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What is Suricata

IDS and IPS engine
Get it here:
http://www.suricata-ids.org

Open Source (GPLv2)
Initially publicly funded, now funded by
consortium members
Run by Open Information Security
Foundation (OISF)
More information about OISF at
http://www.
openinfosecfoundation.org/
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Suricata Features

High performance, scalable through multi threading
Advanced Protocol handling

Protocol recognition
Protocol analysis: field extraction, filtering keywords
Transaction logging in extensible JSON format

File identification, extraction, on the fly MD5 calculation
HTTP
SMTP

TLS handshake analysis, detect/prevent things like Diginotar
Lua scripting for detection
Hardware acceleration support:

Endace
Napatech,
CUDA
PF_RING
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A typical signature example

Signature example: Chat facebook

a l e r t h t t p $HOME_NET any −> $EXTERNAL_NET any \
(
msg : "ET CHAT Facebook Chat about netdev " ; \
f l ow : es tab l ished , to_server ; content : "POST" ; http_method ; \
content : " / a jax / chat / send . php " ; h t t p _ u r i ; content : " facebook . com" ; h t tp_hos t ; \
content : " netdev " ; h t t p_c l i en t_body ;
re ference : u r l ,www. emerg ingthreats . net / cgi−bin / cvsweb . cg i / s igs / POLICY / POLICY_Facebook_Chat ; \
s i d :2010784; rev : 4 ; \

)

This signature tests:
The HTTP method: POST
The page: /ajax/chat/send.php
The domain: facebook.com
The body content: netdev
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No passthrough

All signatures are inspected
Different from a firewall
More than 15000 signatures in standard rulesets

Optimization on detection engine
Tree pre filtering approach to limit the set of signatures to test
Multi pattern matching on some buffers
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CPU intensive
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Perf top
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Scalability

Bandwith per core is limited
From 150Mb/s
To 500Mb/s

Scaling
Using RSS
Splitting load on workers
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AF_PACKET

Linux raw socket
Raw packet capture method
Socket based or mmap based

Fanout mode
Load balancing over multiple sockets
Multiple load balancing functions

Flow based
CPU based
RSS based
eBPF based
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Suricata workers mode
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Load balancing and hash symmetry

Stream reconstruction
Using packets sniffed from
network
to reconstruct TCP stream
as seen by remote
application

Non symmetrical hash break
Out of order packets

Effect of non symmetrical
hash
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Broken symmetry

History
T. Herbert introduce asymmetrical hash function in flow

Kernel 4.2

Users did start to complain
And our quest did begin
Fixed in 4.6 and pushed to stable by David S. Miller

Intel NIC RSS hash
XL510 hash is not symmetrical
XL710 could be symmetrical

Hardware is capable
Driver does not allow it
Patch proposed by Victor Julien
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eBPF cluster

Userspace to the rescue
Program your own hash function in userspace
Available since Linux 4.3
Developed by Willem de Bruijn
Using eBPF infrastructure by Alexei Storovoitov

eBPF cinematic
Syscall to load the BPF code in kernel
Setsockopt to set returned fd as cluster BPF
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The big flow problem

Ring buffer overrun
Limited sized ring buffer
Overrun cause packets loss
that cause streaming malfunction

Bypassing big flow
Limiting treatment time at maximum
Stopping it earlier as possible

local bypass: Suricata limit handling
capture bypass: interaction with lower layer
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Stream depth

Attacks characteristic
In most cases attack is done at start of TCP session
Generation of requests prior to attack is not common
Multiple requests are often not even possible on same TCP
session

Stream reassembly depth
Suricata reassemble TCP sessions till
stream.reassembly.depth bytes.
Stream is not analyzed once limit is reached
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Introducing bypass

Principle
No need to get packet from kernel after stream depth is reached
If there is

no file store
or other operation

Usage
Set stream.bypass option to yes in Suricata config file to bypass
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Selective bypass

Ignore some traffic
Ignore intensive traffic like Netflix
Can be done independently of stream depth
Can be done using generic or custom signatures

The bypass keyword
A new bypass signature keyword
Trigger bypass when signature match
Example of signature

a l e r t h t t p any any −> any any ( content : " netdevconf . org " ; \ \
h t tp_hos t ; bypass ; s id :6666; rev : 1 ; )
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Implementation

Suricata update
Add callback function
Capture method register itself and provide a callback
Suricata calls callback when it wants to offload

Coded for NFQ
Update capture register function
Written callback function

Set a mark with respect to a mask on packet
Mark is set on packet when issuing the verdict
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And now AF_PACKET

What’s needed
Suricata to tell kernel to ignore flows
Kernel system able to

Maintain a list of flow entries
Discard packets belonging to flows in the list
Update from userspace

nftables is too late even in ingress

eBPF filter using maps
eBPF introduce maps
Different data structures

Hash, array, . . .
Update and fetch from userspace

Looks good!
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eBPF usage

Handling code
Need to generate code
Load code
Address code from Suricata

Interact with code
Add elements in hash table
Query elements
Delete elements
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LLVM backend

From C file to eBPF code
Write C code
Use eBPF LLVM backend (since LLVM 3.7)
Get ELF file
Extract and load section in kernel
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BCC: BPF Compiler Collection

A complete framework
Instrument eBPF filter
Multi language

Python
Lua
C++

Transparent handling of kernel interaction

Cinematic
eBPF C code is a side file or integrated into code
C code is dynamically built when script is started
It is injected to kernel
Post processing is done
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Importing mechanism

Syscall to load the object inside kernel
A file descriptor is returned
It can be used by setsockopt to define the cluster using provided fd
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Suricata eBPF cluster

Initial version
LLVM backend
Using libelf to load object

Time saver
Debug message from kernel eBPF code
bpt_trace_printk() function
cat /sys/kernel/tracing/trace
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AF_PACKET bypass

Logic is the same
Using eBPF filter this time
Syscall to load eBPF
Linking via setsockopt
Need to use a eBPF map of type hash

Here comes the map
Map is used by kernel and userspace
eBPF file can’t contain absolute reference
Maps must be created by userspace
Relocation must be done in ELF file

Game Over
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Switch to libbpf

Library from tools/lib/bpf
Provide high level function to load eBPF elf file
Create maps for user
Do the relocation

Sample usage

s t r u c t bp f_ob jec t ∗bpfob j = bpf_object__open ( path ) ;
bpf_ob jec t__ load ( bp fob j ) ;
pfd = bpf_program__fd ( bpfprog ) ;
/∗ s to re the map i n our ar ray ∗ /
bpf_map__for_each (map, bp fob j ) {

map_array [ l a s t ] . fd = bpf_map__fd (map ) ;
map_array [ l a s t ] . name = st rdup ( bpf_map__name (map ) ) ;
l a s t ++;

}

É. Leblond (Stamus Networks) The adventures of a Suricate in eBPF land Oct. 6, 2016 26 / 41



Libbpf implementation

libbpf is work in progress
Not network ready
Missing a few filter types
Missing functions to interact

Patchset in progress
Cleaning of initially proposed code
Adding missing features
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Kernel code and exchange structure

s t r u c t p a i r {
u i n t 64_ t t ime ;
u i n t64_ t packets ;
u i n t 64_ t bytes ;

} ;

s t r u c t bpf_map_def SEC( "maps" ) f low_tab le_v4 = {
. type = BPF_MAP_TYPE_HASH,
. key_size = s i z e o f ( s t r u c t f lowv4_keys ) ,
. va lue_s ize = s i z e o f ( s t r u c t p a i r ) ,
. max_entr ies = 32768 ,

} ;

value = bpf_map_lookup_elem(& f low_tab le_v4 , &tup l e ) ;
i f ( value ) {

__sync_fetch_and_add (& value−>packets , 1 ) ;
__sync_fetch_and_add (& value−>bytes , skb−>len ) ;
value−>t ime = bpf_kt ime_get_ns ( ) ;
r e t u r n 0 ;

}
r e t u r n −1;
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Sharing data

Data is updated with stats
Getting last flow activity time allow Suricata to handle timeout
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Userspace code

s t r u c t f lowv4_keys {
__be32 src ;
__be32 dst ;
union {

__be32 por t s ;
__be16 por t16 [ 2 ] ;

} ;
__u32 ip_p ro to ;

} ;

wh i le ( bpf_map__get_next_key ( mapfd , &key , &next_key ) == 0) {
bpf_map__lookup_elem ( mapfd , &key , &value ) ;
c lock_get t ime (CLOCK_MONOTONIC, &cur t ime ) ;
i f ( cur t ime−>tv_sec ∗ 1000000000 − value . t ime > BYPASSED_FLOW_TIMEOUT) {

f l ows ta t s −>count ++;
f l ows ta t s −>packets += value . packets ;
f l ows ta t s −>bytes += value . bytes ;
bpf_map__delete_elem ( fd , key ) ;

}
key = next_key ;

}
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Japan and IPv6

Got to be ready
This is KAME land: http://www.kame.net/
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IPv6 bypass

IPv6 is the same as IPv4
Same algorithm
Second hash table using IPv6 tuple

Really ?
Parsing is a bit different due to next header
IPv6 hash table is failing to load in kernel
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Let’s call a friend

The exercise of adding the egress counterpart and IPv6 support is left to the
reader

Daniel Borkmann in tc_bpf.8
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IPv6 bypass

Two hash tables
A bug in libbpf
Invalid offset computation of map definition
Fixed by mimic tc_bpf.c code (thanks Daniel Borkmann)

IPv6 parsing
For now, sending weird packets to userspace
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Test methodology

Test setup
Intel(R) Xeon(R) CPU E5-2680 0 @ 2.70GHz
Intel Corporation 82599ES 10-Gigabit SFI/SFP+
Live traffic:

Around 1Gbps to 2Gbps
Real users so not reproducible

Tests
One hour long run
Different stream depth values
Collected Suricata statistics counters (JSON export)
Graphs done via Timelion
(https://www.elastic.co/blog/timelion-timeline)
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Results: bypass at 1mb
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Results: bypass at 512kb
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A few words on graphics

Tests at 1mb
Mark show some really
high rate bypass
Potentialy a big high speed
flow

Tests at 512kb
We have on big flow that
kill the bandwidth
Capture get almost null
Even number of closed
bypassed flows is low
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AF_PACKET bypass and your CPU is peaceful
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Conclusion

Suricata and eBPF
A fresh but interesting method
Bypass looks promising
More tests to come

More information
Suricata: http://www.suricata-ids.org/
Suricon, Nov. 16, Washington DC: http://www.suricon.net/
Stamus Networks: https://www.stamus-networks.com/
Suricata eBPF code:
https://github.com/regit/suricata/tree/ebpf-3.8

Libbpf update: https:
//github.com/regit/linux/tree/libbpf-network-v5
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Questions ?

Thanks to
Alexei Storovoitov
Daniel Borkmann
David S. Miller

Contact me
Mail: eleblond@stamus-
networks.com
Twitter: @regiteric

More information
Suricata eBPF code: https:
//github.com/regit/
suricata/tree/ebpf-3.8
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