
improvements to conntrack table overflow handling

Florian Westphal
Red Hat

fw@strlen.de

Abstract

connection tracking keeps a state table that uses the addresses
of communication endpoints, e.g. ip address and port number,
or ip address and GRE call id to identify packets belonging
to the same connection. netfilters Network address translation
facilities also make use of connection tracking.
The next section gives a high-level overview, then current han-
dling of connection tracking table overflow is described. The
later sections deal with possible improvements to table exhaus-
tion problems.

connection tracking engine in the stack
The conntrack engine uses the hooks provided by the netfilter
framework, which are also used by the ip(6)tables and
nftables tools.

The hooks are placed at particular decision points in the
internet protocol stack of the linux kernel to allow inspection
and, if needed, mangling of packets as they pass through the
network stack. For more information on the hook infrastruc-
ture provided by the netfilter subsystem, please see[6].

The prerouting hook is located before the ip routing deci-
sion that decides if a packet has to be forwarded or is going
to be delivered locally. All inbound IP packets will traverse
this hook.

The input hook is for packets that will be delivered to the
local machine, whereas forward is for packets that have to be
forward to another machine1.

Packets generated on behalf of local processes will pass
through output. The last hook point, postrouting, is passed
by both locally originating packets and forwarded ones. This
diagram shows the hooks and their ordering:

conntrack hooks everywhere except FORWARD. Prerout-
ing sits before the route lookup, all incoming packets traverse
this hook. Conntrack uses this to perform the initial lookup in
the conntrack table. It extracts the layer 3 and layer 4 connec-
tion information (ip addresses, ports), and checks if the flow
tuple – the combination of the two endpoints ip address and
the layer 4 information (usually, port numbers) – is already
stored in the table.

1 this may include containers or virtual machines running on the
same host

PREROUTING Routing

INPUT

local processes

OUTPUT

FORWARD

POSTROUTING

Figure 1: netfilter hooks

If there is a match, the lookup returns the nf_conn con-
nection tracking structure, which is then assigned to the skb2.

A similar hook is placed into the output hook list, to look
up flows where the local machine is the initiator or responder
(as opposed to a router that merely forwards packets).

In case no connection is found, the higher-level protocol
tracker, such as tcp, can decide that the packet is initiating
a new connection or that the packet is related to an existing
connection in some way (such as ICMP error messages where
the inner header matches a known tuple). In both cases, a new
nf_conn structure is allocated.

The new structure is associated with the packet, but it is not
yet committed to the main connection tracking table – this is
delayed until the packet has passed all iptables rules. This has
two advantages:

1. as a newly allocated nf_conn entry is only exposed to
the CPU processing the packet, several types of conntrack
manipulations, such as initializing nat transformations, do
not need to acquire locks.

2. We don’t need to acquire the global locks needed to insert
the entry into the table in case the packet gets dropped by
the packet filter rules.

Committing a new entry to the main table is handled by
”confirm” hooks, one in input, one in postrouting. These
are called after ip(6)tables rules have been consulted.

The remaining two hooks concern handling of connection
tracking helpers, which are dedicated modules that deal with

2structure that contains packet payload and packet metadata,
such as device and routing information for the packet



higher-level protocols such as ftp or sip which need special
handling to track them in a stateful fashion. These are also
located in the input and postrouting hook points. In brief,
a helper module reads packet payload data to discover an-
nouncements of expected connections, such as extracting the
address and port number of the data connection from a ftp

PORT 192,168,1,1,5,6\r\n

reply on the ftp command connection. Helpers then can add
the seen address/port pair to the so-called expectation table.
When the ftp data connection is initiated, it will then be auto-
matically set as RELATED, for easier filtering. The expected
connection will also follow a possible network address trans-
lation of the master conntrack entry without a need to config-
ure explicit nat rules for it.

Historically, the connection tracking helpers were always
active once the corresponding kernel modules were loaded.
Nowadays, users should explicitly assign them for security
reasons[1].

This is done by using nftables ct set helper hname
or iptables CT target with the --helper option. This also
has the advantage that one can e.g. ask to track ftp on a dif-
ferent port, such as 21213.

Its important to note that all connection tracking helpers
are best-effort only. netfilter does not perform tcp stream re-
assembly, for instance, so checking payload split across pack-
ets does not work. Furthermore, keeping the helpers in ker-
nel can require complex and error prone parsing of higher-
level protocols such as XML or ASN1, so it is a good idea
to perform these tasks in userspace instead. For this purpose
userspace can add entries to the expectation table, see the sec-
tion about ctnetlink for more information.

conntrack states
There are 5 distinct connection tracking states:

1. NEW. first packet of a connection (no previous record), a
new conntrack was allocated.

2. RELATED. Same as new, but the packet is somehow re-
lated to an existing connection. This is true for ftp data
connections, or ICMP path MTU errors where the inner
header matches existing tuple.

3. ESTABLISHED. The packet matches an existing entry and
the l4 tracker checks of the packet passed. In the tcp case,
this for example means that the tcp sequence numbers were
within the expected window.

4. INVALID. The packet is not associated with a conntrack
entry.
This happens for example when the connection
tracker deems that the packet doesn’t fit the criterion
for a new packet. This happens for instance when
net.netfilter.nf_conntrack_tcp_loose=0
and a tcp packet neither matches an existing entry nor has
the SYN flag set.

3the old method involved ”magic” module parameters to change
the port number the helper monitors by default

struct description size in bytes
nf conn base structure 256
nf ct ext extension head 40
nf conn help helper base struct > 24
nf conn nat nat 8
nf conn seqadj sequence adjustment 24
nf conn ecache event cache 24
nf conn counter accounting 32
nf conn tstamp timestamp 16
nf conn timeout timeout 8
nf conn synproxy synproxy 12
nf conn label conntrack labels 16

Table 1: current extensions and sizes on 64bit architectures

5. UNTRACKED. This means that either the user has added
an explicit filter rule to not track the packet using nftables
notrack keyword or the iptables CT --notrack tar-
get, or with certain ICMP6 packets such as neighbour dis-
covery.

conntrack extensions
Connection tracking extensions are essentially just extra
structures containing information about a connection, but
such information is considered to be used infrequently, so it
is not placed in the main nf_conn struct to save space.

They are allocated on demand, for instance the GRE or ftp
helpers use this to store extra information required for track-
ing that is not needed for normal flows.

data structures
The connection tracking engine uses a single hash table to
store conntrack tuples. Every connection is added twice, once
with the reverse tuple. This needed for network address trans-
lation, where the tuple of one direction doesn’t match the
other one. See [2] for more details on how tuples are linked
within the table.

Lookups (read access) in the table are lockless, insertions
can occur in parallel by different processors provided inserts
occur in different parts of the table, i.e. the hash value not
only determines the slot where the tuple is inserted, but also
the lock that is responsible for protecting insertions and dele-
tions for this bucket.

The table has a fixed size (tune-able via
net.netfilter.nf_conntrack_buckets)
and a fixed upper limit
(net.netfilter.nf_conntrack_max).
Once this number of connections is
reached, the kernel will log the message
nf_conntrack: table full, dropping packet
and all further new connection requests are dropped until the
table is below the maximum limit again. This is unfortunate,
especially in DoS scenarios, the next section discusses this in
more detail.

Lockless lookups are achieved by use of RCU[3].
nf_conn structures are allocated from a kmem cache us-
ing the SLAB_DESTROY_BY_RCU feature. This means that
a conntrack entry that is freed can be re-allocated instantly



$ conntrack -E
[UPDATE] tcp 6 432000 src=192.168.0.7 dst=10.. sport=3..
[UPDATE] tcp 6 120 FIN_WAIT src=192.168.0.7 dst=10.16..
[UPDATE] tcp 6 60 CLOSE_WAIT src=192.168.0.7 dst=10.16...
[NEW] udp 17 30 src=10.26.2.2 dst=192.168.0.7 sport=5..
[NEW] tcp 6 120 SYN_SENT src=192.168.0.7 dst=.. sport=60..
[UPDATE] tcp 6 60 SYN_RECV src=192.168.0.7 dst=192..
[UPDATE] tcp 6 432000 ESTABLISHED src=192.168.0.7 ..
[DESTROY] tcp 6 src=202:8071:.. dst=202:26f0.. sport=3428 [UNREPLIED]

without waiting for a rcu grace period to elapse. Readers deal
with this by re-checking the tuple after obtaining a reference
on the entry. If the tuple has changed, the entry was freed
right before the lookup, in this case the reader has to indicate
that the lookup did not yield a result.

It is also possible (albeit unlikely), for an nf_conn entry
to move from one hash bucket to another one. This can be
detected by a so-called nulls marker, every hash bucket of the
conntrack main hash table has a unique marker at the end of
the chain, so in case the lookup finds the ”wrong” nulls value
the lookup has to be re-tried.

Timeouts are handled passively – each nf_conn struc-
ture stores a timeout value (in jiffies). On every conntrack
lookup all nf_conn structures in the bucket list whose time-
out stamp is in the past are removed.

In order to catch timed-out entries on idle systems a work
queue is used to periodically scan the table for old entries.

ctnetlink
Conntrack provides a netlink[5]-based protocol for userspace
to interact with the connection tracker.

userspace can subscribe to ct events:
ctnetlink events can be used for flow accounting in

userspace. The extension infrastructure contains extensions
to allow per-connection packet and byte traffic accounting,
and precise timestamping of when connections were created
and closed.

ctnetlink also allows to delete or even add new entries or
expectations from userspace. Entries that get added via ct-
netlink can also set up nat binding independent from the nat
table.

Adding expectations can be used to implement connection
tracking helpers in userspace. For instance one could use net-
filters TPROXY facilities to redirect control protocol traffic to
a dedicated daemon/proxy, process them there and then use
ctnetlink to add the tuple of the expected data connections
into the expectation table. For instance a SIP proxy would
only process SIP control messages such as invites while the
actual calls are forwarded by the kernel.

packet floods
Netfilter conntrack treats entries that have not (yet) seen two-
way communication specially – they can be evicted early if
the connection tracking table is full. If insertion of a new en-
try fails because the table is full, the kernel searches the next
8 adjacent buckets of the hash slot where the new connection
was supposed to be inserted at for an entry that hasn’t seen a
reply4. If one is found, it is discarded and the new connection
entry is allocated.

4these are also called non-assured entries

When dealing with tcp syn floods from random source ad-
dress, most entries can be early evicted because the tcp con-
nection tracker sets the ”assured” flag only once the 3-way
handshake has completed.

In the udp case the assured flag is set once a packet arrives
after the connection has already seen at least one packet in
the reply direction. In other words, request/response traffic
does not have the assured bit set and can therefore be early-
dropped at any time.

The table can still get exhausted, however – either because
the table is improperly sized for the workload, or because
timeouts are too large.

Lowering timeouts might not be a universal solution, how-
ever – especially when using NAT/PAT the conntrack en-
try holds the nat transformation/mapping information, so de-
stroying such entries breaks connectivity in case end hosts
resume transfer after an idle period.

conntrack error handling
Currently, conntrack error handling appears to be inconsis-
tent. Packets that are deemed invalid (e.g. out of window)
will be accepted by conntrack, i.e. it is up to the user to de-
cide to drop such INVALID packets in the nftables or iptables
rule sets5.

When a connection tracking entry cannot be allocated due
to limits being reached however, conntrack DROPs the packet
instead. Changing this so conntrack doesn’t drop in this case
anymore doesn’t help in all cases (NAT depends on connec-
tion tracking), but it might still help in cases where NAT is
not used.

In current kernels connection tracking uses a garbage col-
lection work queue to catch entries that have timed out. It
would be easy to extend this gc worker to perform additional
checks in stress situations, the following section discusses
some ideas.

early drop via l4 trackers
Instead of only doing the fast early_drop scan from the
packet path, the kernel could instead query the layer 4 track-
ers about a connection.

For instance, one could also consider the layer 4 state and
prefer to also evict tcp flows that are in WAIT state (after see-
ing a tcp FIN in one direction).

Furthermore, it would be easy to add a new ”soft timeout”,
which will evict an entry if it was idle for this period only
while the table is full. This would allow to keep large TCP
default established timeouts while at the same time making
compromises in stress situations.

custom timeout policies
Another idea is to extend the concept of per-connection time-
out policies. Currently the kernel already supports timeout
policies that allows to attach custom timeout policies to a
flow, e.g. one can set lower timeouts for incoming tcp connec-
tions on port 53 while allowing lower timeouts for outgoing
connections.

5ct state invalid drop, -m conntrack –state INVALID -j DROP



Instead of attaching these timeouts via
-j CT --timeout policyname based on proper-
ties of the matched packet6, one could add a way to query the
occupancy ratio of the conntrack table from the packet path,
e.g.

\verb+-m conntrack --table-above 75 \
-j CT --timeout ...+.

This would permit adaptive timeouts very similar to the
ones offered by BSDs pf tool[4] based on usage without
making this a fixed/hard coded property of connection track-
ing.

connection probing
Instead of just closing a connection without warning, it would
be possible to actively probe endpoints similar to what is
done by the SO_KEEPALIVE mechanism described in the
tcp manual page[7] by injecting packets after the connec-
tion has been idle for some time. This would allow to de-
tect connections where an endpoint has disconnected without
shutting its connections down. Conntrack could then evict
these connections automatically. It also improves reporting
of such connections from a accounting perspective as we will
not have to wait for the (possibly large) established timeout
to elapse.

Summary and future work
The previously discussed measures help when dealing with
un-cooperative peers that do not close properly, e.g. by ig-
noring FIN packets, or by re-sending FIN packets to keep the
connection open – conntrack would be able to free these re-
sources in a more timely manner without user intervention.

Aside from the suggestions in this paper there are other
items that might be worth looking at:

• free conntrack extension area with kfree instead of
kfree_rcu. This requires an audit of the code base to
ensure that all read accesses to the extension area occur
after obtaining a reference on the conntrack entry.

• check if we can remove the need for variable-sized exten-
sions. It might be possible to instead provide a scratch area
similar to skb->cb[] for helpers to use. Most connec-
tions do not use a helper and allocation of the extension
area would be safer as we could add compile-time asser-
tions on the maximum size of the extension area.

Aside from the helper extension all other extensions have
fixed sizes. Removing the need for this would allow to add
compile-time assertions for possible overflows of the exten-
sion offset calculations. It would also all minor simplicifca-
tion of the extension allocation path as we no longer need to
pass/consider a variable size.

References
[1] Leblond, E. 2012. Secure use of iptables and connec-

tion tracking helpers. blog. https://home.regit.org/netfilter-
en/secure-use-of-helpers/.

6e.g. the tcp destination port

[2] Magnus Boye. 2012. Netfilter Con-
nection Tracking and NAT Implementation.
https://wiki.aalto.fi/download/attachments/69901948/netfilter-
paper.pdf.

[3] McKenney, P. E. 2003. Using RCU in the Linux 2.5
kernel. Linux Journal 1(114):18–26. Available: http:
//www.linuxjournal.com/article/6993
[Viewed March 17, 2017].

[4] OpenBSD. 2017. pf.conf manual page. OpenBSD docu-
mentation. Available: http://man.openbsd.org/
OpenBSD-6.0/man5/pf.conf.5, [Viewed March
20, 2017].

[5] Pablo Neira Ayuso, Rafael M. Gasca, Laurent Lefèvre.
2010. Communicating between the kernel and user-space
in Linux using Netlink sockets. Software: Practice and
Experience 40(9).

[6] Pablo Neira Ayuso. 2006. Netfilter’s Connection Track-
ing System. In :LOGIN;, The USENIX magazine, Vol. 32,
No. 3, pages 34-39.

[7] 2017. Linux man pages project: tcp - tcp proto-
col. man 7 tcp. https://www.kernel.org/doc/
man-pages/.

Author Biography
Florian Westphal is a contributor to the Linux kernel network
stack, in particular netfilter. He is also a member of the net-
filter core team.

http://www.linuxjournal.com/article/6993
http://www.linuxjournal.com/article/6993
http://man.openbsd.org/OpenBSD-6.0/man5/pf.conf.5
http://man.openbsd.org/OpenBSD-6.0/man5/pf.conf.5
https://www.kernel.org/doc/man-pages/
https://www.kernel.org/doc/man-pages/

	connection tracking engine in the stack
	conntrack states
	conntrack extensions
	data structures
	ctnetlink
	packet floods
	conntrack error handling
	early drop via l4 trackers
	custom timeout policies
	connection probing

	Summary and future work
	Author Biography

