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Para-virt networking model
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Open vSwitch

• Forwarding
• Flow-based forwarding

• Decisions are made in user space 

• First packet of a new flow is directed to ovs-vswitchd, 

following packets hit cached entry in kernel

• OVS Overview

• http://openvswitch.org/slides/OpenStack-131107.pdf
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OVS data path
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OVS offload – solution: adding the Hardware 
layer to the forwarding plane

HW forwarded Packets

Software

eswitch
Hardware

 The NIC Embedded Switch is layered below the kernel module 

 A miss in the eswitch causes the packet to be forwarded to the kernel 
data path and possibly to user space

 When a cached entry is inserted to the data path we try to offload it to 
the hardware.

Retain the “first packet” concept and enable the “fast-est” path – via the HW switch
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Offloading rules to the hardware
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Offloading rules to the hardware
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Offloading rules to the hardware
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ovs-vswitchd:

• classifies the packet

• injects it to the right output port

• inserts a rule to the data path
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Offloading rules to the hardware
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Our hook in the OVS DP uses the ingress vport of the flow to offload that flow.

The offloading is done through switchdev.

This is well defined as the OVS DP mandates a full match on the ingress port. 12
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Offloading rules to the hardware
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The eswitch driver verifies that:

1. The source and destination have the same switch ID

2. The device supports the required matching

3. The device supports the required actions

And offloads the flow
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Offloading rules to the hardware
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The following packets in the same flow go directly to the physical 

port without any hypervisor involvement.
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VLAN push/pop vs. tunneling in OVS

OVS data path uplink

In_port=VF representor,(Match criteria) 

action=push_vlan(id=…),output:uplink

In_port=uplink,(Match) 

action=pop_vlan,output:VF representor

OVS data path uplink

In_port=VF representor, (Match criteria) 

action=set_attr(vni=…, dst_ip=…),output:vxlan

In_port=vxlan,(Match) 

action=output:VF representor

VXLAN

Linux 

routing
VF

Representor

The OVS Data path rule lacks:

• Routing information

• Layer two information

VF

Representor
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Tunneled flows can’t be offloaded through 
ingress port

No offload support on this VPORT
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Representor
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OVS data path uplinkVXLAN

Linux 

routingVF

Representor

Use fib_lookup(…) to get the “real” 

ingress port of the flow

+ Driver need to listen for routing 

changes

Find “real” ingress port for offloading
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OVS data path
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Switch id 0
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A rule is inserted to the data path to forward the packet to the VF. 
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OVS data path

eth0
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Due to routing changes, the flow we inserted earlier now comes through eth0.

Since the flow is already in the data path, we don’t try to offload it again and 

The flow is not offloaded.
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Solution

• Add a new functions
• int switchdev_tunneled_flow_add(struct net *net, struct

sw_flow *flow)
• int switchdev_tunneled_flow_del(struct net *net, struct

sw_flow *flow)

• switchdev will maintain a sorted data structure mapping 

Outer dst IP => (flow, offloading device [if offloaded])

• Upon fib update:   [switchdev_fib_ipv4_add (192.168.0.3/24) ]
• Foreach relevant flow:

• Do routing to find target device (to account for policy routing)
• Remove flow from previous offloading device.
• Ask the new device to offload the flow.
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MTU

• Encapsulating a packet might cause it to exceed the MTU

• The VF representor should reflect the VF MTU. The driver will refuse 
to offload flows if the representor MTU + encapsulation header > 
PORT MTU
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Conclusions

• Flow based offloads provides SR-IOV performance with

Para-virt like flexibility.

• Our work shows the feasibility for openvswitch offloading with and 
without tunneling.

• We hope our work can be the basis for upstream flow based 
offloading support.
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Open issues

• Who should ask the driver to offload the flows?
• The OVS data path?

• ovs-vswitchd? through what interface? TC? Netlink?

• Who should maintain the list of decapsulated flows? 
• switchdev?

• A new offload management module?

• How should we represent flows? sw_flow? cls_flower?
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Questions?
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Thank you

25

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)



Backup 
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Tunnel actions don’t have layer 2 information

The software does encapsulation in two stages. First it adds the later 3 
information, and then it does neighbor look up to add layer 2 information.

For hardware this is not necessarily the case. Do we want to hide in in the

Driver or have an intermediate layer that will ask the driver two offload

The rule only when all the information is available?

Packet

Layer 3

Layer 2
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