
Scaling With Multiple Network Namespaces in a Single Application

PJ Waskiewicz

NetApp
Portland, OR, USA

pj.waskiewicz@netapp.com

Abstract

Namespaces and containers are growing in popularity, but it
is rare for large applications to use them directly. Rather, ap-
plications rely on frameworks such as LXC (Linux Containers
Project) and/or Docker to manage the containers they run in.
This paper will focus on how large applications can utilize the
network namespace framework, and a large number of names-
paces can be used within an application to partition up the un-
derlying network infrastructure. An overview of parts of an ap-
plication architecture using namespaces will be covered, show-
ing the use cases driving the need for namespaces. Lessons
learned around scalability and performance bottlenecks in the
kernel will be shared.
Ultimately this paper will propose further improvements to the
namespace framework for better programmatic management
of namespaces within the kernel from userspace, as well as
attention to increased scalability and efficiency of networking
within the namespaces.

Keywords
networking, kernel, containers, namespaces, scaling, cloud

Introduction
The ongoing evolution of the datacenter towards cloud-based
infrastructure continues to present interesting challenges to
existing applications. These existing solutions (e.g. stor-
age appliances) work to serve multiple tenants within a com-
puting domain. However, when the infrastructure around
these solutions evolves into a cloud-based, partitioned envi-
ronment, these solutions must also evolve.

When an application has core logic that needs to span
multiple, separate network environments, it must become
container/network-namespace aware. The Linux kernel ex-
poses an API to create and manage network namespaces
within an application. This paper will focus on this API for
the following:

• How to create and manage the lifecycle of a network
namespace within a complex application

• How to track and process multiple network connections
across multiple network namespaces in an efficient and
scalable manner

• What limitations exist in this API that makes lifecycle man-
agement a challenge, along with proposals on how to im-
prove the API for better lifecycle management

• Scalability issues encountered, how these were addressed,
and proposals around scalability testing to prevent regres-
sions

The Need For Multiple Network Namespaces

Typical network-based storage applications have various lay-
ers of the core logic separated from one another. In the ex-
ample shown in Figure 1, the volume database containing
metadata mappings to underlying block or object data is com-
pletely separated from the networking core, since they share
no common functionality. Core logic for volume tracking in
one functional area, thread management in another area, the
iSCSI or Fibre Channel protocol stack handled elsewhere,
and ultimately the underlying networking being handled by
the underlying OS.

Consider a public or private cloud environment, where
”legacy” datacenter models migrate pieces of their infrastruc-
ture into that cloud environment. A typical storage applica-
tion as Figure 1 could have all storage volumes from that
legacy datacenter migrated as one tenant. However, multi-
ple tenants may have conflicting environment configurations,
such as IP address range collisions, different routing hierar-
chies, or different VLAN segregation within their respective
network domains. By creating a completely new network
stack inside of a network namespace for each of these legacy
environments, the containers can fully segregate the network
environments from one another, and avoid any changes to the
legacy datacenter configuration.

When an application architecture such as this needs to fit
into an environment where the networking is the component
that needs to support multiple containers, one can observe
that using Docker or LXC is not sufficient. They are limited
to containerizing an entire application, not pieces of an ap-
plication. Let us consider some different approaches to try
and solve this problem of supporting multiple network stacks
within an application.



Figure 1: High-level architecture of application.

Approach 1: Fork application per-network
namespace
Each network namespace that is created within an application
needs to have some mechanism to process traffic inbound and
outbound to it. One approach is after creating the namespace
and configuring it, fork() the application completely, and as-
sign a fork()’d copy to each namespace configured.

This approach has serious limitations. As shown in Figure
2, the core logic of the application needs to have added inter-
process communication (IPC) to manage the non-networking
pieces of the internals. This adds a high degree of complexity,
and impacts the entire application, instead of just the under-
lying networking pieces. In addition, applications like this
are typically complex systems, and require significant system
resources such as CPU and RAM. Having multiple copies of
the entire application running on a system is completely in-
feasible.

Figure 2: Multiple network namespaces with fork().

Approach 2: Thread per-network namespace
A different approach is to create and assign a new thread
(LWP) to each network namespace after creation. This thread
would then live in that network namespace context for its life-
time, and could process any inbound and outbound traffic to
and from the namespace.

As shown in Figure 3, this approach does not affect the
core logic of the application. It only requires a new thread

per-network namespace, and only affects the underlying net-
working core of the application. However, this approach does
not scale well with large numbers of network namespaces. In
highly complex applications that are multi-threaded, creating
dedicated worker threads for specific tasks is usually not de-
sirable. In addition, a single thread per-network namespace
severely limits the processing capabilities of that network in-
terface, especially if the underlying hardware is multiqueue-
capable.

Figure 3: Multiple network namespaces with dedicated
threads.

Approach 3: Global file descriptor per-network
namespace
A final approach (post-namespace creation) is to switch a
thread into the namespace, create a socket and bind the de-
sired listening port inside of the namespace to that socket. Be-
cause file descriptors are not specific to each network names-
pace, all threads in an application have access to these file de-
scriptors. When data needs to be read or written to a socket in
a specific namespace, the currently-running thread can switch
into that namespace context, and then access the socket using
the global file descriptor.

As illustrated by Figure 4, each network namespace stack
opens port 3260 (iSCSI), and has a file descriptor that is
unique to the system assigned to it. This file descriptor is
stored with the socket information, giving the core applica-
tion logic the ability to switch in and out of each network
namespace as needed. This does not require any additional
threads or processing units, and can allow the core logic to be
completely unaware of the underlying network segregation.

Network Namespace Management
It is critical for one to understand how to create and manage
network namespaces at a basic level[1] prior to incorporat-
ing them into an application. Once one is familiar with how
to manage network namespaces from an administrative per-
spective, then diving into the programmatic side is the next
logical step[2].

The biggest challenge with integrating network names-
paces into an existing application is managing their lifecy-
cle efficiently. Distinguishing newly-created network names-
paces from recently destroyed network namespaces, how



Figure 4: Multiple network namespaces with file descriptors.

to switch into a namespace, and how to switch to the de-
fault/base namespace, are all things that need to be managed.

Identifying Different Namespaces
One challenge with network namespace management is how
to distinguish a network namespace beyond just its name.
Each network namespace is accessed by a file descriptor re-
turned by opening /run/netns/namespace name or by opening
/proc/pid/ns/net, where pid is a process that currently lives in-
side that network namespace. In order for a complex applica-
tion to have a chance at distinguishing between namespaces,
one reference to each network namespace must be maintained
for the life of that namespace; i.e. one file descriptor for each
namespace must be maintained for all threads.

However, this is not sufficient to uniquely identify one net-
work namespace from another. If one network namespace
is destroyed and another quickly created, the file descriptor
returned from open(/run/netns/new namespace) may be the
same that was used to track the previously destroyed names-
pace. This can cause very unexpected results if the network-
ing core of the application is only using file descriptors to
track the namespaces.

The solution is to associate an additional piece of infor-
mation with the namespace descriptor to ensure a ”fairly”
safe match. By adding the mtime of the kernel handle that
/run/netns/namespace name is backed by from stat(), this can
provide sufficient granularity that very quick destruction and
addition of namespaces can be distinguished from one an-
other. The mtime in this case is the same as when the special
file was created, and is not updated by the kernel if changes
are made to the namespace. This makes it a great candidate
to help with mostly unique indentification of each namespace
along with its single file descriptor reference.

Switching Threads Between Namespaces
When using the approach in Figure 4 to create and man-
age network namespaces, it is very simple to switch into the
namespace. A simple call to open() to get the file descriptor
of the namespace is needed, then a call to setns() to switch.
Refer to Figure 5. This will switch the current thread into the
new namespace context, but it will also leave the thread in
that context.

Figure 5: Basic switching to new network namespace

If the thread needs to be left in a known state, such as re-
turning to the base or default namespace, then see Figure 6.
This assumes that PID 1 is in the default namespace of the
kernel, or the default for the PID namespace if one is being
used. If there is a different default/base namespace to return
to, then one would cache a different PID’s namespace file de-
scriptor in the same fashion.

Figure 6: Basic switching to default network namespace

Efficient Namespace Switching
In order to utilize the same threadpool for any number of net-
work namespaces, decisions need to be made when to switch
between namespaces. If the application needs to incur the
setns() system call for each network transaction in flight, the
context switching can get very expensive, and is more than
likely unnecessary. To make selective switching happen, one
needs to cache a bit more information.

At this point, the application has cached the global file de-
scriptor for each active network namespace, the global file
descriptor for the base namespace, and what namespace each
listening network port is assigned to. The last piece of in-
formation to cache is what namespace each thread is cur-
rently in. That can be stored inside thread-local storage (TLS)
for each thread in the application. Using this information,
when a socket operation needs to be performed, the names-
pace information can be pulled from the socket, and the cur-
rent namespace of the thread in TLS can be compared to the
socket’s namespace. If they are the same, the setns() call can
be avoided. Otherwise, the thread can be switched into that
network namespace’s context, and then the socket processing
can continue.

Network Namespace Scalability
Making good decisions on when to switch a thread between
namespaces is only part of the scalability story. The kernel
itself also needs to be very efficient when dealing with any
number of network namespaces, and how it performs the re-
quested switch. We observed that in older 3.x Linux kernels,
switching between namespaces had a massive performance
impact. The latency of how long a switch took increased more
than exponentially as more namespaces were added. This was
due to using RCU protection for the running task’s nsproxy,
versus using task lock() (i.e. a spin lock()). This was ad-
dressed in a patch by Eric Biederman [3], and had a drastic
improvement in performance.



Figure 7: Network namespace switching latency, close-up

In Figure 7, the namespace switching took 5 µsecs with 1
network namespace, before and after the patch. However, ap-
proaching 64 network namespaces, pre-patch took an average
of 150 µsecs per switch, where post-patch it remained around
5 µsecs. Expanding this out to 512 network namespaces, Fig-
ure 8 shows that the switching latency at 512 namespaces pre-
patch took over half a second per switch, versus post-patch,
the switching latency remains around 5 µsecs.

Figure 8: Network namespace switching latency

Proposed Improvements
The integration of network namespaces into our application
highlighted the power of Linux kernel namespaces, and how
to use them beyond single-use-per-application. However,
some workarounds were needed, as discussed in previous sec-
tions of this paper. We believe the API and exposed frame-
work can be extended to address some of these issues.

More Uniqueness
The biggest functional challenge with using multiple network
namespaces inside of an application was how to identify the

uniqueness of a namespace. As covered in Section Identi-
fying Network Namespaces, a combination of file descriptor
and mtime of the kernel special file for the namespace was
”enough” to identify it. However, in large multi-threaded ap-
plications, basing uniqueness on time is never a great idea. A
proposal is to extend the metadata for a namespace, perhaps
through exposing additional information in /proc, that would
identify a namespace with a UUID, or something equally
unique. This way the kernel can provide something meant
to identify resources from each other, rather than overloading
other metadata and hoping for the best.

Performance Regression Testing
As is shown in both Figures 7 and 8, such a small change
in the patchset [3] can have a massive impact on scalability.
This latency would also not be observed in more traditional
container frameworks, since an application is started, moved
into its namespace, and lives in that context for the duration of
its lifetime. The kernel may observe internal latencies when
scheduling that process, but the application would see no la-
tency impact.

Improvements can be made in the kernel build framework
to include latency regression tests, much like the RCU torture
tests. While this would not necessarily be executed inline as
part of a kernel build, it would include necessary framework
to provide unit tests to detect if something regressed when
someone decided to run the tests.

Conclusion
The network namespace API in the Linux kernel provides a
very powerful framework for application developers. It al-
lows large applications that need to span multiple network
namespaces to not require complete architectural upheavals
of core logic outside of the networking layers. Using some
clever tricks and techniques, the namespace switching and
lifecycle management can be very efficient. Moving forward,
we believe there is still more that can be done to improve this
API, and make it even more powerful as containers continue
to grow in popularity and wide-spread deployment across the
computing industry.

Acknowledgments
We would like to acknowledge the engineers who contributed
to this network namespace application design: Carl Seelye,
Marshall McMullen, Jared Cantwell, Tom Distler, and Joe
Roback.

We would also like to acknowledge the Netdev1.2 selection
committee for inviting us to submit and present this paper.

References
[1] Jake Edge 2014. Namespaces in operation, part 7: Net-

work namespaces. https://lwn.net/Articles/580893/

[2] Linux man-pages project 2016. setns(2) manpage,
Linux Programmer’s Manual. http://man7.org/linux/man-
pages/man2/setns.2.html

[3] Eric Biederman 2014. namespaces: Use
task lock and not rcu to protect nsproxy.



https://lists.linuxfoundation.org/pipermail/containers/2014-
July/034787.html

Author Biography
PJ Waskiewicz is a Principal Software Engineer at NetApp in
the SolidFire division. Prior to SolidFire/NetApp, PJ worked
for many years as a network kernel engineer and device driver
developer in the Networking Division of Intel. There he
maintained and helped create the igb, ixgbe, and i40e wired
Ethernet network drivers, the initial Tx multiqueue support
in the Linux kernel network stack, and added Data Center
Bridging support to the Linux kernel. He also worked in In-
tel’s Open Source Technology Center on the x86 kernel tree,
enabling advanced features in the Broadwell and Skylake mi-
croarchitectures.


