
netfilters connection tracking subsystem

Florian Westphal
4096R/AD5FF600 fw@strlen.de

80A9 20C5 B203 E069 F586
AE9F 7091 A8D9 AD5F F600

Red Hat

netdev 2.1, Montreal, April 2017

connection tracking

I flow tracking by addresses of endpoints (L3/L4, e.g. ip +
port, ip + GRE call id, . . .)

I split in layer 3 tracking (ip, ipv6) and layer 4 tracking (tcp,
udp, sctp, ICMP, . . .)

I L4 tracker is agnostic of lower protocol
I L4 trackers attempt to keep state, e.g. tcp: tracks state,

checks sequence numbers. Example:
I new tcp packet? SYN bit set?
I tcp sequence number in expected window?
I unacknowledged data? → adjust timeout
I rst? fin? → delete connection and/or adjust timeout

I NAT is built on top – conntrack itself never alters packets

I uses netfilter hooks to look at packets as they come in/leave

conntrack events

userspace can subscribe to ct events:

$ conntrack -E

[UPDATE] tcp 6 432000 src=192.168.0.7 dst=10.. sport=3... dport=..

[UPDATE] tcp 6 120 FIN_WAIT src=192.168.0.7 dst=10.16...

[UPDATE] tcp 6 60 CLOSE_WAIT src=192.168.0.7 dst=10.16....

[NEW] udp 17 30 src=10.26.2.2 dst=192.168.0.7 sport=5...

[NEW] tcp 6 120 SYN_SENT src=192.168.0.7 dst=.. sport=60..

[UPDATE] tcp 6 60 SYN_RECV src=192.168.0.7 dst=192..

[UPDATE] tcp 6 432000 ESTABLISHED src=192.168.0.7 ...

[DESTROY] tcp 6 src=202:8071:.. dst=202:26f0.. sport=34284 dport=80 [UNREPLIED] ...

NEW event sent once entry is placed in conntrack table
it is possible to restrict what events are generated (CT target)

common misconceptions

I iptables -A INPUT -m conntrack --ctstate ...

doesn’t do connection tracking

I ... rather, it tests conntrack state
(skb->nfct->status == ...)

I same for nft ct state ...: no lookup of any kind

I conntrack doesn’t look at socket states, only packets

conntrack states
I ESTABLISHED – packet matches existing entry and l4 tracker

checks pass
I NEW

I first packet of a connection (no previous record)
I a new connection entry is created after failed lookup
I ... but NOT placed in main conntrack table
I ... only done after packet traversed all hooks (iptables) in

INPUT or POSTROUTING
I ... in conntrack speak, the entry is now confirmed (in main

table)
I RELATED – same as NEW, except it somehow relates to

another existing connection
I ICMP error, and the header inside matches an existing

connection
I conntrack helper created an entry in the ”expectation table”

I UNTRACKED – packet was intentionally not tracked (ipv6
neigh discovery for instance)

INVALID – packet not seen or rejected by l4 trackers
(skb->_nfct is 0)

connection tracking helpers

some protocols are harder to track/NAT, e.g. SIP or FTP

I kernel module monitors ”control channel”, e.g. tcp port 21
I can add ’expectations’, i.e. if new connection is coming from S

to D on port P, then mark as RELATED
I also can apply NAT if needed
I allows doing FTP, SIP etc. without opening up many ports or

adding lots of 1:1 nat translations

I best-effort only, e.g. no tcp stream reassembly in kernel
I in-kernel XML/ASN.1 parsing required for sip, h323, etc.

I might be preferable to use real proxies
I its possible to add expectations from userspace
I e.g. could implement transparent SIP proxy that only

processes call setup messages, and allows actual calls to just
pass through

main conntrack table

I hash table, using rcu (lookups are lockless) and hashed locks
(i.e. add/delete is parallel if they occur in other part of the
table)

I table has a fixed size
(net.netfilter.nf_conntrack_buckets) and fixed upper
limit (net.netfilter.nf_conntrack_max)

I no automated growth, initial sizing based on available memory

I each entry is hashed twice (original+reply) to deal with nat

conntrack extensions

idea: keep data of rarely used features outside of main nf_conn

struct

I pro:
I don’t have to allocate mem for rarely-used features

I con:
I overhead: 40 bytes per conntrack just for metadata
I need one extra deref to access data

Examples: helper, counter, tstamp, ...

NAT

I built on top of connection tracking

I NAT mappings are set up at conntrack creation time

I ... which is why iptables ’nat’ table only ”sees” first packet of
flow

I one extra hash table: nat bysource table
I used to ensure addr:port is unique when adding new mapping

I all connections have nat mapping once a nat hook is active

overflow handling

nf_conntrack: table full, dropping packet main
assumption: most entries are non ”assured”

I assured – flag set by l4 protocol tracker at certain point (tcp:
3whs completed)

I over limit?

1. search up to 8 buckets for non-assured entry
2. destroy it and allocate new conntrack entry in its place

I otherwise, drop the new packet

problems

I Only non-assured entries can be early-dropped

I no way to know if new packet is ’more important’ than any
other state table entry

I can’t toss random entries: would kill valid connections

I doesn’t play nice with nat/pat

I what about overflow w. legitimate traffic patterns?

suggestions (1)

I remove very strange conntrack error handling
I packet invalid? NF_ACCEPT (let user decide what to do in

iptables ruleset)
I can’t alloc conntrack/over limit? NF_DROP (user can’t change

this behavior)
I can this be fixed in a backwards-compatible fashion?

doesn’t solve table exhaustion problem for all cases, e.g. can’t
NAT non-tracked packets

suggestions (2)

I add early_drop function to the l4 trackers
I e.g. could prefer evicting tcp flow in WAIT state in favor of

new connection

I TCP established default timeout is huge (5days)
I add ’soft timeout’ (min lifetime) sysctl, e.g. 5 minutes and

allow fast-recycle after this
I do periodic ack probing/keepalives (i.e., elicit RST if

connection was closed)
I adaptive timeouts like *BSD? Combine CT --timeout with

match on (used) table size?
I early evict if no nat?

problem: under flood, even 1 minute is too long
helps with peers that don’t close properly

conntrack – summary

I mature code base

I lots of features
I but still room for improvements:

I overflow handling
I free extensions via kfree, not via rcu
I remove variable sized extensions?

