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Abstract

Over the last year, patches for bufferbloat mitigation and air-
time fairness have landed in the WiFi stack. The bufferbloat
patches improve performance across the board, and airtime
fairness further improves performance in the presence of slow
stations.
We provide an overview of these improvements and explain
some of the peculiarities of WiFi that guided the design. Fol-
lowing this, we outline some of the proposed next steps. This
includes proposals for further reducing latency, a mechanism
to set different policies for the airtime usage of stations, as well
as a revamped queueing mechanism for dynamic QoS priority
scheduling.

1 Introduction
Linux has been the primary target platform for community
efforts to mitigate the unwanted network queueing latency
known as bufferbloat. Numerous improvements have gone
into the Linux networking stack, such as the FQ-CoDel qdisc,
first introduced in Linux 3.5. However, the effects of apply-
ing these improvements to a WiFi link has been limited until
recently. This has changed dramatically over the last year,
during which patches for bufferbloat mitigation and airtime
fairness have landed in the WiFi stack. The bufferbloat miti-
gation patches reduce latency under load by an order of mag-
nitude across the board, and an airtime fairness scheduler sig-
nificantly improves network performance in the presence of
slow stations. These changes are integrated directly into the
mac80211 subsystem and disable the qdisc layer entirely on
WiFi interfaces, to be able to effectively deal with the con-
straints imposed by the 802.11 MAC protocol.

In this paper we outline the properties of WiFi that have
served as the basis for this design, and also describe the new
queueing structure itself and the performance benefits result-
ing from it. In addition, we describe some of the current and
planned features that are made possible because of the queue-
ing structure. These include proposals for further reducing
queueing latency, as well as a mechanism to set different poli-
cies for the airtime usage of stations, and a revamped queue-
ing mechanism for dynamic QoS priority scheduling.

The work presented here is the result of a community ef-
fort, and I can by no means take credit for all of it. This ex-
position is meant as a summary of work that has mostly been

published elsewhere, most notably in our previous paper [2],
and on the linux-wireless and make-wifi-fast mailing lists.

An important purpose of this paper and its associated talk
is to solicit feedback from the community on the future di-
rections. This also means that several of the ideas for future
work are very much preliminary and subject to change.

The rest of this paper first summarises some of the con-
straints imposed by the 802.11 protocol, then outlines the
previous improvements and their benefits, and finally outlines
some ideas for future improvements.

2 802.11 MAC protocol constraints

There are three main constraints to take into account when
designing a queueing scheme for WiFi. First, we must be
able to handle aggregation; in 802.11, packets are assigned
different Traffic Identifiers (TIDs) (typically based on their
DiffServ markings [5]), and the standard specifies that aggre-
gation be performed on a per-TID basis. Second, we must
have enough data processed and ready to go when the hard-
ware wins a transmit opportunity; there is not enough time to
do a lot of processing at that time. Third, we must be able
to handle packets that are re-injected from the hardware after
a failed transmission; these must be re-transmitted ahead of
other queued packets, as transmission can otherwise stall due
to a full Block Acknowledgement Window.

The need to support aggregation, in particular, has influ-
enced the new queueing design in mac80211. A generic
packet queueing mechanism, such as that in the qdisc layer,
does not have the protocol-specific knowledge to support the
splitting of packets into separate queues, as is required for
aggregation. And introducing an API to communicate this
knowledge to the qdisc layer would impose a large com-
plexity cost on this layer, to the detriment of network inter-
faces that do not have the protocol-specific requirements. So
rather than modifying the qdisc layer, our queue management
scheme bypasses it completely, and instead incorporates the
smart queue management directly into mac80211. The main
drawback of doing this is, of course, a loss of flexibility. With
this design, there is no longer a way to turn off the smart
queue management completely; and it does add some over-
head to the packet processing. However, the performance
benefits by far outweigh the costs.



Algorithm 1 802.11 queue management algorithm - enqueue.
1: function ENQUEUE(pkt, tid)
2: if queue limit reached() then . Global limit
3: drop queue← FIND LONGEST QUEUE()
4: DROP(drop queue.head pkt)
5: queue← HASH(pkt)
6: if queue.tid 6= NULL and queue.tid 6= tid then
7: queue← tid.overflow queue . Hash collision
8: queue.tid← tid
9: TIMESTAMP(pkt) . Used by CoDel at dequeue

10: APPEND(pkt, queue)
11: if queue is not active then
12: LIST ADD(queue, tid.new queues)

3 New queueing structure
This section is based on the description and evaluation in

our previous paper [2] describing these changes. Please see
that for further details and a more thorough evaluation.

The new WiFi queue management scheme is built on the
principles of the FQ-CoDel qdisc. Because FQ-CoDel al-
locates a number of sub-queues that are used for per-flow
scheduling, simply assigning a full instance of FQ-CoDel to
each TID is impractical. Instead, we modify FQ-CoDel to
make it operate on a fixed total number of queues, and group
queues based on which TID they are associated with. When a
packet is hashed and assigned to a queue, that queue is in turn
assigned to the TID the packet is destined for. In case that
queue is already active and assigned to another TID (which
means that a hash collision has occurred), the packet is in-
stead queued to a TID-specific overflow queue.1

The mac80211 stack does a lot of per-packet processing
specific to the 802.11 protocol, which involves building head-
ers, assigning sequence numbers, optional fragmentation, en-
cryption, etc. Some of these operations are sensitive to re-
ordering (notably, if sequence numbers or encryption IVs are
out of order, packets will be discarded by the receiver). Since
per-flow queueing can cause reordering when more than one
flow is active, doing this packet processing before the queue-
ing step would result in packet loss. On the other hand, ap-
plying everything at dequeue takes up valuable time in the
loop that builds aggregates, which is time sensitive. To strike
a balance between these factors, the mac80211 transmission
handling is split into two parts, with the latter part (containing
all reorder-sensitive actions) applied after the dequeue step,
just before the packet is handed to the driver.

A global queue size limit is kept, and when this is ex-
ceeded, packets are dropped from the globally longest queue,
which prevents a single flow from locking out other flows on
overload. The enqueue logic is shown in Algorithm 1.

The lists of active queues are kept in a per-TID structure,
and when a TID needs to dequeue a packet, the FQ-CoDel
scheduler is applied to the TID-specific lists of active queues.
This is shown in Algorithm 2.

1A hash collision can of course also mean that two flows assigned
to the same TID end up in the same queue. In this case, no special
handling is needed, and the two flows will simply share a queue like
in any other hash-based fairness queueing scheme.
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Figure 1: Our 802.11-specific queueing structure, as it looks
when applied to the Linux WiFi stack.

The obvious way to handle the two other constraints men-
tioned above (keeping the hardware busy, and handling re-
tries), is, respectively, to add a small queue of pre-processed
aggregates, and to add a separate priority queue for packets
that need to be retried. And indeed, this is how the ath9k
driver already handled these issues, so we simply keep this.
The resulting queueing structure is depicted in Figure 1.

3.1 Airtime fairness
Once we have the managed per-TID queues, it becomes
straight forward to solve another long-standing WiFi perfor-
mance problem: The so-called ”performance anomaly”. This
anomaly is a well-known property of WiFi networks: if de-
vices on the network operate at different rates, the MAC pro-
tocol will ensure throughput fairness between them, mean-
ing that all stations will effectively transmit at the lowest
rate. The anomaly was first described in 2003, and sev-
eral mitigation strategies have been proposed in the literature
(e.g., [3, 6]). However, none of these have been implemented
in Linux until now.

Because we have a per-TID managed queueing struc-



Algorithm 2 802.11 queue management algorithm - dequeue.
1: function DEQUEUE(tid)
2: if tid.new queues is non-empty then
3: queue← LIST FIRST(tid.new queues)
4: else if tid.old queues is non-empty then
5: queue← LIST FIRST(tid.old queues)
6: else
7: return NULL
8: if queue.deficit ≤ 0 then
9: queue.deficit← queue.deficit + quantum

10: LIST MOVE(queue, tid.old queues)
11: restart
12: pkt← CODEL DEQUEUE(queue)
13: if pkt is NULL then . queue empty
14: if queue ∈ tid.new queues then
15: LIST MOVE(queue, tid.old queues)
16: else
17: LIST DEL(queue)
18: queue.tid← NULL
19: restart
20: queue.deficit← queue.deficit − pkt.length
21: return pkt

ture, solving the performance anomaly is simply a matter of
scheduling transmissions from each of the TIDs in a manner
that ensures that each station gets its fair share of airtime. The
managed queues will then automatically provide the needed
back-pressure on flows to each station to ensure latency stays
low. The implementation in the ath9k driver adds account-
ing of the airtime used by each station, using a time deficit
counter that is analogous to the FQ-CoDel byte deficit as-
signed to each flow. The airtime is reported by the hardware
on TX completion, and on the receive side it is calculated
from the packet size and the rate it was transmitted at.

Once this deficit is in place, an airtime fairness scheduler
can be added to the driver. This is shown in Algorithm 3. It
is similar to the the FQ-CoDel dequeue algorithm, with sta-
tions taking the place of flows, and the deficit being accounted
in microseconds instead of bytes. The two main differences
are (1) that the scheduler function loops until the hardware
queue becomes full (at two queued aggregates), rather than
just pulling a single packet from the queue; and (2) that when
a station is chosen to be scheduled, it gets to build a full ag-
gregate rather than a single packet.

3.2 Performance
We evaluate our modifications in a testbed setup consisting
of five PCs: Three wireless clients, an access point, and a
server located one Gigabit Ethernet hop from the access point,
which serves as source and sink for the test flows. The evalu-
ation is repeated for these four scenarios:

FIFO: The 4.6 kernel from kernel.org modified only to
collect the airtime used by stations, running with the default
pfifo fast qdisc installed on the wireless interface.

FQ-CoDel: As above, but using the FQ-CoDel qdisc on
the wireless interface.

FQ-MAC: Kernel patched to include the FQ-CoDel based
intermediate queues in the MAC layer.

Algorithm 3 Airtime fairness scheduler. The schedule function is
called on packet arrival and on transmission completion.

1: function SCHEDULE
2: while hardware queue is not full do
3: if new stations is non-empty then
4: station← LIST FIRST(new stations)
5: else if old stations is non-empty then
6: station← LIST FIRST(old stations)
7: else
8: return
9: deficit← station.deficit[pkt.qoslvl]

10: if deficit ≤ 0 then
11: station.deficit[pkt.qoslvl]← deficit + quantum
12: LIST MOVE(station, old stations)
13: restart
14: if station’s queue is empty then
15: if station ∈ new stations then
16: LIST MOVE(station, old stations)
17: else
18: LIST DEL(station)
19: restart
20: BUILD AGGREGATE(station)

Airtime fair FQ: As FQ-MAC, but additionally including
our airtime fairness scheduler in the ath9k driver.

We show only three sets of results here: The latency im-
provements from the queue management changes, and the
achieved fairness and gain in total network throughput from
the airtime fairness scheduler. For the full evaluation, see the
previously published paper [2].

Figure 2 shows the results of our ICMP latency measure-
ments with simultaneous TCP download traffic. Here, the
FIFO case shows several hundred milliseconds of latency
when the link is saturated by a TCP download. FQ-CoDel
alleviates this somewhat, but the slow station still sees laten-
cies of more than 200 ms in the median, and the fast stations
around 35 ms. With FQ-MAC, this is reduced so that the
slow station now has the same median latency as the fast one
does in the FQ-CoDel case, while the fast stations get their la-
tency reduced by another 45%. The airtime scheduler doesn’t
improve further upon this (other than to alter the shape of
the distribution slightly for the slow station, but retaining the
same median), so we have omitted it from the figure.

Figure 3 shows the airtime usage of each of the three sta-
tions in the different scenarios. When the airtime scheduler
is enabled, perfect fairness is achieved. Figure 4 shows how
this translates to throughput for downstream TCP traffic. For
this case, the fast stations increase their throughput as fairness
goes up, and the slow station decreases its throughput. The
total effect is a net increase in throughput. The increase from
the FIFO case to FQ-CoDel and FQ-MAC is due to better ag-
gregation for the fast stations. This was observed for UDP
as well in the case of FQ-MAC, but for FQ-CoDel the slow
station would occupy all the queue space in the driver, pre-
venting the fast station from achieving full aggregation. With
the TCP feedback loop in place, this lock-out behaviour is
lessened, and so fast stations increase their throughput.

As these results clearly show, there are significant perfor-
mance gains from the changes already included in the kernel.
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Figure 2: Latency (ICMP ping) with simultaneous TCP
download traffic.
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Figure 3: Airtime usage for each of the three stations in the
different scenarios (UDP traffic).

4 Next steps
Currently, only the ath9k and ath10k drivers (and the out-of-
tree mt76 driver) benefit from the intermediate queue struc-
ture, and the airtime fairness scheduler is ath9k only. There
is work underway to remedy this; patches exist to move the
airtime scheduling into mac80211,2 and Johannes Berg has
outlined a plan for converting the mac80211 code completely
to using the intermediate queueing structure,3 which will al-
low all drivers to benefit from it.

Integration into the common mac80211 layer is important
to ensure that these features, and further developments based
upon them, can benefit all drivers with as little effort as pos-
sible. The rest of this section outlines some of the ideas for
future improvements that I and others in the community have

2https://lkml.kernel.org/r/20171016160902.
8970-1-toke@toke.dk

3https://lkml.kernel.org/r/1507217947.2387.
60.camel@sipsolutions.net
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Figure 4: Throughput for TCP download traffic (to clients).

discussed. These are all mostly on the idea stage for the time
being, and part of the purpose of listing them here is to gather
feedback on their usefulness and viability.

The upcoming improvements are grouped into three parts:
Further reducing latency, Airtime policies and QoS handling.

4.1 Further reducing latency
While we have reduced queueing latency by an order of mag-
nitude, there are still some areas where additional reductions
should be feasible. This can be seen by the fact that it is still
possible to lower latency by aggressively shaping the traffic
on top of the wireless interface (thus moving the bottleneck
somewhere else). While not all these ideas are applicable to
all devices (because some of the required functionality may
be in firmware), it can help where implementing it is possible.
The areas of potential improvement are:

Minimising hardware queue length. Currently, most
drivers keep a fixed amount of data buffered ready to send
to the hardware. For drivers that handle aggregation in
firmware, this is in the form of a fixed number of packets,
while for drivers that build aggregates in software (mainly
ath9k), this is a fixed number of full aggregates. In the former
case, a BQL-like mechanism is needed to limit this buffer-
ing to a minimum. Drivers that do aggregation in software
have enough information available that another approach may
be viable: Deferring scheduling of the next aggregate until
right before the expected completion time of the previous one.
CPU scheduling granularity may be a limiting factor in this,
and getting the timing right in general can be tricky. In both
cases, getting an interrupt from the hardware when transmis-
sion starts would be helpful to achieve more precise timing.

Reducing the number of retransmissions. Instead of us-
ing a fixed number of maximum retransmissions for all pack-
ets, dynamically setting the number of retransmissions based
on the data rate can reduce latency by reducing head of line
blocking while the retransmissions are ongoing. This has
been shown to work in a fairly simple implementation [4].
Using a time based limit and optionally including the queue
time as recorded by CoDel could be a way to achieve this.

https://lkml.kernel.org/r/20171016160902.8970-1-toke@toke.dk
https://lkml.kernel.org/r/20171016160902.8970-1-toke@toke.dk
https://lkml.kernel.org/r/1507217947.2387.60.camel@sipsolutions.net
https://lkml.kernel.org/r/1507217947.2387.60.camel@sipsolutions.net


Dynamic aggregate sizing. Rather than always attempting
to build the largest possible aggregates, when there are many
stations with data outstanding it may be worthwhile to reduce
the size of the aggregates (to, say, 1 ms) to trade off lower la-
tency for airtime efficiency (and so bandwidth). Exploration
of when this is a good tradeoff remains to be done.

4.2 Airtime policies
Having airtime accounting information available when
scheduling stations makes it possible to implement other
scheduling options than strict fairness. For instance, in some
cases it may be desirable to allow a slow station to exceed its
fair share of airtime in order to get it above a minimum bit
rate. Or it may be desirable to limit a subset of active stations
to a fraction of the available airtime (to implement a limited
guest network, for instance).

There are multiple ways to extend the scheduler to support
such use cases. The two most straight forward are the follow-
ing:

Grouping queues and scheduling the groups. The cur-
rent deficit-based scheduler simply goes round-robin between
all active queues until it finds one that has a positive airtime
deficit, which is then scheduled (while the others have their
deficit increased by one quantum every time the scheduler
passes over them). Introducing groups that are scheduled to-
gether (possibly recursively and possibly with weights) is a
way to enable many different policies and allows configura-
tion by letting userspace configure the groups. The drawback
is that it requires a non-trivial configuration to achieve the
desired results, especially as stations come and go.

Arbitrarily dividing airtime between stations. Different
policies could be implemented by dividing credits unevenly,
allowing userspace to specify an arbitrary division of credits.
However, specifying a good API for this is difficult. Using
BPF could be an option, but without being ale to loop over the
active stations, it may not be possible to realise the arbitrary
division of airtime that is needed for this to work.

Performance issues Adding features to the scheduler to
make it support policies is bound to make necessary to do
more work on each invocation of the scheduler, which can be
problematic in the fast path. A way to fix this is to queue
the airtime usage information on per-CPU queues in the fast
path, and have a separate thread collect the information and
perform scheduling. For this, it may be necessary to switch
the scheduler to use airtime credits that are divided between
stations, similar to [1], as that would simplify the decision
making in the fast path.

4.3 QoS handling
At present, the four different 802.11e QoS levels are basically
scheduled in strict priority order, mapping to QoS queues is
done by diffserv marking and there is no admission control
for the higher priority levels. At the same time, with the im-
proved queueing structure, the end-to-end latency for a voice
flow marked as best-effort can be as good as for one that uses
the VO queue.

Improved network efficiency. There is a potential for im-
proving network efficiency by including queued VO packets
at the head of aggregates sent at a lower priority level (since
the VO level doesn’t allow aggregation). Using current queue
occupancy as a factor in deciding when to do this is impor-
tant, but information on the level of media contention is also
needed, as the more aggressive media contention parameters
of the VO priority is important in high-contention scenarios.
More experimentation is needed to figure out exactly in which
cases this optimisation makes sense.

Admission control. Another issue with QoS handling is
that it is based on diffserv markings and that there is no
admission control. This means that it is quite possible to
send large data flows at the higher priority levels, which can
hurt performance of the network. Previous work in the Cake
scheduler4 have shown promising results in applying a soft
admission control, where flows that build a large queue at the
higher priority levels are dynamically demoted to best effort
(or even background). Compared to a strict rate-based admis-
sion control, this has the advantage that it adapts automati-
cally to the current performance of the network, at the cost of
less predictability for applications.

Interaction with airtime fairness. In some cases, a station
with outstanding high priority packets outstanding needs to
be throttled to achieve fairness, even though all other stations
only have packets queued of a lower priority. In this case,
QoS prioritisation and airtime fairness enforcement conflicts
with each other: If fairness is enforced, lower priority packets
will be transmitted before those of higher priority. In most
cases it is likely beneficial to enforce fairness first (which can
be achieved by first selecting the station to transmit to, and the
picking the highest priority queue active for that station), but
this may lead to problems with regulatory compliance. We
plan to explore this further going forward.

4.4 Configurability and extraction of statistics
The queueing structure and airtime fairness scheduler as they
are currently implemented offers very little in configurability
and statistics on their operation. What little there is available
is only accessible through the debugfs interface, which is of-
ten disabled on production systems. While a lot of emphasis
has been put on making sure that these features work in the
absence of operator tuning, in some cases tuning can still be
necessary. Having tuning and statistics available in a way that
integrates well with existing tooling is something that not a lot
of thought has been put into as of now. The available options
and statistics are as follows:

• Configuration (per phy):

– FQ knobs (packet/memory limit, quantum)
– Airtime flags (whether to count airtime on TX/RX)

• Statistics:

– FQ per-tid stats (drops/marks/bytes etc; per sta)
– FQ multicast stats (per vif)
– Airtime stats (TX/RX usecs, deficit; per sta)
4https://github.com/dtaht/sch_cake

https://github.com/dtaht/sch_cake


Going forward, these will all be incorporated into the
nl80211 netlink interface (with the possible exception of the
airtime flags, which is mostly a debug setting). For some
things, this is fairly straight forward (for instance, airtime
statistics can be straight-forwardly included along with the
byte statistics already available in the mac80211 netlink inter-
face and shown by the iw tool), while less so for others. As
an examples the latter, a new API needs to be hashed out for
the upcoming policy aspects of the airtime scheduler (which
will require userspace support to set the policy).

5 Conclusion
This paper summarises the work that has gone into the WiFi
stack over the last year to reduce bufferbloat and improve air-
time fairness. These improvements have been realised by re-
placing the queueing structure and station scheduling of the
mac80211 layer. We have also outlined some promising av-
enues for future work based on these new features, which we
plan to pursue in the coming months.

6 Acknowledgements
Several people were indispensable in making this work hap-
pen. First and foremost my co-authors on the original pa-
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