particular expensive
● Regardless whether any system use it 
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Topic: Netfilter Hooks – Benchmarks

● Setup, simple IPv4-UDP forward, no iptables rules!
● Single Core, 10G ixgbe, router CPU i7-4790K@4.00GHz

● Tuned for routing, e.g. ip_early_demux=0, GRO=no

● Step 1: Tune + unload all iptables/netfilter modules

● 1992996 pps → 502 ns
● Step 2: Load "iptable_raw", only 2 hooks "PREROUTING" and "OUTPUT"

● 1867876 pps → 535 ns → increased cost: +33 ns
● Step 3: Load "iptable_filter"

● 1762888 pps → 566 ns → increased: +64 ns (last +31ns)
● Step 4: Load "nf_conntrack_ipv4"

● 1516940 pps → 659 ns → increased: +157 ns (last +93 ns)
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Topic: Netfilter Hooks – Solutions

● Idea: don't activate hooks for empty chains/tables
● Pitfalls: base counters in empty hook-chains

● Patches posted to address for xtables + conntrack
● iptables: delay hook register until first ipt set/getsockopt is done

● conntrack: add explicit dependency on conntrack in modules

● nf_conntrack_get(struct net*) /_put() needed

● Issue: acceptable way to break backward compat?
● E.g. drop base counter, if ruleset empty?
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Topic: Netfilter Hooks – data structs

● Idea: split structs
● Into (1) config struct

● what you hand to netfilter to register your hook

● and into (2) run time struct
● what we actually need in packet hot path

● Memory waste in: “struct net”

● 13 families, 8 hooks, 2 pointers per hook -> 1.6k 
memory per namespace. 

● Conversion to single linked list, save 800 bytes per netns
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Topic: icache – Background

● Issue: Network stack, poor util of instruction-cache
● Code path size, a packet travel, larger than icache
● Every packet travel individually,

● experiencing same icache misses (as the previous packet)
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Topic: icache – Solution

● Idea: process several packets at each “stage”
● Step 1: Driver bundle pkts towards stack
● RX-poll routine already process many (eg. budget 64)

● But calls "full" stack for every packet, effect “flushing-icache”

● View pkts avail in the RX ring, as arrived same time
● Thus, process them at the same time.
● This RX bulking, amortize cost in a scalable manor

● Side-effect: Cache-miss latency hiding
● (next slide)
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Topic: cache – eth_type_trans()

● Issue: First cache-miss happen too soon for prefetch
● In eth_type_trans()

● Use icache RX loop for cache-miss hiding
● Avoid touching pkt-data page, in RX loop, but prefetch

● By delay calling eth_type_trans(),
● Call it just before calling stack (via napi_gro_receive)

● Then, prefetch have time hide cache-miss on data
● One step further: don't call eth_type_trans

● Get this info, via HW RX descriptor
● Or Gerlitz had idea how HW can support this! :-)
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● Step 2: Bundle/stage at GRO and RPS layer

● GRO does this already, just get little faster

● Potential for optimizing RPS
● With packet bundle from driver RX layer

● Issue: RPS takes cross CPU locks per packet
● Solution: RPS bulk enqueue for remote CPUs

● Eric Dumazet points out, we already have:
● RPS and RFS defer sending the IPI (Inter-Processor Interrupt)
● Thus, cross CPU calls (cost ~133 ns) is already amorized

● Can still save the per packet cost of locking RPS
● When enqueuing packets, PoC 7Mpps → 9Mpps

Topic: icache – RPS (Recv Packet Steering)
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Topic: TC/Qdisc – Background

● Issue: Base overhead too large
● Qdisc code path takes 6 LOCK operations

● Even for "direct" xmit case with empty queue

● Measured overhead: between 58ns to 68ns
● Experiment: 70-82% of cost comes from these locks
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Topic: TC/Qdisc – Solutions

● Implement lockless qdisc
● Still need to support bulk dequeue
● John Fastabend posted RFC implementation

● Locking reduced to: two cmpxchg (enq+deq).
● What about clear/set_bit operations?

● TODO: Perf improvement numbers?
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Topic: packet-page – Warning crazy idea

● Idea: Pickup packet-page before alloc SKB
● very early at RX, only “extract” page from RX ring

● send it on alternative “bypass” path

● Use-cases:
● Transfer "packet-page" to kernel bypass solutions

● e.g. hook point for DPDK, netmap and RAW af_packet

● Outgoing device, just move pkt-page directly to TX ring
● Guest OS'es, forward/map pkt-page directly

● Filtering: Need HW supported filtering
● Mark packets by HW in RX descriptor

● Software filter too slow, will cause cache miss
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Topic: packet-page – eval perf gain

● Need to measure perf gain this will give us

● Eval with Mlx5 (100G), crazy tuning, skylake i7-6700K

● Not easy to disconnect early RX code from SKB alloc
● Instead use MM-bulk API to lower SKB overhead, +tune SLUB

● Avoid cache miss on eth_trans_type() + icache RX loop

● Optimize driver to RX drop frames inside driver (single core)

● RX driver drop: 12Mpps → 82.7 ns
● (p.s. started at 6.4Mpps)

● Subtract, SLUB (7.3 ns) and SKB (22.9 ns) related =>
● (aside-note: 12ns or 52% of SKB cost is memset(0))

● 52.5 ns → extrapolate 19 Mpps max performance
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Topic: RX-MM-allocator – Background

● Idea: Implementing a new allocator for RX

● Issue: (ixgbe) DMA-sync on RX ring pkt-data page
● Side-effect (of DMA-sync) cannot write into page

● Faster on some archs (PowerPC)

● Cause overhead, e.g. these allocs and steps:
● 1) alloc: SKB
● 2) skb_shared_info, end-of data-page, but cannot write
● 3) alloc: "page-frag" (page_frag_cache), for skb_shared_info
● 4) memcpy header, into "page-frag"
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Topic: RX-MM-allocator – Alternative

● Instead use DMA-unmap:
●  allows writing in pkt data-page

● Idea: No alloc calls during RX!
● Don't alloc SKB, make head-room in data-page
● skb_shared_info, placed end-of data-page
● Issues / pitfalls:

1) Clear SKB section likely expensive

2) SKB truesize increase(?)

3) Need full page per packet (ixgbe does page recycle trick)
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Topic: MM-bulk – Background 

● Reason behind needing MM bulk API
● Discovered IP-forwarding: hitting slowpath

●  in kmem_cache/SLUB allocator

● Caused by DMA completion happens "later"
● Causing more outstanding memory objects that fastpath

● Status: net-stack DMA use-case, soon completed
● 4-5% performance improvement for IP forwarding
● SLUB changes stable in kernel 4.4
● SLAB changes soon accepted in AKPMs tree
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Topic: MM-bulk – Issues

● Bulk free, works great for IP-forward + UDP

● Issue: Does not “kick-in” for TCP
● TCP keeping objects longer than DMA completion
● How to use this bulk free for TCP?

● Future: Generic kfree_bulk() proposed upstream
● Use-case for freeing skb→head

● In case skb_free_head() → kfree()
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Status: Linux perf improvements

● Linux performance, recent improvements
●  approx past 2 years:

● Lowest TX layer (single core, pktgen):
● Started at: 4 Mpps → 14.8 Mpps (← max 10G wirespeed)

● Lowest RX layer (single core):
● Started at: 6.4 Mpps → 12 Mpps (still experimental)

● IPv4-forwarding
● Single core: 1 Mpps → 2 Mpps → (experiment) 2.5Mpps 
● Multi core : 6 Mpps → 12 Mpps (RHEL7.2 benchmark)
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