
MACsec
Encryption for the wired LAN

Networking Services Team, Red Hat

Sabrina Dubroca
sd@queasysnail.net

Netdev1.1, Seville, 2016

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

Outline

Introduction to MACsec (architecture, protocol, related
standards)

Linux kernel implementation

Future work

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

1 Introduction

1 Introduction
Overview
Modes
Protocol details

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

Introduction Overview

What is MACsec

IEEE standard (802.1AE-2006) for encryption over Ethernet

Encrypt and authenticate all traffic in a LAN with
GCM-AES-128

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

Introduction Overview

Why MACsec

Security within LANs (layer 2) is pretty bad

rogue DHCP/router advertisements
ARP/ndisc spoofing

IPsec is L3, cannot protect ARP/ndisc on untrusted links

Cloud environment: VXLAN

Encrypted VXLAN: encryption on the tunnel endpoints, not in
the VM ⇒ Tenant has no control over the keys
MACsec over VXLAN: encryption in the VM, doesn’t need to
be aware of the underlay network

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

Introduction Overview

MACsec concepts, architecture, and definitions

Secure channel (SC) unidirectional channel

from one node to many
sequence of successive, overlapping secure
associations

Secure association (SA) within a SC

every frame transmitted over MACsec belongs to
one particular SA
packet number and key are per-SA

Security Entity (SecY) instance of the MACsec implementation
within a node

Uncontrolled port network interface providing insecure service

MACsec is built on top of this

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

Introduction Overview

Configuration and relation with IEEE 802.1X

option 1: admin can configure SC/SA/keys manually

option 2: use 802.1X with MACsec extensions

MKA (MACsec Key Agreement protocol)
discovery of other MACsec nodes
setup of SC/SA
key generation and distribution
synchronization of packet numbers

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

Introduction Modes

Encryption and integrity

mandatory integrity+authenticity, optional encryption

default crypto algorithm: GCM-AES

authenticated encryption with additional data

the entire MACsec packet is always authenticated

admin can choose whether to use encryption

no encryption, integrity/authenticity only: entire MACsec
packet as additional data
encryption + integrity/authenticity: ethernet + MACsec
header as additional data, original payload is encrypted and
authenticated

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

Introduction Modes

Strict validation

Three possible validation modes for incoming packets:

Strict Non-protected, invalid, or impossible to verify (no
matching channel configured) frames are dropped

Check These frames are counted as “invalid” and accepted,
if possible

Disabled Incoming frames are simply accepted, if possible

Encrypted frames cannot be accepted without a matching
channel and key

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

Introduction Modes

Replay protection

each frame has a 32-bit packet number

on RX, the node may validate the PN against the lowest PN
it expects to get

configurable replay window

some amount of reordering is acceptable

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

Introduction Protocol details

Packet format (unprotected frame)

Dest addr

Src addr

Ethertype

User data

· · ·

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

Introduction Protocol details

Packet format (protected frame)

Dest addr

Src addr

MACsec Ethertype

SecTAG

(User) Ethertype

Protected (user) data

· · ·

ICV

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

Introduction Protocol details

Packet format (encrypted frame)

Dest addr

Src addr

MACsec Ethertype

SecTAG

· · ·
Encrypted data

· · ·

ICV

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

Introduction Protocol details

SecTAG format

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

MACsec EtherType TCI AN 0 SL

Packet Number

}
Mandatory

SCI

}
Optional

TCI tag control information

AN association number (SA identifier, 2 bits)

SL short length, non-zero for frame lengths under 64B

SCI secure channel identifier, 64 bits

48 bits “system identifier” (MAC address)
16 bits “port number”

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

Introduction Protocol details

SecTAG format: TCI field

0 1 2 3 4 5 6 7 8

V=0 ES SC SCB E C AN

SC SCI present

E Encrypted payload

C Changed text

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

Introduction Protocol details

Interaction with other protocols and layers

Eth Hdr VLAN Hdr Data

Figure: unprotected VLAN frame

Eth Hdr SecTAG VLAN Hdr Data ICV

Figure: MACsec-protected VLAN frame

VLAN tag is part of the encrypted payload

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

Introduction Protocol details

Packet handling: Transmit

Eth Hdr Data

Figure: Packet coming from the stack

1 push SecTAG

2 compute and append ICV

3 pass down to the underlying device

Eth Hdr SecTAG Data ICV

Figure: Packet passed down to the network

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

Introduction Protocol details

Packet handling: Receive

Eth Hdr SecTAG Data ICV

Figure: Packet coming from the network

1 verify packet/SecTAG format
2 check packet number (replay protection, optional)

just drop the packet, no feedback to a potential attacker
helps defend against DoS attacks: don’t perform heavy
computation on obviously wrong packets

3 decrypt/verify ICV
4 re-check packet number (replay protection after decryption)

5 remove ICV, pop SecTAG

Eth Hdr Data

Figure: Packet passed up the stack

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

2 Implementation

2 Implementation
First idea: Transparent mode
Better idea: Full netdevice
Implementation details

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

Implementation First idea: Transparent mode

Transparent mode: description

configure MACsec directly on the (real) netdevice

all packets that go through the device are transparently
encrypted and decrypted

advantages

no extra overhead of adding more netdevices

seemed easier from a configuration point of view

looked like it would “just work”

qdisc layer sees the original packet (no SecTAG, not
encrypted)

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

Implementation First idea: Transparent mode

Transparent mode: problems

needs hooks in the normal packet processing path
(__netif_receive_skb_core, xmit_one)

pretty much a non-starter

makes it very hard to reject RX packets that were not
encrypted (including DHCP)

possible with hacks in various places to check that the packet
was actually decrypted (clearly unacceptable)
or let the user add filtering rules manually

not really “transparent”

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

Implementation First idea: Transparent mode

Transparent mode: problems

tcpdump becomes messy (both encrypted and unencrypted
packets are captured)

harder to properly handle VLANs

unsolved question: how to use multiple TX channels

setup rules that match the (unencrypted) TX packets
then configure the MACsec encryption process to use a specific
TX channel for these matched packets

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

Implementation Second idea: Full netdevice

Full netdevice: description

create a new netdevice for each TX channel on a specific
device

similar to VLANs or macvlans
“parent” device sees only the raw packets

ie, the encrypted/protected packets for all its children MACsec
devices
and all the non-protected traffic (802.1X, maybe also some
normal LAN traffic)

good match for the uncontrolled/controlled port model in the
IEEE standards

uses rx handler and ndo start xmit

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

Implementation Implementation details

Crypto

uses the kernel’s crypto API for Authenticated Encryption
with Additional Data (AEAD)

can use HW acceleration (aesni) if available

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

Implementation Implementation details

Structures

struct macsec dev

Private data for MACsec
netdevice

struct macsec secy

SecY parameters (validation
mode, SCI)

list of RX channels

struct macsec tx sc

MACsec TX channel, container
for the SAs

struct macsec rx sc

SCI, container for the SAs

struct macsec [tr]x sa

MACsec SA representation

key

statistics

packet number

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

Implementation Implementation details

Structures

netdevice

rx handler data

secy list

macsec netdevice A

SecYA

TXSCA

macsec netdevice B

SecYB

TXSCB

netdev priv netdev priv

RXSC A1
+ SA

RXSC A2
+ SA

RXSC B1
+ SA

RXSC B2
+ SA

all RXSC for the master device

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

Implementation Implementation details

RX and TX: rx handler

also used by bond, macvlan, bridge, etc

if SCI not present in SecTAG: rebuild from MAC address +
default port

find the RX SC that matches the SCI for the received packet
on the receiving net device

net device → SecY list → per-SecY RXSC list
the packet goes up the stack with skb->dev set to the
net device for the SecY associated with the matching RXSC

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

Implementation Implementation details

RX and TX: Replay protection

check the packet number against RX window before
decrypting

check again after decrypting

then update RX window

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

Implementation Implementation details

RX and TX: ndo start xmit

1-to-1 between the MACsec net device and the TX secure
channel

encrypt/protect with the currently active SA (encoding sa)

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

Implementation Implementation details

Configuration

API split between rtnetlink and genetlink

rtnetlink with MACsec-specific options to create the
net device and configure SecY attributes

genetlink to configure TXSA, RXSC, RXSA

provides demux between the commands for the 3 kinds of
objects
cleaner API design than if we had to configure everything over
rtnetlink

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

3 Use cases

3 Use cases
Normal use case: LAN
Normal use case (2): LAN with multiple channels
Extension: VLAN
Link aggregation
In the cloud: VXLAN

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

Use cases Simple LAN

MACsec LAN setup

switchH1

H2 H3

H4

Figure: Example LAN setup

configure MACsec on the hosts and on each switch port

need a switch with MACsec support

configure MACsec only on the hosts

works with any switch
switch sees only MACsec-protected traffic

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

Use cases Simple LAN

MACsec LAN sample configuration

H1

ip link add link eth0 macsec0 type macsec

ip macsec add macsec0 tx sa 0 on pn 100 key 0 $KEY_0

ip macsec add macsec0 rx address $H2_ADDR port 1

ip macsec add macsec0 rx address $H2_ADDR port 1 \

sa 0 pn 100 on key 1 $KEY_1

H2

ip link add link eth0 macsec0 type macsec

ip macsec add macsec0 tx sa 0 on pn 100 key 1 $KEY_1

ip macsec add macsec0 rx address $H1_ADDR port 1

ip macsec add macsec0 rx address $H1_ADDR port 1 \

sa 0 pn 100 on key 0 $KEY_0

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

Use cases Simple LAN

Important configuration parameters

Changing the current active TXSA

ip link set macsec0 type macsec encoding 2

Enabling encryption (optional)

ip link add link eth0 macsec0 type macsec ...

setup SA and RX ...

ip link set macsec0 type macsec encrypt on

Enabling replay protection (optional)

ip link add link eth0 macsec0 type macsec ...

setup SA and RX ...

ip link set macsec0 type macsec replay on window 128

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

Use cases Multiple channels

MACsec LAN setup for multiple secure
channels

switchH1

H2 H3

H4
macsec1

macsec2

Figure: Example LAN setup with multiple channels

Nodes H1 and H2 have only one secure channel

like in the previous example

Node H4 has two secure channels

different crypto parameters and separate keys for each

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

Use cases Multiple channels

Multiple channels on an interface

H4

channel to H1

ip link add link eth0 macsec0 type macsec

ip macsec add macsec0 tx sa 0 on pn 100 key 1 $KEY_1

ip macsec add macsec0 rx address $H1_ADDR port 1

ip macsec add macsec0 rx address $H1_ADDR port 1 \

sa 0 pn 100 on key 0 $KEY_0

channel to H2

ip link add link eth0 macsec1 type macsec port 2

ip macsec add macsec1 tx sa 0 on pn 400 key 2 $KEY_2

ip macsec add macsec1 rx address $H2_ADDR port 1

ip macsec add macsec1 rx address $H2_ADDR port 1 \

sa 0 pn 100 on key 3 $KEY_3

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

Use cases Extension: VLAN

MACsec VLAN setup

H1 H2

VLAN1 (over macsec1)

VLAN2 (over macsec2)

macsec1

macsec2

Figure: Example VLAN setup

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

Use cases Extension: VLAN

VLAN over MACsec configuration (VLAN1)

H1, VLAN1

ip link add link eth0 macsec0 type macsec

ip macsec add macsec0 tx sa 0 on pn 100 key 0 $KEY_0

ip macsec add macsec0 rx address $H2_ADDR port 1

ip macsec add macsec0 rx address $H2_ADDR port 1 \

sa 0 pn 100 on key 1 $KEY_1

ip link add link macsec0 vlan0 type vlan id 42

H2, VLAN1

ip link add link eth0 macsec0 type macsec

ip macsec add macsec0 tx sa 0 on pn 100 key 1 $KEY_1

ip macsec add macsec0 rx address $H1_ADDR port 1

ip macsec add macsec0 rx address $H1_ADDR port 1 \

sa 0 pn 100 on key 0 $KEY_0

ip link add link macsec0 vlan0 type vlan id 42

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

Use cases Extension: VLAN

VLAN over MACsec configuration (VLAN2)

H1, VLAN2

ip link add link eth0 macsec1 type macsec port 2

ip macsec add macsec1 tx sa 0 on pn 100 key 2 $KEY_2

ip macsec add macsec1 rx address $H2_ADDR port 2

ip macsec add macsec1 rx address $H2_ADDR port 2 \

sa 0 pn 100 on key 3 $KEY_3

ip link add link macsec1 vlan0 type vlan id 10

H2, VLAN2

ip link add link eth0 macsec1 type macsec port 2

ip macsec add macsec1 tx sa 0 on pn 100 key 3 $KEY_3

ip macsec add macsec1 rx address $H1_ADDR port 2

ip macsec add macsec1 rx address $H1_ADDR port 2 \

sa 0 pn 100 on key 2 $KEY_2

ip link add link macsec1 vlan0 type vlan id 10

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

Use cases Link aggregation

MACsec Bonding setup

H1 H2

bond bond

link1

macsec1

link2

macsec2

link3

macsec3

Figure: Example Bonding setup

MACsec is configured separately on each underlying link

MACsec netdevices are enslaved instead of the real links

LACP/etc traffic is protected by MACsec

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

Use cases Link aggregation

MACsec bond configuration

Create bond

modprobe bonding max_bonds=0

ip link add bond0 type bond [...]

ip link set bond0 up

Set up MACsec on each bonded link

ip link add link eth0 macsec0 type macsec ...

setup SA and RX on macsec0 like before

ip link add link eth1 macsec1 type macsec ...

setup SA and RX on macsec1 like before

Add the MACsec devices to the bond

ip link set macsec0 master bond0

ip link set macsec1 master bond0

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

Use cases In the cloud: VXLAN

MACsec VXLAN setup

underlay networkvswitch vswitchHA1

HA2

HB1

HA3

HB2

HB3
VXLAN2

VXLAN1macsec1

Figure: Example VXLAN setup

ETH IP UDP VXLAN ETH SecTAG Payload ... ICV

Figure: Encapsulation for a MACsec over VXLAN packet

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

Use cases In the cloud: VXLAN

MACsec VXLAN configuration

VXLAN

ip link add link vxlan0 type vxlan \

id 10 group 239.0.0.10 ttl 5 dev eth0

ip link add link vxlan0 macsec0 type macsec ...

setup SA and RX on macsec0 like before

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

4 Conclusion

4 Conclusion
Future work
End

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

Conclusion Future work

In the kernel

optional features

confidentiality offset the first 30 bytes of the packet are
only integrity protected

additional ciphersuite GCM-AES-256

hardware offload (at least for some Intel ixgbe NICs)

performance improvements

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

Conclusion Future work

In userspace

NetworkManager support

wpa_supplicant already has MKA support, need to hook up
the netlink API

MKA support: commits 7baec808efb5, 887d9d01abc7,
dd10abccc86d

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

Conclusion End

More information

IEEE 802.1AE-2006
http://standards.ieee.org/getieee802/download/802.

1AE-2006.pdf

IEEE 802.1X-2010
http://standards.ieee.org/getieee802/download/802.

1X-2010.pdf

Kernel submission (RFCv2 on netdev)
http://www.spinics.net/lists/netdev/msg362389.html

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

http://standards.ieee.org/getieee802/download/802.1AE-2006.pdf
http://standards.ieee.org/getieee802/download/802.1AE-2006.pdf
http://standards.ieee.org/getieee802/download/802.1X-2010.pdf
http://standards.ieee.org/getieee802/download/802.1X-2010.pdf
http://www.spinics.net/lists/netdev/msg362389.html

