
Advanced programmability and recent updates with tc’s cls bpf.

Daniel Borkmann
Cisco

Switzerland
daniel@iogearbox.net

Abstract

With the introduction of eBPF into the Linux kernel and the
added support for cls bpf, tc has gained a highly pro-
grammable and efficient member in its repertoire of classifiers
and actions which provides a generic and minimal bytecode
language for tackling specific use-cases. Thanks to the LLVM
back end for eBPF, programs can be written in a C-like lan-
guage and compiled with clang into an object file that tc
can load into the kernel for the cls bpf back end. The set
of just-in-time (JIT) compilers in the kernel translate eBPF in-
structions into machine-dependent instructions that allow for
execution of programs with native performance. Since the last
netdev conference, various new features related to cls bpf
have found its way into the Linux kernel. Therefore, this re-
port can be regarded as a continuation of the netdev 1.1 pa-
per on cls bpf [14]. While the first paper was to provide
an architectural overview, this paper discusses some of the re-
cently introduced features for eBPF and cls bpf in particular
in more detail along with a few code examples.

Keywords
eBPF, cls bpf, tc, programmable datapath, Linux kernel

Introduction
eBPF is a minimal, but highly flexible ”virtual machine”-like
construct in the Linux kernel which is used in a number of
subsystems, most prominently networking and tracing [19].
It replaced the traditional in-kernel ”classic” BPF (cBPF) in-
terpreter, which is mostly known from tcpdump/libpcap
filters that are passed as BPF bytecode into the kernel. Nowa-
days, the kernel speaks eBPF only and therefore, cBPF is
translated into eBPF bytecode in kernel space before actual
execution. eBPF consists of eleven 64 bit registers (r0-r10)
with 32 bit sub-registers, a program counter and a eBPF stack
space. Like cBPF, the instructions are 64 bit in size, and a
few new instructions have been added such as load/store of
double word, 64 bit ALU operations, a new call instruction,
etc. The maximum instruction limit a program can carry is
4096 instructions, which is the same as in cBPF case. Next
to forward jumps, also backward jumps are possible, but to a
very limited degree where creation of loops is forbidden.

eBPF comes with a helper function concept that allows
calls from an eBPF program into a well-defined set of kernel
functions. Those kernel helper functions are a fixed part of the

core kernel itself, tied to specific eBPF program types. New
program types as well as helper functions cannot be added or
extended through modular code, but must be accepted by the
upstream community first. Some of the kernel helper func-
tions are reserved for GPL-licensed BPF programs.

Besides helper functions, there is also the concept of maps
that allows for keeping state across BPF program invocations.
Maps typically act as efficient key/value store and can be
shared arbitrarily among various eBPF programs, but also be-
tween eBPF programs and user space. There are various im-
plementations of maps, such as arrays or hash tables, includ-
ing per-CPU flavors of each. LLVM contains an eBPF back
end, thus programs can be written in a C-like language, com-
piled by clang into object files, which various tools such as
perf or tc can parse and load into the kernel.

In kernel space, the bytecode sequence is verified for
safety, so that the kernel’s operation cannot be harmed due
to constructs like infinite loops, uninitialized memory, out of
bounds accesses, pointer leakages or passing wrong types into
helper functions. After verification, the kernel rewrites some
of the passed BPF instructions, for example, to access data
from the passed input context, which can be a skb in net-
working. Programs work with a limited shadowed structure
that the kernel then needs to translate internally for actual ac-
cess. After that phase, the instructions are JIT compiled by
one of the currently available eBPF JIT back ends, such as
x86 64, arm64, ppc64 or s390, so that the passed in-
structions can run with native performance.

Since work done in [5] and [2], cls bpf has gained
support for running eBPF as well, which makes cls bpf
a flexible and scalable choice as a programmable data
plane from tc layer. Generic concepts and ideas from
[25] are still preserved, that is, to provide a generic
and flexible infrastructure to tackle specific use cases.
cls bpf can be integrated with the recently introduced
sch clsact pseudo qdisc [13] that allows for cen-
tral ingress (netif receive skb core() and egress
(dev queue xmit()) hook points, and integration into
classful qdiscs such as sch htb as a usual classifier.

Recently Added Features
This section discusses recently introduced features for tc’s
cls bpf programs since publication of the first part of the
netdev paper in [14]. The discussed features are by no means

a complete enumeration, but just illustrate some of the work
that went into the upstream kernel for improving programma-
bility and infrastructure around eBPF coupled with tc.

Tunneling and Encapsulation
One major feature that has been introduced recently is the
ability to access tunneling protocols programmatically [32]
[11] [10] from eBPF. Supported protocols are vxlan, geneve,
gre, ipip. As back end infrastructure, they all use collect
metadata mode which was introduced in [18]. The funda-
mental idea is that only a single net device is needed to rep-
resent multiple tunnels, which means that information about
a particular tunnel must be passed to the related net device
encapsulating the packet. This effort was initially done for
OpenvSwitch (ovs) [18] to consolidate code between ovs
and the rest of the kernel in order to switch to a pure net de-
vice based representation of ovs virtual ports, and to be able
to scale with large number of tunnels, which was not possi-
ble for the existing net device based implementations without
dedicated net devices for each configuration.

Since this infrastructure generalized from ovs side also fits
to eBPF, helpers were added to get and set the generic BPF-
based tunnel key representation as well as tunnel options. The
structure that can be set and retrieved for BPF currently looks
as follows:

struct bpf_tunnel_key {
__u32 tunnel_id;
union {
__u32 remote_ipv4;
__u32 remote_ipv6[4];

};
__u8 tunnel_tos;
__u8 tunnel_ttl;
__u16 tunnel_ext;
__u32 tunnel_label;

};

From the BPF helpers bpf skb get tunnel key()
and bpf skb set tunnel key(), the kernel maps the
struct bpf tunnel key into a representation of struct
ip tunnel info, which is used in tunneling back ends either
to read out current settings of the given tunnel based on the
packet header on receive, or to define them to fill the packet on
transmit. The struct bpf tunnel key is kept rather generic
on purpose, so that specific members are not tied to only one
specific collect metadata back end. Due to uapi exposure, the
kernel also implements a compatibility fixup around older struct
bpf tunnel key representations. The most recent addition to
support the collect metadata interface was done for ipip via [35]
and [34], which now supports tunnels of type ipip, ipip6 and ip6ip6.
The information is carried in a struct metadata dst entry
attached to the skb, which is just a normal dst entry, but with
appended struct ip tunnel info accessed by the driver
back end.

Tunnel options on the other hand does not have a fixed
layout and extend the struct bpf tunnel key for al-
lowing to pass down specific blobs for tunnel back ends.
The eBPF helper interface is rather similar to that of tun-
nel keys, that is, bpf skb get tunnel opt() and
bpf skb get tunnel opt(). Back ends that currently
support passing tunnel options are vxlan and geneve. For the
vxlan driver, this interface allows for setting and retrieving the

group-based policy extension [29], whereas in geneve, TLV options
[20] can be passed in a programmatic manner.

eBPF programs attached to cls bpf can attach tunnel metadata
and options as in the following example [36]:

struct vxlan_metadata {
u32 gbp;

};

__section_cls_entry
int vxlan_set_tunnel(struct __sk_buff *skb)
{

struct bpf_tunnel_key key = {};
struct vxlan_metadata md;
int ret;

/* 172.16.1.100 */
key.remote_ipv4 = 0xac100164;
key.tunnel_id = 2;
key.tunnel_tos = 0;
key.tunnel_ttl = 64;

ret = bpf_skb_set_tunnel_key(skb, &key,
sizeof(key), 0);

if (ret < 0)
...

/* Set VXLAN Group Policy extension */
md.gbp = 0x800FF;
ret = bpf_skb_set_tunnel_opt(skb, &md,

sizeof(md));
if (ret < 0)
...

return TC_ACT_OK;
}

[36] provides examples for the receive part, but also demonstrates
usage on other protocols like geneve including how TLVs are passed.
In above case, the entries from the tunnel key and option are con-
stants in the code, but they could just as well be derived based on
other data, for example, coming from BPF maps shared with user
space. Having them optimized as constants in the code becomes an
option when, for example, programs are generated and compiled on
the fly by higher level orchestration systems manging containers.

Direct Packet Access
A performance optimization called direct packet access was merged
recently [33] [9] as well for cls bpf (and also XDP program
types), that allows reading and writing of skb data. Prior to that
there existed two possibilities for reading skb data and one for writ-
ing, both came with their own advantages and disadvantages.

LLVM supports the following built-ins for its eBPF back end,
that is, llvm.bpf.load.byte, llvm.bpf.load.half and
llvm.bpf.load.word. They map to BPF LD | BPD ABS
and BPF LD | BPF IND equivalents for BPF B, BPF H and
BPF W respectively, that have been carried over from cBPF mostly
for legacy reasons in order to support efficient cBPF to eBPF migra-
tions in the kernel, and as such they are the only skb-specific eBPF
instructions. Based on the given offset, JITs can implement them
quite efficiently, meaning, instructions are emitted that load from
skb->data directly instead of emitting a function call. However,
they need to call into a slow-path either if the accessed data is not
within skb headlen range or if the passed offset is negative. For
the former case, it is then required to walk skb fragmented data,
which is quite expensive given that the load is only of size between

a byte (BPF B) up to a word (BPF W) length. For the latter case
when the offset is negative, the JIT compiler needs to emit a call
to bpf internal load pointer neg helper() that loads
mentioned lengths relative to network header (SKF NET OFF) or
relative to mac header (SKF LL OFF). In any case, the loaded data
is stored in the target register in host endian order. The latter makes
it rather cumbersome to work with protocols like IPv6, in particular
since this kind of access is only limited to reading of data, thus for
scenarios where address rewrites are necessary, further overhead of
multiple data loads and endianess conversions back to network byte
order are necessary.

This limitation was addressed later on by the
bpf skb load bytes() [4] helper. The helper can be regarded
as a complementary addition to the bpf skb store bytes()
helper. It overcame the limitation that only up to 4 bytes could be
loaded at once with the LLVM built-ins, so the new helper was made
generic enough, that only the BPF stack space is the effective limi-
tation for extracting data out of the skb, and therefore costs for the
BPF helper call and bounds checks can be amortized. Optimizations
to the verifier have been added in [12], [8] to educate the verifier
that stack space memory does not need to be initialized when
passing buffers to this helper, as the bpf skb load bytes() is
filling the buffers anyway with skb data. The only restriction added
was that in case of errors, the uninitialized area must be zeroed by
the helper. Since this is only relevant when passing wrong offsets
and lengths, properly designed programs will never encounter such
issue. The bpf skb load bytes() helper stores the requested
data area in network byte order and can also deal with non-linear
skb data internally. Also, since JITs are designed to handle any
BPF helper calls, no changes to JIT compilers were needed. As a
result, bpf skb load bytes() serves as a flexible alternative
to the LLVM built-ins. The bpf skb store bytes() helper
works in a rather similar manner, only this time the programs
pass the stack buffer space along with offset and length to the
helper for storing into the skb. Furthermore, there is an option
where the skb’s hash can be invalidated or the checksum (for
CHECKSUM COMPLETE sums) be updated along the way. For
packet checksums, the options of bpf l3 csum replace(),
bpf l4 csum replace() and bpf csum diff() helpers
exists.

While bpf skb load bytes() and
bpf skb store bytes() helpers work quite well, further
performance gain can be achieved by not needing to call helpers at
all for loading and storing of skb data, and thus things like setup
of registers for the helper calls, the call itself as well as bounds
checking can be avoided altogether by making the verifier smarter
while achieving similar functionality inline. [33] and [9] address
this for read and write access by letting the verifier pattern match on
tests that check accessible room and making sure both branches do
not access beyond their probed bounds. One of the crucial aspects
of this work is that neither JIT compilers nor the LLVM back end
do need any changes to support this kind of access.

The idea of that work was to extend the shadow struct
sk buff with data and data end members, so that the ver-

ifier can convert them through normal context access into loading
skb->data directly into a register, and a computed data end
pointer. The latter sits in the skb’s control buffer coming after the
struct qdisc skb cb control buffer for the tc layer. Since
both members point into linear skb data, they are only valid as
long as that underlying buffer is not changed, for example, due
to reallocations with pskb expand head() for either uncloning
a skb or pulling in non-linear data. Consequently, the verifier
recognizes such helper function calls, since they are all listed in
bpf helper changes skb data(). The latter helps JIT com-
pilers to trigger emission of a reload of the skb->data that is

cached in a temporary register. Moreover, it helps the verifier de-
tecting that previous tests on data and data end need to be in-
validated.

The underlying mechanism is based on calling
bpf compute data end() before jumping into the BPF
program as well as calling from helpers that change the skb’s
data, thus data end is eventually always valid. The verifier
as mentioned matches against data + X > data end tests
and analyzes both paths with regards to data accesses. For the
case where data + X > data end is indeed true, the verifier
ensures that all further access is rejected. For the case where
data + X > data end is false, the verifier guarantees that all
subsequent data accesses only happen within [0, X] range and
reject any out of bounds attempts. Additionally, the verifier needs to
track register contents which are derived from the register holding
data, thus ALU operations need to be tracked for not accessing out
of bounds as well. The logic also accounts for preventing possible
arithmetical overflows, thus a maximum addressable range must not
span beyond 0xffff.

Since bpf compute data end() only assigns skb->data
+ skb headlen(skb) to data end, all access is limited to the
linear data area of the skb, which means that any access to non-
linear data would fail the data versus data end check, and pro-
grams could bail out. To overcome this limitation, a new helper was
introduced in [9] which can be called on such occasions in order to
pull non-linear data into the linear data section of the skb. As this
automatically invalidates previous bounds checks, the data versus
data end check has to be redone and would thus succeed.

The following example code demonstrates usage of direct read
access for dropping pktgen-related frames on ingress:

static inline void *
skb_data(const struct __sk_buff *skb)
{

return (void *)(long) skb->data;
}

static inline void *
skb_data_end(const struct __sk_buff *skb)
{

return (void *)(long) skb->data_end;
}

static inline const int skb_room(void)
{

return sizeof(struct eth_hdr) +
sizeof(struct iphdr) +
sizeof(struct udphdr);

}

__section_cls_entry
int dropper_main(struct __sk_buff *skb)
{

void *data_end = skb_data_end(skb);
void *data = skb_data(skb);
struct eth_hdr *eth;
struct udphdr *udp;
struct iphdr *iph;

if (data + skb_room() > data_end) {
if (bpf_skb_pull_data(skb, skb_room()))

return TC_ACT_OK;
if (data + skb_needed_room() > data_end)

return TC_ACT_OK;
}

eth = data;
if (eth->h_proto != htons(ETH_P_IP))
return TC_ACT_OK;

iph = data + sizeof(*eth);
if (iph->protocol != IPPROTO_UDP ||

iph->ihl != 5)
return TC_ACT_OK;

if (ip_is_fragment(iph))
return TC_ACT_OK;

udp = data + sizeof(*eth) + sizeof(*iph);
if (udp->dest == htons(PKTGEN_UDP_PORT))
return TC_ACT_SHOT;

return TC_ACT_OK;
}

If known based on NIC/driver characteristics that the initial data
versus data end check never fails due to the fact that enough
header space was pulled in, the bpf skb pull data() with the
second test can then be omitted, of course.

The direct write part works in a similar way, but is slightly more
complicated since the invariant needs to be ensured that during
program runtime the skb stays uncloned. Therefore once writes
are detected by the verifier, a prologue is added to the BPF in-
struction sequence which checks as a heuristic that skb->cloned
flag is set and if so, performs a bpf skb pull data() call for
the entire head length to effectively unclone the skb. Similarly,
the bpf clone redirect() helper must unclone the original
skb from the spawned cloned one. Extra helpers for adjusting
the checksum (bpf csum update()) and for clearing the hash
(bpf set hash invalid()) were added that can each be called
once after all mangling was performed. Both kind of direct accesses
can reduce overhead for programs performing actions like parsing
and packet rewriting.

Along with [9] comes also the possibility to directly access
packet data from cls bpf for helper functions, which helps to op-
timize use-cases like the ILA data plane written in eBPF as pro-
posed in [37], [38]. The idea is that instead of copying packet
data to the eBPF stack first and then passing the stack buffer to
the helper, the extra copy can be avoided by allowing the packet
data directly. Map helper functions can make use of this as well as
bpf csum diff().

Event Notifications
One of the recently added features to eBPF programs for cls bpf
is the ability to push event notifications up to user space [3]. This
feature is useful in a number of ways, for example, for sampling,
monitoring or logging of packet data or state, debugging of BPF
programs in general and pushing wake-up events to management
daemons in user space that control the BPF data plane. The idea is
very similar to [31], where the perf event array can be reused. The
push into the event-pipe is limited to only be done unidirectional
from kernel to user space, but not vice versa.

Similarly as in [31], a high-performance per-CPU mmap(2)ed
event ring buffer is utilized from the perf infrastructure to collect in-
coming events and for triggering the user process wake-ups. Wake-
ups from poll(2) can be defined whether they should i) never
happen, so the process itself would be busy-polling the rings, ii) be
triggered after each or a specified number of events, iii) be triggered
after the ring buffer has been filled up to a watermark with a given
number of bytes.

For debugging purposes, this infrastructure might be preferred
over bpf trace printk() when a high rate of events need to
be dealt with, since it is more efficient due to not needing to prepare
a printk()-like string via trace printk() facility.

Thus, a program is flexible enough to define their own structure
layout for a ring buffer slot, which means over time layouts can be
changed since not being part of the uapi. The ring buffer itself is
lockless, which allows for high event rates. In case the user space
consumer is not fast enough to process events and thus allow kernel
side to move on by updating data tail pointer, the number of
lost events are recorded as well in a ring buffer slot, so that on next
query, the daemon processing events can act accordingly.

struct bpf_elf_map __section_maps tc_events = {
.type = BPF_MAP_TYPE_PERF_EVENT_ARRAY,
.size_key = sizeof(int),
.size_value = sizeof(int),
.pinning = PIN_GLOBAL_NS,
.max_elem = __NR_CPUS__,

};

__section_cls_entry
int simple_event(struct __sk_buff *skb)
{

struct foo {
u32 mark;
...

} data = {
.mark = skb->mark,
...

};
u64 plen = 64;

bpf_event_output(skb, &tc_events, plen << 32 |
BPF_F_CURRENT_CPU,
&data, sizeof(data));

return TC_ACT_OK;
}

In above example, we can define some structure on the stack and
pass it to the bpf event output() helper. One can either pass
a specific map index or BPF F CURRENT CPU flag to use the perf
event map at the index of the current CPU number. The correspond-
ing perf event handler must be pinned to the current CPU for further
processing. Such a perf event map can have multiple users attached
at various indices. Follow-up work [15] [7] optimized the helper
further to avoid an extra stack copy for skb data, thus for the perf
event ring buffer’s raw records, support for fragmented data has been
added so that the passed stack buffer can be transferred along with
some payload data as a sample.

One heavy user of this facility is, for example, cilium [16],
which provides container networking based on BPF through tc and
cls bpf. A whole packet tracing facility has been implemented
around this helper that marks skbs going through BPF programs
generated from cilium that implement functionality such as NAT64,
scalable network policy or load balancers for containers.

JITs, Offloads and Hardening
For accelerating eBPF program execution, a number of architectures
implement a JIT compiler, which translates an eBPF program into an
executable opcode image that can be jumped into natively.

Current JITs today that have complete or mostly complete eBPF
support are x86 64, arm64, s390 and most recent addition was
ppc64 [26]. arm64 is currently missing atomic add (BPF XADD)
support for word and double words so far [28], and ppc64 does not
have support for set memory ro() and set memory rw().

The latter will not create any operability issues regarding eBPF
features, but it would be desirable if such executable pages could
be locked down as read-only, too. Both set memory * helpers
are supported through CONFG DEBUG SET MODULE RONX, which

currently appears to be more of a second class debugging citizen,
but with the help of kernel hardening project this might change [17].
The same read-only lockdown also happens for eBPF interpreter
programs during their whole lifetime [1].

As another hardening measure, eBPF JIT images have a random-
ized start address with a gap filled with trap instructions. Reason is
that with the help of other possible kernel bugs, an attacker could
spray a large enough number of JITed BPF programs into kernel
space, where the constants that are part of the user-controlled BPF
instruction sequence could contain actual CPU opcodes themselves.
Crafted in a way, so that this would still pass the kernel verifier, the
CPU, while still in kernel mode, could jump into such an interleaved
location where it would then start to execute such opcodes passed in
through constants.

This additionally requires kernel bugs from elsewhere, which
would then need to be able to trigger a jump into one of the
loaded programs. A proof-of-concept with regards to spraying was
presented by McAllister [24] in 2012, where the kernel has been
sprayed with BPF programs attached as unprivileged socket filters.
The file descriptors of these sockets have been placed into a Unix
domain socket through SCM RIGHTS, which means that while the
user space application can create and close many of such sockets,
the kernel needs to keep such file descriptors alive for other pro-
cesses to pick these up and thus they need to be maintained in kernel
space, including the BPF program. By using a tree-like structure
with AF UNIX socketpairs, a fairly sufficient number of BPF pro-
grams were sprayed into the kernel. Back then those JITed programs
allocated with module alloc() were starting at the beginning of
a page, thus that with enough programs loaded and an reduced ad-
dress search space, chances of guessing were reduced by McAllister
up to one in a fifty to make the right jump [24].

An example of such code injection from [24] by abusing the
BPF LD | BPF IMM instruction looks like:

Emit a 3-byte x86 instruction, embedded
within a BPF "load immediate". The most
significant byte of the loaded quantity
is 0xa8.

The kernel’s BPF JIT compiles a sequence
of such instructions into:

b8 XX YY ZZ a8 mov $0xa8ZZYYXX, %eax
b8 PP QQ RR a8 mov $0xa8RRQQPP, %eax
b8 [...]

Jumping one byte into this code produces
an instruction stream like:

XX YY ZZ payload instruction
a8 b8 test $0xb8, %al
PP QQ RR payload instruction
a8 b8 test $0xb8, %al
[...]

As a result, a randomized start address with a trap section helps to
make it a bit harder, but as recently shown by Reshetova [27], it does
not provide full protection when BPF programs cross page bound-
aries and the injected code being improved with nop instructions to
make the jump into the opcodes more likely to execute the crafted
payload, because we once again have parts of the program at a page
start address again.

Moreover, besides cBPF programs, eBPF programs come with a
load instruction for 64 bit constants, which would result in further
increasing injection possibilities. Since [30] these can also be run by
unprivileged users through socket filters.

To mitigate these issues, a generic constant blinding facility has
been developed [6]. The basic idea of this is that constants are
blinded out when generating the JIT image by rewriting the raw con-
stant with an xored pseudo-random number, which gets loaded as
such into a helper register. That register is then being xored again
with only the pseudo-random number used before, so that the orig-
inal raw constant is now residing in that helper register, and finally
the original BPF instruction is rewritten from being a immediate-
based into a register-based operation.

For example both mov operations below are replaced by a
mov-xor-mov sequence:

echo 0 > /proc/sys/net/core/bpf_jit_harden

ffffffffa034f5e9 + <x>:
[...]
39: mov $0xa8909090,%eax
3e: mov $0xa8909090,%eax
[...]

echo 1 > /proc/sys/net/core/bpf_jit_harden

ffffffffa034f1e5 + <x>:
[...]
39: mov $0xe1192563,%r10d
3f: xor $0x4989b5f3,%r10d
46: mov %r10d,%eax
49: mov $0xb8296d93,%r10d
4f: xor $0x10b9fd03,%r10d
56: mov %r10d,%eax
[...]

The blinding functionality itself was implemented in a way that
does not require low-level JIT changes, but instead is performed on
BPF bytecode level which is also easier to maintain. Thus when
JITing phase starts, a JIT compiler calls into related blinding helpers
and creates a clone of the program that is then blinded. While the
JIT compiler then tries to JIT the blinded BPF instruction sequence,
a fallback to the unblinded sequence is performed in case an error
(f.e. memory allocation) occurred during JITing process. That way,
the eBPF interpreter can continue with the unblinded image and also
does not need an additional helper register for these operations. The
integration of this for JITs in the most straight forward way is to just
map the BPF REG AX into an unused temporary register.

The /proc/sys/net/core/bpf jit harden sysctl
switch added along with this infrastructure comes in three operating
modes: 0 - do not blind, 1 - blind load of unprivileged programs, 2 -
blind all programs. While the latter is useful for testing, the normal
operating mode ensures that blinding on privileged programs has
zero performance overhead. The other advantage resulting from
generic blinding is that for those architectures that have an eBPF
JIT, the constant blinding takes also effect for cBPF programs,
since cBPF programs are migrated to eBPF in the kernel anyway.
Also, the performance overhead varies depending on how many
instructions are used along with immediates. It however still
provides significant performance benefits compared to execution
via interpreter [6].

With regards to offloading cls bpf programs to the NIC,
Netronome recently became the first vendor that supports offload-
ing of eBPF instructions to their smart NICs with the help of a
JIT compiler [22] [23] that translates into instructions for their pro-
grammable NFP engines. Extensive details of the design and imple-
mentation are published in [21] and therefore out of scope for this
report.

Conclusion and Future Work
As it can be seen from the recently introduced features for cls bpf
programs, the infrastructure around BPF is constantly improved and
optimized for efficiency. There are however a lot of challenges to
tackle in near to mid-term future. Some of them are further discussed
in this section.

One of them is to add support for encryption in terms of MACsec
and IPsec, so that tunneled traffic can also be secured against poten-
tial adversaries. One of the ideas at the moment is to add a similar
interface we have with collect metadata discussed in this context for
tunneling, but generic enough to accommodate various crypto back
ends.

There is currently also no sufficient support for IPv4/IPv6 frag-
mentation handling, thus work in this area is needed to make better
use of existing kernel facilities we have for dealing with fragmenta-
tion.

Usability and documentation around eBPF in general needs more
work to lower entrance barriers for writing programs. One aspect
that falls into this context as well is that for more complex programs,
verifier error logs can quickly become quite verbose as the verifier
walks all possible program paths to check for safety, which makes it
hard to find bugs in programs. Perhaps a new logging facility needs
to be designed that makes tracing issues from static analysis easier
to resolve. For example, it would be desirable, perhaps with the help
of LLVM, to annotate verifier complaints back to the original source
code location causing a particular issue.

References
[1] Borkmann, D., and Sowa, H. F. 2014. net: bpf: make ebpf inter-

preter images read-only. Linux kernel, commit 60a3b2253c41.

[2] Borkmann, D., and Starovoitov, A. 2015. cls bpf: introduce
integrated actions. Linux kernel, commit 045efa82ff56.

[3] Borkmann, D., and Starovoitov, A. 2016. bpf: add event output
helper for notifications/sampling/logging. Linux kernel, commit
bd570ff970a5.

[4] Borkmann, D. 2015a. bpf: add bpf skb load bytes helper.
Linux kernel, commit 05c74e5e53f6.

[5] Borkmann, D. 2015b. cls bpf: add initial ebpf support for pro-
grammable classifiers. Linux kernel, commit e2e9b6541dd4.

[6] Borkmann, D. 2016a. bpf: add generic constant blinding for
use in jits. Linux kernel, commit 4f3446bb809f.

[7] Borkmann, D. 2016b. bpf: avoid stack copy and use skb ctx for
event output. Linux kernel, commit 555c8a8623a3.

[8] Borkmann, D. 2016c. bpf: convert relevant helper args to
arg ptr to raw stack. Linux kernel, commit 074f528eed40.

[9] Borkmann, D. 2016d. bpf: direct packet write and access for
helpers for clsact progs. Linux kernel, commit 36bbef52c7eb.

[10] Borkmann, D. 2016e. bpf: support for access to tunnel options.
Linux kernel, commit 14ca0751c96f.

[11] Borkmann, D. 2016f. bpf: support ipv6 for
bpf skb {set,get} tunnel key. Linux kernel, commit
c6c33454072f.

[12] Borkmann, D. 2016g. bpf, verifier: add arg ptr to raw stack
type. Linux kernel, commit 435faee1aae9.

[13] Borkmann, D. 2016h. net, sched: add clsact qdisc. Linux
kernel, commit 1f211a1b929c.

[14] Borkmann, D. 2016i. On getting tc classifier fully pro-
grammable with cls bpf. Proceedings of netdev 1.1, Feb 10-12,
2016, Seville, Spain.

[15] Borkmann, D. 2016j. perf, events: add non-linear data support
for raw records. Linux kernel, commit 7e3f977edd0b.

[16] Cilium Authors, V. 2016. Cilium - bpf & xdp for containers.
https://github.com/cilium/cilium.

[17] Cook, K. 2016. Kernel self-protection. Linux kernel,
Documentation/security/self-protection.txt.

[18] Graf, T. 2016. Lightweight & flow based encapsulation. Linux
kernel, https://lwn.net/Articles/651497/.

[19] Gregg, B. 2015. ebpf: One small step. http:
//www.brendangregg.com/blog/2015-05-15/
ebpf-one-small-step.html.

[20] Gross, J.; Ganga, I.; and Sridhar, T. 2016. Gen-
eve: Generic network virtualization encapsulation.
IETF draft, https://tools.ietf.org/html/
draft-ietf-nvo3-geneve-03.

[21] Kicinski, J., and Viljoen, N. 2016. ebpf/xdp hardware offload
to smartnics. Proceedings of netdev 1.2, Oct 5-7, 2016, Tokyo,
Japan.

[22] Kicinski, J. 2016a. nfp: add bpf to nfp code translator. Linux
kernel, commit cd7df56ed3e6.

[23] Kicinski, J. 2016b. nfp: bpf: add hardware bpf offload. Linux
kernel, commit 7533fdc0f77f.

[24] McAllister, K. 2012. Attacking hardened
linux systems with kernel jit spraying. http:
//mainisusuallyafunction.blogspot.com/2012/
11/attacking-hardened-linux-systems-with.
html.

[25] Mccanne, S., and Jacobson, V. 1992. The bsd packet filter: A
new architecture for user-level packet capture. 259–269.

[26] N. Rao, N. 2016. powerpc/ebpf/jit: Implement jit compiler for
extended bpf. Linux kernel, commit 156d0e290e96.

[27] Reshetova, E. 2016. Bpf jit spray attack - proof of concept
code for modern kernel. http://www.openwall.com/
lists/kernel-hardening/2016/05/03/5.

[28] Shen Lim, Z. 2016. Arm64 ebpf jit todo list. https://
github.com/zlim/bpf#todo-arm64-ebpf.

[29] Smith, M., and Kreeger, L. 2016. Vxlan group policy
option. IETF draft, https://tools.ietf.org/html/
draft-smith-vxlan-group-policy-02.

[30] Starovoitov, A. 2015a. bpf: enable non-root ebpf programs.
Linux kernel, commit 1be7f75d1668.

[31] Starovoitov, A. 2015b. bpf: introduce bpf perf event output()
helper. Linux kernel, commit a43eec304259.

[32] Starovoitov, A. 2016a. bpf: add helpers to access tunnel meta-
data. Linux kernel, commit d3aa45ce6b94.

[33] Starovoitov, A. 2016b. bpf: direct packet access. Linux kernel,
commit 969bf05eb3ce.

[34] Starovoitov, A. 2016c. ip6 tunnel: add collect md mode to
ipv6 tunnels. Linux kernel, commit 8d79266bc48c.

[35] Starovoitov, A. 2016d. ip tunnel: add collect md mode to ipip
tunnel. Linux kernel, commit cfc7381b3002.

[36] Tu, W. 2016. samples/bpf: Add tunnel set/get tests. Linux
kernel, commit 6afb1e28b859.

[37] Yue, A. 2016a. samples/bpf: ilarouter for tc. http:
//patchwork.ozlabs.org/patch/674160/.

[38] Yue, A. 2016b. samples/bpf: ilarouter for xdp. http://
patchwork.ozlabs.org/patch/674159/.

