
Sowmini Varadhan(sowmini.varadhan@oracle.com)

Securing Network Traffic Tunneled Over
Kernel managed TCP/UDP sockets

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

Netdev 1.1 Seville, Spain

Agenda

• What problem are we trying to solve?
– Privacy, integrity protection, authentication of traffic that

gets tunneled over kernel managed TCP and UDP sockets

• Options at socket layer: TLS, DTLS
– Pros and cons

• Options at the IP layer: IPsec
– Pros and cons

• Ongoing and future work

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

Netdev 1.1 Seville, Spain

What problem are we trying to solve?

• Security for kernel-managed TCP and UDP
sockets

– VXLAN, GUE, Geneve, and other NVO3 solutions
– RDS-TCP, KCM: Application traffic sent over

PF_RDS/PF_KCM socket, which gets tunnelled over
TCP in the kernel

• Security, with reasonable performance
– Crypto has an unavoidable cost, but the rest of the

perf should be streamlined

• Security, without regressing on Failover
requirements for Cluster/HA

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

Netdev 1.1 Seville, Spain

Typical model for kernel TCP/UDP
sockets

• Application data from sender: can come from
Virtual Machine, DB application, HTTP/2..

• Typically gets encapsulated in some protocol
specific header (VXLAN, GUE, Geneve, RDS) that
tracks control plane state (Tenant ID, VNI, OVS
state, RDS port numbers..)

• Tunneled in the kernel over a UDP/TCP socket
• Receiver parses control plane header and delivers

to the appropriate sender (tenant VM, DB
application)

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

Netdev 1.1 Seville, Spain

Privacy and Security Concerns

• Traffic tunneled over kernel sockets goes out in
the clear today.

• As we scale multi-tenant Cloud environments, we
have multiple tenants sharing the same physical
infrastructure

• Attack vectors that need to be considered:
– Protecting tenant payload and tunneling

protocol header (privacy, integrity
protection, authentication)

– Protecting the control plane (TCP/IP, for
RDS-TCP and KCM)

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

Netdev 1.1 Seville, Spain

Privacy for tenant traffic
• Traffic that can traverse long internet paths:

attackers should not be able to snoop/impersonate
end-points

– encrypt tenant data using encryption parameters that
have been securely installed on both end-points after
appropriate authentication.

• Typical solution to provide this is by using
TLS/DTLS at the socket layer

• TLS has some attractive properties
– Per-user authentication
– Implemented at the application level, not the kernel.

So easier support in multiple environments

• But there are some issues with using TLS/DTLS
with kernel sockets

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

Netdev 1.1 Seville, Spain

Challenges to using TLS/DTLS with
RDS-TCP

• Cannot use DTLS/TLS directly on new socket
types like PF_RDS and PF_KCM.

• No TLS in the kernel
• TLS is a complex protocol- handshake and

control-plane is complex
• Can we move the TLS control-plane (including

Handshake) to user-space, and just use the TLS
negotiated keys for encryption in the kernel?

– Attempted by Netflix for acceleration of
encrypted sendfile()

– Basis of recent kTLS RFC

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

Netdev 1.1 Seville, Spain

Netflix/OCA

• Improve sendfile() throughput of encrypted data
for the Netflix OpenConnect Appliance

– https://people.freebsd.org/~rrs/asiabsd_2015_tls.pdf

• Traditional implementation: web-server gets client
request for object on disk, retrieves object into a
local buffer, encrypts/sends over TLS on network.

• Netflix optimization: when the client request comes
in, issue sendfile() call on the file descriptor and
socket descriptor: data would then never leave
kernel address space.

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

https://people.freebsd.org/~rrs/asiabsd_2015_tls.pdf

Netdev 1.1 Seville, Spain

Netflix/OCA: TLS based encryption in
kernel

• Kernel needs to encrypt the data before sending it
out on the socket to the network

• Netflix model: TLS session parameters are
negotiated in user-space, and pushed down via
socket options to the kernel

– TLS session management in user-space
– Encryption in kernel

• Primary goal is to provide faster encryption, not full
support for a kernel TLS.

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

Netdev 1.1 Seville, Spain

Netflix/OCA: TLS customizations

• Netflix/OCA ran into many questions when
implementing this proposal

– Encrypted messages like “Finished” can arrive before
 CCS has been processed, and keys are in place, so
kernel data plane may end up having to buffer a lot of
data

– How will the kernel handle re-keying?
– “..when you consider .. that messages in the TCP

stream may arrive out of order, adding TLS for both
sending and receiving adds a lot of complexity to the
kernel” [Netflix/OCA]

• Netflix/OCA proposal only implements sender side
of TLS, since it is primarily interested in
accelerating sendfile()

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

Netdev 1.1 Seville, Spain

Netflix/OCA results

• The Netflix/OCA finds that the performance
improvements were not that significant for BSD

• Even if a Linux implementation could achieve
better perf, the issues identified in the OCA
experiment remain

– Splitting the protocol into a control plane and
a data plane is not what TLS intends, and
such a split will result in new forms of
asynchronicity.

• For securing kernel TCP/UDP sockets, we want a
complete security solution.

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

Netdev 1.1 Seville, Spain

HA/Failover in the split TLS model

• CCS, Re-keying etc: Control plane changes state,
data-plane needs to be correctly synchronized
with that change.

• HA/failover: data-plane can restart. Control plane
needs to be in tandem with that. Examples:

– Address/service migration for TCP
connection, RDS-TCP module restart

– RDS resets connection because it detects
spurious headers or other compromise.

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

Netdev 1.1 Seville, Spain

Protecting from TCP attacks

• TLS only secures the application data.
• TCP connection is still exposed and vulnerable to

RST attacks, sequence number attacks
• Attacks to TCP throw off the state machine in RDS-

TCP reassembly.
– Sender depends on TCP ack# to determine when

it can take a dgram off the resend queue. Bogus
sequence number reinjection is not acceptable.

• HA: when the RDS-TCP connection breaks, we try
to re-connect today. If reconnecting, we should
restart authentication, and preferably re-key.

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

Netdev 1.1 Seville, Spain

Alternatives to TLS?

• TLS encrypts/authenticates at the socket layer
• Alternative to TLS: IPsec
• IPsec encrypts/authenticates at the IP layer

– Fully integrated into the Linux kernel
– Mature implementation; Interfaces between key

management and kernel are well-understood.

.

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

Netdev 1.1 Seville, Spain

What is IPsec?
• IP Security
• Suite of protocols for encryption (adding a “ESP”

header) and Authentication (adding a “AUTH”
header)

• ESP/AH are each applied to a “Security
Association” (SA) that is pushed to kernel from
user-space.

– SA is defined by Admin.
– Parameters: IP endpoint addresses, ports, IP

protocol. Ports, protocol can be wild-cards
– MAY be a TCP/UDP 4-tuple

• IKE (Internet Key Exchange) protocol for
establishing keys (using pre-shared key, CA etc)
from user-space

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

Netdev 1.1 Seville, Spain

IPsec encryption with ESP

• Encrypts data (either TCP/UDP payload for
transport mode, or IP packet for tunnel mode)

– Confidentiality, data-origin authentication, integrity,
anti-replay service.

• Adds an ESP header with an “Security Parameter
Index” (SPI) and sequence number

– SPI uniquely identifies a “Security Assocation” (SA)
for which the security parameters (keys, crypto algo
etc) are defined. Thus SPI essentially identifies a flow
for IPsec

– Sequence number is used to protect against replay
attacks

• Adds an ESP trailer which contains the “original
protocol” of the data that was encrypted.

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

Netdev 1.1 Seville, Spain

IPsec encryption with ESP

• Encrypts data (either TCP/UDP payload for
transport mode, or IP packet for tunnel mode)

– Confidentiality, data-origin authentication, integrity,
anti-replay service.

• Adds an ESP header with an “Security Parameter
Index” (SPI) and sequence number

– SPI uniquely identifies a “Security Assocation” (SA)
for which the security parameters (keys, crypto algo
etc) are defined. Thus SPI essentially identifies a flow
for IPsec

– Sequence number is used to protect against replay
attacks

• Adds an ESP trailer which contains the “original
protocol” of the data that was encrypted.

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

Netdev 1.1 Seville, Spain

IPsec Transport vs Tunnel mode

• IPsec Transport mode: ESP/AH transforms apply
to L4 (TCP or UDP) header and payload.

– Protects TCP header
– L3/routing information is not modified
– Typically used for host-host IPsec

• IPsec tunnel mode: IP packet is encapsulated
inside another IP packet. The IPsec transforms are
applied to the inner (original) IP packet.

– Protects IP and TCP header of the original packet
– Typically used for VPNs
– Routing information MAY be modified

• For Cloud/Cluster solutions IPsec Transport mode
is sufficient as we do not wish to modify routing
information.

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

Netdev 1.1 Seville, Spain

Feasibility of using IPsec for kernel
TCP/UDP sockets

• IPsec meets the security requirements for kernel
TCP/UDP sockets. Linux supports a mature
implementation, with all the needed features, and
a variety of key distribution functions via the IKEv2
implementation.

• But what is the performance profile?

• We will now look at some performance
instrumentation experiments, the findings, and
ongoing work to evaluate IPsec impact on
performance

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

Netdev 1.1 Seville, Spain

IPsec performance evaluation
environment

• Evaluate iPerf single-stream throughput and CPU
utilization profile for a 10G line on an X5-4, using
Intel's ixgbe driver

• Test permutations generated with the following
parameters

– With/Without TSO, GSO, GRO
– Clear traffic vs IPsec with null encryption (thus no crypto

overhead)
– IPsec with 2 types of encryption:

• AES-GCM-256 (Galois Counter Mode, keysize 256)
• AES-CCM-128 (Counter with CBC MAC, keysize

128)
• GCM: parallelizable in hardware. CCM: smaller

gate-count but typically slower implementation.

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

Netdev 1.1 Seville, Spain

IPsec test cases used for analysis

• Clear traffic, defaults for TSO, GRO, checksum
offload

• Clear traffic, GSO on sender, GRO on receiver, no
checksum offload on sender

• Clear traffic, GRO-only: no segmentation or
checksum offload on sender, GRO on receiver

• Clear traffic, GSO-only: no TSO on sender, no
GRO on receiver

• IPsec with null-encryption, default settings
• IPsec with AES-GCM-256, ICV len 16
• IPsec with AES-CCM-128, ICV len 8

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

Netdev 1.1 Seville, Spain

IPsec impact on performance

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

Netdev 1.1 Seville, Spain

Observations:

• Loss of Segmentation/Receive offload (TSO, GSO,
GRO has a severe performance penalty even in the
absence of IPsec

• IPsec transforms TCP/UDP payload.
– MUST be done after segmentation
– Stack implicitly disables TSO, GSO, GRO today when IPsec

is engaged

• Manual Rx side iPerf placement and IRQ balancing was
needed for IPsec cases. (loss of RSS/RFS/RPS for
IPsec)

• Some inefficiencies in the way IPsec code manages
memory

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

Netdev 1.1 Seville, Spain

Retaining offload benefits for IPsec

• GSO/GRO are software offload implementations,
and can be extended easily to apply IPsec
transform after segmentation/receive offload

– Work with Steffen Klassert for s/w offload

• IPsec transform after GSO segmentation
• Decrypt before GRO coalesce.

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

Netdev 1.1 Seville, Spain

IPsec offload to GSO/GRO

Throughput Gbps (peak CPU Utilization %)

ESP-NULL AES-GCM-256

Baseline 2.6 Gbps (71%) 2.17 Gbps (83%)

GSO/GRO offload 8 Gbps (95%) 4.2 Gbps (100%)

• Steffen Klassert is working on patches to offload
IPsec to GSO/GRO for Tunnel Mode

• Extended that patch-set to work for Transport Mode

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

Netdev 1.1 Seville, Spain

Reducing CPU utilization

• Hardware offload to NIC TSO? Many Intel 10G
NICs (Niantic, Twinville, Sageville) already support
IPsec offload but Linux stack needs
enhancements

– Microsoft Driver API that uses Intel IPsec offload:
https://msdn.microsoft.com/en-
us/library/windows/hardware/ff556996%28v=vs.85%2
9.aspx

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

Netdev 1.1 Seville, Spain

Receive side flow hashing
• When IPsec was enabled on the flow, had to manually

do IRQ and process-CPU pinning to achieve the best
performance

• On the receiver, this is achieved when the IRQs and
iPerf process are pinned to separate CPUs.

• For clear traffic, this balancing would have been
automatically achieved by RFS/RSS

– RFS/RSS: Increase performance by steering packets to
different queues based on filters applied to packet to
determine flows

• RFS/RSS flow determined from TCP/UDP 4-tuple
• TCP/UDP header is encrypted by IPsec so port

numbers are not available to RSS/RFS.

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

Netdev 1.1 Seville, Spain

RSS/RFS/RPS for IPsec

• Can we use the SPI for flow hashing? Yes.
• SPI identifies the SA (Security Association), i.e.,

the “flow” for Ipsec.
– Already used by Tx path via proto_ports_offset()

• Drivers should be able to return a rxhash based on
 SPI, at least for ESP.

• Need to work the software RSS/RFS to do the
same

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

Netdev 1.1 Seville, Spain

Ongoing work

• Hardware offload of IPsec
– Will reduce cpu util
– NIC has to be updated with SA
– Microsoft APIs give some clues about what is already

available

• Better Rx flow hashing in h/w and s/w
• S/W tweaks to IPsec code paths to keep latency

down
• Others? More benchmarks, IPsec offload

deployment from within a VM..

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

Netdev 1.1 Seville, Spain

Backup Slides

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

Case study: RDS-TCP Architectural
Overview

user

kernel

RDS appRDS app RDS app

rds_tcp

TCP

IP

driver

Kernel TCP socket

App data

App data

RDS

RDS

App dataTCP

TCP RDS App dataIP

IP TCP RDS App dataL2

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

Netdev 1.1 Seville, Spain

Synchronizing the control and data
plane in the split TLS model

• Either client can send a “CCS”
(ChangeCipherSpec) mid-stream, and the protocol
mandates that both sides MUST start using the
new parameters immediately after a CCS.

– Encrypted data arrives before CCS has
been procesed

• Re-keying
• HA/failover: data-plane can restart. Control plane

needs to be in tandem with that.

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

Netdev 1.1 Seville, Spain

What does each transform look like
for RDS? Clear vs TLS encrypted
packet

Clear (unencrypted packet):

Eth
header

IP header;
proto TCP
10.0.0.1 → 10.0.0.2

TCP
hdr TCP payload

TLS encrypted packet

Eth
header

IP header;
proto TCP
10.0.0.1 → 10.0.0.2

TCP
hdr

TCP Payload
Eth
header

TCP
hdr

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

Netdev 1.1 Seville, Spain

Effect of IPsec transforms

Eth
header

IP header;
proto ESP
10.0.0.1 → 10.0.0.2

ESP header
SPI, seq#

ESP trailer
proto TCP

TCP hdr
& payload

IPsec transport-mode encaps (ESP only)

Eth
hdr

Outer IP
header;
Proto ESP
osrc → odst

ESP header
SPI, seq#

Orig TCP/IP packet for
10.0.0.1 → 10.0.0.2, with
TCP hdr and payload

ESP trailer
Proto (4)
IP-in-IP

IPsec tunnel mode. The outer src/dst are determined by VPN config.
They would be the 10.0.0.1 and 10.0.0.2 if no VPN gw is used.

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

Netdev 1.1 Seville, Spain

Acronyms: TSO, GSO, GRO

• Segmentation Offload: Split up the TCP packet
into segments as late as possible at the sender
during TCP transmission for better performance.

• Can be done in the NIC (TSO) or in software
(GSO) just before handing off TCP/IP packet to
NIC

– http://www.linuxfoundation.org/collaborate/workgroup
s/networking/gso

• GRO: Generic Receive Offload: mirrors GSO on
the receiver. “Identical” packets that match on
constraints applied to the MAC/TCP/IP headers
are merged and passed up the stack

– https://lwn.net/Articles/358910/

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

Netdev 1.1 Seville, Spain

Acronyms: RPS/RFS/RSS

• What is RPS/RFS/RSS
– RPS: Receive Packet Steering, RFS: Receive Flow

Steering
– RSS: Receive Side scaling, hardware equivalent of

RPS
– See Documentation/networking/scaling.txt

• Increase performance by steering packets to
different queues based on filters applied to packet
to determine flows.

• Flow is typically a hash function applied to IP
and/or TCP/UDP headers (port numbers)

• TCP/UDP header is encrypted by IPsec so port
numbers are not available to RSS/RFS.

Proceedings of NetDev 1.1: The Technical Conference on Linux Networking (February 10th-12th 2016. Seville, Spain)

