
Ilya Lesokhin, Haggai Eran, Or Gerlitz

February 2016

Flow-based tunneling for SR-IOV
using switchdev API

1

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

Para-virt networking model

2

bridge

eth0

TAP

QEMU

FD

GUEST

VIRTIO

frontend

VIRTIO

backend

TAP

QEMU

FD

GUEST

VIRTIO

frontend

VIRTIO

backend

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

bridge

eth0

TAP

QEMU

FD

GUEST

VIRTIO

frontend

VIRTIO

backend

SRIOV has its own management

3

QEMU

GUEST

VF driver

eswitch

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

bridge

eth0

TAP

QEMU

FD

GUEST

VIRTIO

frontend

VIRTIO

backend

SRIOV has its own management

VF

representor

QEMU

GUEST

VF driver

4
eswitch

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

bridge

eth0

TAP

QEMU

FD

GUEST

VIRTIO

frontend

VIRTIO

backend

SRIOV has its own management

VF

representor

QEMU

GUEST

VF driver

5

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

Open vSwitch

• Forwarding
• Flow-based forwarding

• Decisions are made in user space

• First packet of a new flow is directed to ovs-vswitchd,

following packets hit cached entry in kernel

• OVS Overview

• http://openvswitch.org/slides/OpenStack-131107.pdf

6

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

http://openvswitch.org/slides/OpenStack-131107.pdf

OVS data path

br-int

br-eth0 OVS data path

VF 1

representor

VF 2

representor
TAP

OVS-vswitchd

Per bridge complex open flow

rules with priority

One bridge with simple

mutually exclusive rules

eth0

VF 1

representor

VF 2

representor
TAP

eth0

7

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

OVS offload – solution: adding the Hardware
layer to the forwarding plane

HW forwarded Packets

Software

eswitch
Hardware

 The NIC Embedded Switch is layered below the kernel module

 A miss in the eswitch causes the packet to be forwarded to the kernel
data path and possibly to user space

 When a cached entry is inserted to the data path we try to offload it to
the hardware.

Retain the “first packet” concept and enable the “fast-est” path – via the HW switch

8

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

Offloading rules to the hardware

OVS data path eth0
VF

Representor

ovs-vswitchd

VF driver
Physical

port

A packet is sent

By the VM

9

Switch id 0 Switch id 0

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

Offloading rules to the hardware

OVS data path
VF

Representor

ovs-vswitchd

Physical

port

The packet hits the miss rule

in both the eswitch and

the OVS DP and forwarded

to user space

10

VF driver

Switch id 0

eth0

Switch id 0

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

Offloading rules to the hardware

OVS data path
VF

Representor

ovs-vswitchd

Physical

port

ovs-vswitchd:

• classifies the packet

• injects it to the right output port

• inserts a rule to the data path

11

VF driver eth0

Switch id 0Switch id 0

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

Offloading rules to the hardware

OVS data path
VF

Representor

ovs-vswitchd

Physical

port

Our hook in the OVS DP uses the ingress vport of the flow to offload that flow.

The offloading is done through switchdev.

This is well defined as the OVS DP mandates a full match on the ingress port. 12

VF driver eth0

Switch id 0Switch id 0

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

Offloading rules to the hardware

OVS data path
VF

Representor

ovs-vswitchd

Physical

port

The eswitch driver verifies that:

1. The source and destination have the same switch ID

2. The device supports the required matching

3. The device supports the required actions

And offloads the flow

13

VF driver eth0

Switch id 0Switch id 0

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

Offloading rules to the hardware

OVS data path
VF

Representor

ovs-vswitchd

Physical

port

The following packets in the same flow go directly to the physical

port without any hypervisor involvement.

14

VF driver eth0

Switch id 0Switch id 0

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

VLAN push/pop vs. tunneling in OVS

OVS data path uplink

In_port=VF representor,(Match criteria)

action=push_vlan(id=…),output:uplink

In_port=uplink,(Match)

action=pop_vlan,output:VF representor

OVS data path uplink

In_port=VF representor, (Match criteria)

action=set_attr(vni=…, dst_ip=…),output:vxlan

In_port=vxlan,(Match)

action=output:VF representor

VXLAN

Linux

routing
VF

Representor

The OVS Data path rule lacks:

• Routing information

• Layer two information

VF

Representor

15

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

Tunneled flows can’t be offloaded through
ingress port

No offload support on this VPORT

OVS data path uplinkVXLAN

Linux

routingVF

Representor

16

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

OVS data path uplinkVXLAN

Linux

routingVF

Representor

Use fib_lookup(…) to get the “real”

ingress port of the flow

+ Driver need to listen for routing

changes

Find “real” ingress port for offloading

17

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

OVS data path

eth0

VXLAN
VF

Representor

Decapsulation ingress port problem

Switch id 0

A vxlan packet comes through eth1.

A rule is inserted to the data path to forward the packet to the VF.

The flow is not offloaded because the VF and eth1

Belong to different switch.

eth1

Switch id 0

Switch id 1

18

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

OVS data path

eth0

VXLAN
VF

Representor

Switch id 0
eth1

Switch id 0

Switch id 1

Due to routing changes, the flow we inserted earlier now comes through eth0.

Since the flow is already in the data path, we don’t try to offload it again and

The flow is not offloaded.

19

Decapsulation ingress port problem

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

Solution

• Add a new functions
• int switchdev_tunneled_flow_add(struct net *net, struct

sw_flow *flow)
• int switchdev_tunneled_flow_del(struct net *net, struct

sw_flow *flow)

• switchdev will maintain a sorted data structure mapping

Outer dst IP => (flow, offloading device [if offloaded])

• Upon fib update: [switchdev_fib_ipv4_add (192.168.0.3/24)]
• Foreach relevant flow:

• Do routing to find target device (to account for policy routing)
• Remove flow from previous offloading device.
• Ask the new device to offload the flow.

20

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

MTU

• Encapsulating a packet might cause it to exceed the MTU

• The VF representor should reflect the VF MTU. The driver will refuse
to offload flows if the representor MTU + encapsulation header >
PORT MTU

21

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

Conclusions

• Flow based offloads provides SR-IOV performance with

Para-virt like flexibility.

• Our work shows the feasibility for openvswitch offloading with and
without tunneling.

• We hope our work can be the basis for upstream flow based
offloading support.

22

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

Open issues

• Who should ask the driver to offload the flows?
• The OVS data path?

• ovs-vswitchd? through what interface? TC? Netlink?

• Who should maintain the list of decapsulated flows?
• switchdev?

• A new offload management module?

• How should we represent flows? sw_flow? cls_flower?

23

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

Questions?

24

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

Thank you

25

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

Backup

26

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

br-int

br-eth0 OVS data path

VF 1

representor

VF 2

representor
TAP

OVS-vswitchd

eth0

VF 1

representor

VF 2

representor
TAP

eth0

br-tun

VXLAN

VXLAN

Linux

routing

?

How flat and vxlan networks work side by side?

27

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

br-int

br-eth0 OVS data path

VF 1

representor

VF 2

representor
TAP

OVS-vswitchd

eth0

VF 1

representor

VF 2

representor
TAP

eth0

br-tun

VXLAN

VXLAN

Linux

routing

br-eth0

(internal) br-eth0

(internal)

Two passes through the data path

28

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

Tunnel actions don’t have layer 2 information

The software does encapsulation in two stages. First it adds the later 3
information, and then it does neighbor look up to add layer 2 information.

For hardware this is not necessarily the case. Do we want to hide in in the

Driver or have an intermediate layer that will ask the driver two offload

The rule only when all the information is available?

Packet

Layer 3

Layer 2

29

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

OVS data path

eth0

VXLAN
VF

Representor

Stronger matching in OVS DP

Switch id 0
eth1

Switch id 0

Switch id 1In_port=vxlan,phy_dev=eth1,(Match)

action=output:VF representor

30

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

OVS data path

eth0

VXLAN
VF

Representor

Stronger matching in OVS DP

Switch id 0
eth1

Switch id 0

Switch id 1

Miss,

Another offload

Opportunity.

31

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

