
The adventures of a Suricate in eBPF land

É. Leblond

Stamus Networks

Oct. 6, 2016

É. Leblond (Stamus Networks) The adventures of a Suricate in eBPF land Oct. 6, 2016 1 / 41

1 Introduction to Suricata
What’s this ?
A few words on performance

2 Suricata meets eBPF
AF_PACKET
Interest of bypass

3 eBPF technology

4 eBPF cluster or the start of the travel

5 eBPF bypass or lost in translation

6 Some results

7 Conclusion

É. Leblond (Stamus Networks) The adventures of a Suricate in eBPF land Oct. 6, 2016 1 / 41

What is Suricata

IDS and IPS engine
Get it here:
http://www.suricata-ids.org

Open Source (GPLv2)
Initially publicly funded, now funded by
consortium members
Run by Open Information Security
Foundation (OISF)
More information about OISF at
http://www.
openinfosecfoundation.org/

É. Leblond (Stamus Networks) The adventures of a Suricate in eBPF land Oct. 6, 2016 2 / 41

http://www.suricata-ids.org
http://www.openinfosecfoundation.org/
http://www.openinfosecfoundation.org/

Suricata Features

High performance, scalable through multi threading
Advanced Protocol handling

Protocol recognition
Protocol analysis: field extraction, filtering keywords
Transaction logging in extensible JSON format

File identification, extraction, on the fly MD5 calculation
HTTP
SMTP

TLS handshake analysis, detect/prevent things like Diginotar
Lua scripting for detection
Hardware acceleration support:

Endace
Napatech,
CUDA
PF_RING

É. Leblond (Stamus Networks) The adventures of a Suricate in eBPF land Oct. 6, 2016 3 / 41

A typical signature example

Signature example: Chat facebook

a l e r t h t t p $HOME_NET any −> $EXTERNAL_NET any \
(
msg : "ET CHAT Facebook Chat about netdev " ; \
f l ow : es tab l ished , to_server ; content : "POST" ; http_method ; \
content : " / a jax / chat / send . php " ; h t t p _ u r i ; content : " facebook . com" ; h t tp_hos t ; \
content : " netdev " ; h t t p_c l i en t_body ;
re ference : u r l ,www. emerg ingthreats . net / cgi−bin / cvsweb . cg i / s igs / POLICY / POLICY_Facebook_Chat ; \
s i d :2010784; rev : 4 ; \

)

This signature tests:
The HTTP method: POST
The page: /ajax/chat/send.php
The domain: facebook.com
The body content: netdev

É. Leblond (Stamus Networks) The adventures of a Suricate in eBPF land Oct. 6, 2016 4 / 41

No passthrough

All signatures are inspected
Different from a firewall
More than 15000 signatures in standard rulesets

Optimization on detection engine
Tree pre filtering approach to limit the set of signatures to test
Multi pattern matching on some buffers

É. Leblond (Stamus Networks) The adventures of a Suricate in eBPF land Oct. 6, 2016 5 / 41

CPU intensive

É. Leblond (Stamus Networks) The adventures of a Suricate in eBPF land Oct. 6, 2016 6 / 41

Perf top

É. Leblond (Stamus Networks) The adventures of a Suricate in eBPF land Oct. 6, 2016 7 / 41

Scalability

Bandwith per core is limited
From 150Mb/s
To 500Mb/s

Scaling
Using RSS
Splitting load on workers

É. Leblond (Stamus Networks) The adventures of a Suricate in eBPF land Oct. 6, 2016 8 / 41

1 Introduction to Suricata
What’s this ?
A few words on performance

2 Suricata meets eBPF
AF_PACKET
Interest of bypass

3 eBPF technology

4 eBPF cluster or the start of the travel

5 eBPF bypass or lost in translation

6 Some results

7 Conclusion

É. Leblond (Stamus Networks) The adventures of a Suricate in eBPF land Oct. 6, 2016 8 / 41

AF_PACKET

Linux raw socket
Raw packet capture method
Socket based or mmap based

Fanout mode
Load balancing over multiple sockets
Multiple load balancing functions

Flow based
CPU based
RSS based
eBPF based

É. Leblond (Stamus Networks) The adventures of a Suricate in eBPF land Oct. 6, 2016 9 / 41

AF_PACKET

Linux raw socket
Raw packet capture method
Socket based or mmap based

Fanout mode
Load balancing over multiple sockets
Multiple load balancing functions

Flow based
CPU based
RSS based
eBPF based

É. Leblond (Stamus Networks) The adventures of a Suricate in eBPF land Oct. 6, 2016 9 / 41

Suricata workers mode

É. Leblond (Stamus Networks) The adventures of a Suricate in eBPF land Oct. 6, 2016 10 / 41

Load balancing and hash symmetry

Stream reconstruction
Using packets sniffed from
network
to reconstruct TCP stream
as seen by remote
application

Non symmetrical hash break
Out of order packets

Effect of non symmetrical
hash

É. Leblond (Stamus Networks) The adventures of a Suricate in eBPF land Oct. 6, 2016 11 / 41

Broken symmetry

History
T. Herbert introduce asymmetrical hash function in flow

Kernel 4.2

Users did start to complain
And our quest did begin
Fixed in 4.6 and pushed to stable by David S. Miller

Intel NIC RSS hash
XL510 hash is not symmetrical
XL710 could be symmetrical

Hardware is capable
Driver does not allow it
Patch proposed by Victor Julien

É. Leblond (Stamus Networks) The adventures of a Suricate in eBPF land Oct. 6, 2016 12 / 41

Broken symmetry

History
T. Herbert introduce asymmetrical hash function in flow

Kernel 4.2

Users did start to complain
And our quest did begin
Fixed in 4.6 and pushed to stable by David S. Miller

Intel NIC RSS hash
XL510 hash is not symmetrical
XL710 could be symmetrical

Hardware is capable
Driver does not allow it
Patch proposed by Victor Julien

É. Leblond (Stamus Networks) The adventures of a Suricate in eBPF land Oct. 6, 2016 12 / 41

eBPF cluster

Userspace to the rescue
Program your own hash function in userspace
Available since Linux 4.3
Developed by Willem de Bruijn
Using eBPF infrastructure by Alexei Storovoitov

eBPF cinematic
Syscall to load the BPF code in kernel
Setsockopt to set returned fd as cluster BPF

É. Leblond (Stamus Networks) The adventures of a Suricate in eBPF land Oct. 6, 2016 13 / 41

The big flow problem

Ring buffer overrun
Limited sized ring buffer
Overrun cause packets loss
that cause streaming malfunction

Bypassing big flow
Limiting treatment time at maximum
Stopping it earlier as possible

local bypass: Suricata limit handling
capture bypass: interaction with lower layer

É. Leblond (Stamus Networks) The adventures of a Suricate in eBPF land Oct. 6, 2016 14 / 41

Stream depth

Attacks characteristic
In most cases attack is done at start of TCP session
Generation of requests prior to attack is not common
Multiple requests are often not even possible on same TCP
session

Stream reassembly depth
Suricata reassemble TCP sessions till
stream.reassembly.depth bytes.
Stream is not analyzed once limit is reached

É. Leblond (Stamus Networks) The adventures of a Suricate in eBPF land Oct. 6, 2016 15 / 41

Introducing bypass

Principle
No need to get packet from kernel after stream depth is reached
If there is

no file store
or other operation

Usage
Set stream.bypass option to yes in Suricata config file to bypass

É. Leblond (Stamus Networks) The adventures of a Suricate in eBPF land Oct. 6, 2016 16 / 41

Selective bypass

Ignore some traffic
Ignore intensive traffic like Netflix
Can be done independently of stream depth
Can be done using generic or custom signatures

The bypass keyword
A new bypass signature keyword
Trigger bypass when signature match
Example of signature

a l e r t h t t p any any −> any any (content : " netdevconf . org " ; \ \
h t tp_hos t ; bypass ; s id :6666; rev : 1 ;)

É. Leblond (Stamus Networks) The adventures of a Suricate in eBPF land Oct. 6, 2016 17 / 41

Selective bypass

Ignore some traffic
Ignore intensive traffic like Netflix
Can be done independently of stream depth
Can be done using generic or custom signatures

The bypass keyword
A new bypass signature keyword
Trigger bypass when signature match
Example of signature

a l e r t h t t p any any −> any any (content : " netdevconf . org " ; \ \
h t tp_hos t ; bypass ; s id :6666; rev : 1 ;)

É. Leblond (Stamus Networks) The adventures of a Suricate in eBPF land Oct. 6, 2016 17 / 41

Implementation

Suricata update
Add callback function
Capture method register itself and provide a callback
Suricata calls callback when it wants to offload

Coded for NFQ
Update capture register function
Written callback function

Set a mark with respect to a mask on packet
Mark is set on packet when issuing the verdict

É. Leblond (Stamus Networks) The adventures of a Suricate in eBPF land Oct. 6, 2016 18 / 41

Implementation

Suricata update
Add callback function
Capture method register itself and provide a callback
Suricata calls callback when it wants to offload

Coded for NFQ
Update capture register function
Written callback function

Set a mark with respect to a mask on packet
Mark is set on packet when issuing the verdict

É. Leblond (Stamus Networks) The adventures of a Suricate in eBPF land Oct. 6, 2016 18 / 41

And now AF_PACKET

What’s needed
Suricata to tell kernel to ignore flows
Kernel system able to

Maintain a list of flow entries
Discard packets belonging to flows in the list
Update from userspace

nftables is too late even in ingress

eBPF filter using maps
eBPF introduce maps
Different data structures

Hash, array, . . .
Update and fetch from userspace

Looks good!

É. Leblond (Stamus Networks) The adventures of a Suricate in eBPF land Oct. 6, 2016 19 / 41

And now AF_PACKET

What’s needed
Suricata to tell kernel to ignore flows
Kernel system able to

Maintain a list of flow entries
Discard packets belonging to flows in the list
Update from userspace

nftables is too late even in ingress

eBPF filter using maps
eBPF introduce maps
Different data structures

Hash, array, . . .
Update and fetch from userspace

Looks good!

É. Leblond (Stamus Networks) The adventures of a Suricate in eBPF land Oct. 6, 2016 19 / 41

1 Introduction to Suricata
What’s this ?
A few words on performance

2 Suricata meets eBPF
AF_PACKET
Interest of bypass

3 eBPF technology

4 eBPF cluster or the start of the travel

5 eBPF bypass or lost in translation

6 Some results

7 Conclusion

É. Leblond (Stamus Networks) The adventures of a Suricate in eBPF land Oct. 6, 2016 19 / 41

eBPF usage

Handling code
Need to generate code
Load code
Address code from Suricata

Interact with code
Add elements in hash table
Query elements
Delete elements

É. Leblond (Stamus Networks) The adventures of a Suricate in eBPF land Oct. 6, 2016 20 / 41

LLVM backend

From C file to eBPF code
Write C code
Use eBPF LLVM backend (since LLVM 3.7)
Get ELF file
Extract and load section in kernel

É. Leblond (Stamus Networks) The adventures of a Suricate in eBPF land Oct. 6, 2016 21 / 41

BCC: BPF Compiler Collection

A complete framework
Instrument eBPF filter
Multi language

Python
Lua
C++

Transparent handling of kernel interaction

Cinematic
eBPF C code is a side file or integrated into code
C code is dynamically built when script is started
It is injected to kernel
Post processing is done

É. Leblond (Stamus Networks) The adventures of a Suricate in eBPF land Oct. 6, 2016 22 / 41

1 Introduction to Suricata
What’s this ?
A few words on performance

2 Suricata meets eBPF
AF_PACKET
Interest of bypass

3 eBPF technology

4 eBPF cluster or the start of the travel

5 eBPF bypass or lost in translation

6 Some results

7 Conclusion

É. Leblond (Stamus Networks) The adventures of a Suricate in eBPF land Oct. 6, 2016 22 / 41

Importing mechanism

Syscall to load the object inside kernel
A file descriptor is returned
It can be used by setsockopt to define the cluster using provided fd

É. Leblond (Stamus Networks) The adventures of a Suricate in eBPF land Oct. 6, 2016 23 / 41

Suricata eBPF cluster

Initial version
LLVM backend
Using libelf to load object

Time saver
Debug message from kernel eBPF code
bpt_trace_printk() function
cat /sys/kernel/tracing/trace

É. Leblond (Stamus Networks) The adventures of a Suricate in eBPF land Oct. 6, 2016 24 / 41

Suricata eBPF cluster

Initial version
LLVM backend
Using libelf to load object

Time saver
Debug message from kernel eBPF code
bpt_trace_printk() function
cat /sys/kernel/tracing/trace

É. Leblond (Stamus Networks) The adventures of a Suricate in eBPF land Oct. 6, 2016 24 / 41

1 Introduction to Suricata
What’s this ?
A few words on performance

2 Suricata meets eBPF
AF_PACKET
Interest of bypass

3 eBPF technology

4 eBPF cluster or the start of the travel

5 eBPF bypass or lost in translation

6 Some results

7 Conclusion

É. Leblond (Stamus Networks) The adventures of a Suricate in eBPF land Oct. 6, 2016 24 / 41

AF_PACKET bypass

Logic is the same
Using eBPF filter this time
Syscall to load eBPF
Linking via setsockopt
Need to use a eBPF map of type hash

Here comes the map
Map is used by kernel and userspace
eBPF file can’t contain absolute reference
Maps must be created by userspace
Relocation must be done in ELF file

Game Over

É. Leblond (Stamus Networks) The adventures of a Suricate in eBPF land Oct. 6, 2016 25 / 41

AF_PACKET bypass

Logic is the same
Using eBPF filter this time
Syscall to load eBPF
Linking via setsockopt
Need to use a eBPF map of type hash

Here comes the map
Map is used by kernel and userspace
eBPF file can’t contain absolute reference
Maps must be created by userspace
Relocation must be done in ELF file

Game Over

É. Leblond (Stamus Networks) The adventures of a Suricate in eBPF land Oct. 6, 2016 25 / 41

Switch to libbpf

Library from tools/lib/bpf
Provide high level function to load eBPF elf file
Create maps for user
Do the relocation

Sample usage

s t r u c t bp f_ob jec t ∗bpfob j = bpf_object__open (path) ;
bpf_ob jec t__ load (bp fob j) ;
pfd = bpf_program__fd (bpfprog) ;
/∗ s to re the map i n our ar ray ∗ /
bpf_map__for_each (map, bp fob j) {

map_array [l a s t] . fd = bpf_map__fd (map) ;
map_array [l a s t] . name = st rdup (bpf_map__name (map)) ;
l a s t ++;

}

É. Leblond (Stamus Networks) The adventures of a Suricate in eBPF land Oct. 6, 2016 26 / 41

Libbpf implementation

libbpf is work in progress
Not network ready
Missing a few filter types
Missing functions to interact

Patchset in progress
Cleaning of initially proposed code
Adding missing features

É. Leblond (Stamus Networks) The adventures of a Suricate in eBPF land Oct. 6, 2016 27 / 41

Kernel code and exchange structure

s t r u c t p a i r {
u i n t 64_ t t ime ;
u i n t64_ t packets ;
u i n t 64_ t bytes ;

} ;

s t r u c t bpf_map_def SEC("maps") f low_tab le_v4 = {
. type = BPF_MAP_TYPE_HASH,
. key_size = s i z e o f (s t r u c t f lowv4_keys) ,
. va lue_s ize = s i z e o f (s t r u c t p a i r) ,
. max_entr ies = 32768 ,

} ;

value = bpf_map_lookup_elem(& f low_tab le_v4 , &tup l e) ;
i f (value) {

__sync_fetch_and_add (& value−>packets , 1) ;
__sync_fetch_and_add (& value−>bytes , skb−>len) ;
value−>t ime = bpf_kt ime_get_ns () ;
r e t u r n 0 ;

}
r e t u r n −1;

É. Leblond (Stamus Networks) The adventures of a Suricate in eBPF land Oct. 6, 2016 28 / 41

Sharing data

Data is updated with stats
Getting last flow activity time allow Suricata to handle timeout

É. Leblond (Stamus Networks) The adventures of a Suricate in eBPF land Oct. 6, 2016 29 / 41

Userspace code

s t r u c t f lowv4_keys {
__be32 src ;
__be32 dst ;
union {

__be32 por t s ;
__be16 por t16 [2] ;

} ;
__u32 ip_p ro to ;

} ;

wh i le (bpf_map__get_next_key (mapfd , &key , &next_key) == 0) {
bpf_map__lookup_elem (mapfd , &key , &value) ;
c lock_get t ime (CLOCK_MONOTONIC, &cur t ime) ;
i f (cur t ime−>tv_sec ∗ 1000000000 − value . t ime > BYPASSED_FLOW_TIMEOUT) {

f l ows ta t s −>count ++;
f l ows ta t s −>packets += value . packets ;
f l ows ta t s −>bytes += value . bytes ;
bpf_map__delete_elem (fd , key) ;

}
key = next_key ;

}

É. Leblond (Stamus Networks) The adventures of a Suricate in eBPF land Oct. 6, 2016 30 / 41

Japan and IPv6

Got to be ready
This is KAME land: http://www.kame.net/

É. Leblond (Stamus Networks) The adventures of a Suricate in eBPF land Oct. 6, 2016 31 / 41

http://www.kame.net/

IPv6 bypass

IPv6 is the same as IPv4
Same algorithm
Second hash table using IPv6 tuple

Really ?
Parsing is a bit different due to next header
IPv6 hash table is failing to load in kernel

É. Leblond (Stamus Networks) The adventures of a Suricate in eBPF land Oct. 6, 2016 32 / 41

IPv6 bypass

IPv6 is the same as IPv4
Same algorithm
Second hash table using IPv6 tuple

Really ?
Parsing is a bit different due to next header
IPv6 hash table is failing to load in kernel

É. Leblond (Stamus Networks) The adventures of a Suricate in eBPF land Oct. 6, 2016 32 / 41

Let’s call a friend

The exercise of adding the egress counterpart and IPv6 support is left to the
reader

Daniel Borkmann in tc_bpf.8

É. Leblond (Stamus Networks) The adventures of a Suricate in eBPF land Oct. 6, 2016 33 / 41

IPv6 bypass

Two hash tables
A bug in libbpf
Invalid offset computation of map definition
Fixed by mimic tc_bpf.c code (thanks Daniel Borkmann)

IPv6 parsing
For now, sending weird packets to userspace

É. Leblond (Stamus Networks) The adventures of a Suricate in eBPF land Oct. 6, 2016 34 / 41

1 Introduction to Suricata
What’s this ?
A few words on performance

2 Suricata meets eBPF
AF_PACKET
Interest of bypass

3 eBPF technology

4 eBPF cluster or the start of the travel

5 eBPF bypass or lost in translation

6 Some results

7 Conclusion

É. Leblond (Stamus Networks) The adventures of a Suricate in eBPF land Oct. 6, 2016 34 / 41

Test methodology

Test setup
Intel(R) Xeon(R) CPU E5-2680 0 @ 2.70GHz
Intel Corporation 82599ES 10-Gigabit SFI/SFP+
Live traffic:

Around 1Gbps to 2Gbps
Real users so not reproducible

Tests
One hour long run
Different stream depth values
Collected Suricata statistics counters (JSON export)
Graphs done via Timelion
(https://www.elastic.co/blog/timelion-timeline)

É. Leblond (Stamus Networks) The adventures of a Suricate in eBPF land Oct. 6, 2016 35 / 41

https://www.elastic.co/blog/timelion-timeline

Results: bypass at 1mb

É. Leblond (Stamus Networks) The adventures of a Suricate in eBPF land Oct. 6, 2016 36 / 41

Results: bypass at 512kb

É. Leblond (Stamus Networks) The adventures of a Suricate in eBPF land Oct. 6, 2016 37 / 41

A few words on graphics

Tests at 1mb
Mark show some really
high rate bypass
Potentialy a big high speed
flow

Tests at 512kb
We have on big flow that
kill the bandwidth
Capture get almost null
Even number of closed
bypassed flows is low

É. Leblond (Stamus Networks) The adventures of a Suricate in eBPF land Oct. 6, 2016 38 / 41

AF_PACKET bypass and your CPU is peaceful

É. Leblond (Stamus Networks) The adventures of a Suricate in eBPF land Oct. 6, 2016 39 / 41

1 Introduction to Suricata
What’s this ?
A few words on performance

2 Suricata meets eBPF
AF_PACKET
Interest of bypass

3 eBPF technology

4 eBPF cluster or the start of the travel

5 eBPF bypass or lost in translation

6 Some results

7 Conclusion

É. Leblond (Stamus Networks) The adventures of a Suricate in eBPF land Oct. 6, 2016 39 / 41

Conclusion

Suricata and eBPF
A fresh but interesting method
Bypass looks promising
More tests to come

More information
Suricata: http://www.suricata-ids.org/
Suricon, Nov. 16, Washington DC: http://www.suricon.net/
Stamus Networks: https://www.stamus-networks.com/
Suricata eBPF code:
https://github.com/regit/suricata/tree/ebpf-3.8

Libbpf update: https:
//github.com/regit/linux/tree/libbpf-network-v5

É. Leblond (Stamus Networks) The adventures of a Suricate in eBPF land Oct. 6, 2016 40 / 41

http://www.suricata-ids.org/
http://www.suricon.net/
https://www.stamus-networks.com/
https://github.com/regit/suricata/tree/ebpf-3.8
https://github.com/regit/linux/tree/libbpf-network-v5
https://github.com/regit/linux/tree/libbpf-network-v5

Questions ?

Thanks to
Alexei Storovoitov
Daniel Borkmann
David S. Miller

Contact me
Mail: eleblond@stamus-
networks.com
Twitter: @regiteric

More information
Suricata eBPF code: https:
//github.com/regit/
suricata/tree/ebpf-3.8

É. Leblond (Stamus Networks) The adventures of a Suricate in eBPF land Oct. 6, 2016 41 / 41

https://github.com/regit/suricata/tree/ebpf-3.8
https://github.com/regit/suricata/tree/ebpf-3.8
https://github.com/regit/suricata/tree/ebpf-3.8

	Introduction to Suricata
	Suricata meets eBPF
	eBPF technology
	eBPF cluster or the start of the travel
	eBPF bypass or lost in translation
	Some results
	Conclusion

	0.0:
	0.1:
	0.2:
	0.3:
	0.4:
	0.5:
	0.6:
	0.7:
	0.8:
	0.9:
	0.10:
	0.11:
	0.12:
	0.13:
	0.14:
	0.15:
	0.16:
	anm0:

