
RTNL mutex, the network stack big kernel lock

Florian Westphal
Red Hat

fw@strlen.de

Abstract

The RTNL mutex is used to serialize rtnetlink[4] [5] requests.
rtnetlink is a netlink[3] subsystem used to inspect or change
networking related configuration. Types of rtnetlink requests
range from changing link state, adding/removing IP or IPv6
addresses and routes to qdiscs and traffic classifiers.
The widespread use of the RTNL mutex in all major network
configuration paths is a growing pain point, f.e. a task adding
an IP address prevents another from from seemingly unrelated
tasks such as dumping tc classifiers. Furthermore, some code
paths can hold the RTNL mutex for very long times (in the
order of several hundreds of milliseconds in some cases).
Since 4.14 kernel there is basic infrastructure in place to elide
the RTNL mutex for some operations.
This talk dives into the history of the RTNL mutex, explains
why its widely used, and discusses needed steps to further re-
duce RTNL mutex usage in the kernel with the goal to improve
concurrency and reduce latency.

What is rtnetlink?
rtnetlink is a netlink-based configuration interface for net-
work related configuration in the Linux kernel.

By kernel standards, it is ancient – it was added more than
20 years ago and has been a requirement since 2001 when
network support is enabled in the kernel build.

Kernel API
To register a handler within the kernel, one uses the
rtnl_register function:

void rtnl_register(int proto, int msgtype,
rtnl_doit_func,
rtnl_dumpit_func);

The rtnetlink core will then invoke the doit function when
user space sends an rtnetlink message of type msgtype for
protocol protocol. If a dump is requested (indicated by a
flag in the netlink message header), the dumpit function is
invoked instead.

The callbacks will validate and decode the netlink at-
tributes contained in the message, an then perform the de-
sired action. Actions are diverse, they range from e.g. adding
a new GRE tunnel to removal of IP addresses or dumping all
configured traffic classifiers to user space.

RTNL mutex problems
Up to and including kernel 4.13, all rtnetlink callbacks are
serialized by the RTNL mutex:

void rtnetlink_rcv(struct sk_buff *skb)
{

rtnl_lock();
netlink_rcv_skb(skb, &rtnetlink_rcv_msg);
rtnl_unlock();

}

In other words, if e.g. a routing daemon is adding a new
entry to the IP FIB, an unrelated program that wishes to take
a look at the configured network interfaces needs to wait as
both requests depend on the same lock.

Another major data structure that is protected by the RTNL
mutex is the list of network namespaces.

Contention on the RTNL mutex is made more severe by
the fact that the mutex can be held for very long times,
as callbacks can sleep, for example due to GFP_KERNEL
allocation or because a callback needs to wait for rcu
read side critical sections to finish. Waiting until all
CPUs have completed their read-side sections can be ex-
pensive, especially on busy systems without kernel preemp-
tion and many cores[2]. In configuration paths the net-
work stack often uses synchronize_net() which will
speed things up when the RTNL mutex is held (by using
synchronize_rcu_expedited() at cost of more la-
tency).

Examples of callbacks that need to wait for RCU include
moving a device to another namespace or removing a config-
ured link from the system.

While various ways were added to avoid or minimize calls
to synchronize_rcu, such as batching multiple exiting
net namespaces, or to provide ways to release the RTNL
faster (synchronize_net), the obviously better choice
would be to avoid RTNL serialization as much as possible.

rtnetlink in 4.14
In Linux 4.14 infrastructure to elide the RTNL mutex was
added[6]. Simply put, the rtnetlink core now provides a way
for in-kernel users of the API to indicate that the doit callback
should be invoked without acquiring the RTNL mutex:

void rtnetlink_rcv(struct sk_buff *skb)
{



netlink_rcv_skb(skb, &rtnetlink_rcv_msg);
}

rtnetlink_rcv_msg() {
[..]
flags = handlers[type].flags;
doit = handlers[type].doit;
if (flags & RTNL_FLAG_DOIT_UNLOCKED)

return doit(skb, nlh, extack);
rtnl_lock();
err = doit(skb, nlh, extack);
rtnl_unlock();
return err;

This opens a path to slowly convert callbacks to not depend
on RTNL locking guarantees anymore.

converting callbacks to not depend on RTNL
lock

An example for a doit callback that can elide RTNL mutex
is IP and IPv6 RTM_GETROUTE: It performs a route lookup
with input keys defined by user space and returns the result
to user space. This callback is read-only, i.e. no kernel data
structures are modified.

Another example for a easy-to-convert handler that does
modify in-kernel data are IPv6 address labels. The table that
is modified is already protected by a spinlock so serialization
vs. other tasks that read or change IPv6 address labels is al-
ready guaranteed even if the RTNL mutex is not acquired any-
more. Unfortunately, most callbacks are more complicated,
even if they do not modify state.

RTNL removal obstacles: consistent guarantees
There are several reasons why the RTNL mutex cannot be
blindly removed from handlers. The major obstacle is that
the RTNL mutex also provides consistency:

rtnl_fill_ifinfo:
nla_put_string(skb, IFNAME, dev->name);

If this code part would be called without the RTNL mutex,
then there is a small chance that it would provide a garbled
interface name back to user space.

This is not an unavoidable problem, the kernel already pro-
vides a helper function to obtain a consistent name, its only a
matter of changing the above to use netdev_get_name()
helper which uses an internal sequence lock to synchronize
with a rename done by another task.

This is one of the reasons why even dump requests (which
just send back a netlink-serialized view of the current state to
user space) are all serialized via RTNL – and thus block both
other dumps and new RTNL config requests.

Unfortunately, the above is just one of many examples
where existing handlers make assumptions about RTNL mu-
tex being held – two other problematic cases are the RTNL
AF and link operations. Out of the two, the former is easier
to resolve1:

struct rtnl_af_ops {
int family;

1structure edited for brevity

(*fill_link_af)(struct sk_buff *,
struct net_device *,
u32 ext_filter_mask);

(*get_link_af_size)
(struct net_device *,

u32 filter_mask);
(*validate_link_af)(struct net_device *,

struct nlattr *attr);
(*set_link_af)(struct net_device *dev,

struct nlattr *attr);
(*fill_stats_af)(struct sk_buff *skb,

struct net_device *dev);
(*get_stats_af_size)(struct net_device *);

};

Only a few instances of these af ops exist in the kernel,
and the various implementations of the callbacks are small,
making it much easier to audit them for places that make
RTNL-is-locked assumptions – none of them appear to need
the RTNL mutex. Also, no callback needs to sleep, i.e. it
is enough to convert the callers to take the rcu read lock and
using appropriate rcu synchronization primitives when af ops
are unregistered.

The only apparent downside is that such a conversion has
no immediate benefit, because all callers hold the RTNL mu-
tex. However, it is a prerequisite for converting more doit
handlers in the future and also removes the af ops from the
list of obstacles that stand in the way of further RTNL mutex
removal from handlers.

RTNL removal obstacles: link ops
Link ops on the other hand are added from a myriad of dif-
ferent places (usually by drivers such as ipoib, bonding, ppp
and various types of tunnels). At the very least the new and
dellink callbacks invoke functions that assume RTNL mu-
tex is held.

What appears to be problematic is synchronizing
with rtnl_link_unregister occurring on an-
other CPU. Right now there there are no issues:
rtnl_link_unregister grabs the RTNL mutex,
deletes the rtnl_link_op from the global list and then
triggers unregister/dellink of all net devices that use the link
op.

Because all places that dereference
dev->rtnl_link_ops depend on RTNL, the un-
register function will block until all rtnetlink operations that
use it are done. rtnetlink ops that come later will fail to find
the device, as it has already been removed from list.

This means that the following appears to not work:

dev = dev_get_by_index(ifindex);
...
rtnl_lock();
dev->rtnl_link_ops->...()
rtnl_unlock();

A parallel rmmod can unregister the link ops that
dev->rtnl_link_ops points to. However, looking at
rtnl_link_unregister in detail:
rtnl_link_unregister(struct rtnl_link_ops *ops)
{
struct net *net;



/* Close the race with cleanup_net() */
mutex_lock(&net_mutex);
rtnl_lock_unregistering_all();
for_each_net(net)

__rtnl_kill_links(net, ops);
list_del(&ops->list);
rtnl_unlock();
mutex_unlock(&net_mutex);

}

Deleting links removes affected devices from the global
list (i.e., further dev_get_by_index() calls won’t return
these devices anymore). rtnl_unlock will block until all
these devices have their reference counts drop to zero. This
means that

rcu_read_lock();
dev = dev_get_by_index_rcu(ifindex);
...
dev->rtnl_link_ops->...()
rcu_read_unlock();

... is also safe because rtnl_link_unregister also
waits for at least one rcu grace period to elapse.

In other words, RTNL link ops handling is safe in all doit
handlers provided at least one of the following is true:

1. doit acquires RTNL mutex

2. doit takes reference count of the device that the
link_ops are assigned to

3. doit uses rcu read lock + dev_get_by_index_rcu

This leaves only one more possible issue:
IFLA_INFO_KIND. When a new link is to be created,
user space provides the link type name in a netlink attribute.
The kernel will then retrieve the rtnl_link_ops struct
that corresponds to the given link name. Currently all these
callers hold the RTNL mutex, so this is safe. However,
because no device exists yet the only alternative to RTNL
would be to use rcu read lock instead (or adding a reference
count to rtnl_link_ops, but that should be avoided if
possible.

Issues and ongoing work
Given the intertwined nature of various components of the
network configuration backplane RTNL mutex removal is er-
ror prone.

The current work focuses on slowly ”pushing down” mutex
lock/unlock operations. This often means that the initial work
consist of changing code like

dev = __dev_get_by_name(net, devname);

to use a lookup version that either increments the device
reference count (dev_get_by_name()) or relies on rcu
protection (dev_get_by_name_rcu).

Such patches are, by themselves, useless – but they are a
required initial step to possibly allow calling such functions
without holding the RTNL mutex.

RTNL mutex removal is further complicated by the large
amount of code that can be executed while under RTNL mu-
tex protection, for instance adding bridge FDB entries can
cause calls into the driver for offloading purposes (ndo ops).

Unfortunately, such ndo op calls into network drivers are
not uncommon, due to ever increasing number of network
offload features, including vlan, SR-IOV, switching and bpf
offloading.

This means that even if RTNL mutex removal is safe in
some cases it might be needed to add per-driver locks to pro-
tect interaction with hardware.

The following two sections provide two examples to illus-
trate further issues with RTNL mutex removal, especially de-
pendencies created via use of netdevice notifiers.

devinet
net/ipv4/devinet.c implements IP device support
routines. This includes, among others, device sysctl settings
(e.g. forwarding, accept_redirects, rp_filter
and so forth), an ioctl interface to the IP network stack (used
by the ”old” net-tools such as ifconfig and route), and
IP address assignment to interfaces.

devinet handlers commonly acquire the RTNL mutex for
serializing requests coming from either rtnetlink or the older
ioctl based interface.

RTNL mutex removal in devinet is complicated by address
addition. Specifically, when a new address is supposed to be
added to an interface, the kernel invokes RTNL notifier chain:

int __inet_insert_ifa(struct in_ifaddr, ...

ret = blocking_notifier_call_chain(
&inetaddr_validator_chain,

NETDEV_UP, &ivi);

This allows in-kernel users such as the ipvlan driver, to veto
(and thus prevent) adding addresses that would cause a con-
flict with whatever internal state the vetoing entity has.

Its clear that this requires some sort of serialization to pre-
vent races, but it does not appear impossible to realize this
synchronization by a mechanism other than the RTNL mu-
tex.

The same notifier facility exists in the IPv6 stack.

IP FIB
Adding and deleting entries from the IPv4 FIB also occurs
via rtnetlink, serialized by the RTNL mutex.

As mutexes can’t be acquired in the network packet path
(i.e. soft irq context), and most FIB lookups occur from the
packet path, lookups in the IPv4 FIB are already fully RCU
safe.

Like with devinet, it seems appealing to introduce a new
FIB-private mutex to enforce serialization within FIB without
affecting other parts of the kernel.

However, adding another mutex introduces the possibility
of ABBA-style deadlocks:

rtnl_lock(); ...
mutex_lock(&fib_private);

vs.

mutex_lock(&fib_private); ...
rtnl_lock()



So any addition of a new private mutex is only feasible if
strict ordering can be guaranteed. Since it makes no sense to
add a new mutex that can only be safely acquired when the
caller already holds the RTNL mutex the only sane solution is
to make the common add/delete manipulations only take the
new FIB mutex.

mutex_lock(&fib_private);
/* do add/delete from fib */
mutex_unlock(&fib_private);

FIB manipulations also occur indirectly by the kernel when
e.g. a device state changes to UP. The FIB gets notified about
such events by inetaddr and netdevice notifiers. These noti-
fiers are invoked with the RTNL mutex held.

This means that in this case it would now be necessary to
acquire the fib private mutex (to make changes to the FIB)
while the caller is already holding the RTNL mutex – this
results in deadlocks unless acquiring the RTNL mutex is not
allowed while the private FIB mutex is held.

Not using the RTNL mutex for direct FIB manipulation
seems doable, however, this requires auditing the dump con-
sistency checks.

At this time, whenever the IP FIB notifier is invoked it in-
crements a counter, stored per netns:
call_fib4_notifiers(struct net *net,

enum fib_event_type event,
struct fib_notifier_info *i)

{
ASSERT_RTNL();
info->family = AF_INET;
net->ipv4.fib_seq++;
return call_fib_notifiers(net, event, i);

}

static int fib4_seq_read(struct net *net)
{

ASSERT_RTNL();
return net->ipv4.fib_seq +

fib4_rules_seq_read(net);
}

It seems possible to switch fib_seq to atomic_t to en-
sure the sequence counter will continue to increment mono-
tonically even if the RTNL mutex is not held anymore, pro-
vided that changes to the data structures do not cause incon-
sistencies during read operations. In the FIB case this is fine
because the normal case (FIB lookups from packet path) are
already lockless. But this means that its possible to miss up-
dates:

1. a new FIB entry gets added

2. a dump request starts, fetches current counter

3. the new FIB entry is linked into the list

4. the dump request finishes, fetches counter, dump will be
considered consistent

5. call_fib4_notifiers() is invoked and increments
the sequence counter

A function that is affected by this problem is
register_fib_notifier. The alternative is to
change fib_seq to seqcount_t type, and increment the

sequence number twice: once right before adding/removing
an entry (making the counter and odd number) and again
when the entry has been added to the internal data structures.

This would allow a dump to wait for the counter to stabilize
first to not miss the new entry. A similar sequence counter
exists in IPv6 FIB and policy rules, the same solutions can be
applied there.

netlink dumps
One nice improvement would be to always permit userspace
to perform rtnetlink dump requests regardless of normal re-
quests.

This was already attempted a couple of years ago [1] but
this change had to be reverted quickly because of a large num-
ber of RTNL mutex assumptions.

After recent changes, most parts of
rtnl_fill_ifinfo now no longer depend on the
RTNL mutex. Some notable cases that still need the RTNL
mutex are most offload-related NDO ops, such as retrieving
names of physical ports attached to switch devices, and
obtaining the name of the configured qdisc.

At the time of this writing, without RTNL mutex protec-
tion, nothing prevents free of qdisc while netlink dump re-
quest is accessing it.

Summary
The widespread use of the RTNL mutex in network config-
uration paths and the dependencies on the mutex makes it
difficult to reduce its usage, albeit not impossible. Allowing
readers to run concurrently with an application that modifies
state would be an important first step. Initial work has been
completed but the more frequently used ones, such as dumps
of routing table or qdisc stats are still unsolved.

References
[1] Dumazet, E. 2011a. net: dont hold rtnl

mutex during netlink dump callbacks. commit
e67f88dd12f610da98ca838822f2c9b4e7c6100e.

[2] Dumazet, E. 2011b. net: use
synchronize rcu expedited(). commit
be3fc413da9eb17cce0991f214ab019d16c88c41.

[3] 2017. Linux man pages project: netlink - communication
between user and kernel space. man 7 netlink. https:
//www.kernel.org/doc/man-pages/.

[4] 2017a. Linux man pages project: rtnetlink - linux
ipv4 routing socket. man 7 rtnetlink. https://www.
kernel.org/doc/man-pages/.

[5] 2017b. Linux man pages project: rtnetlink protocol.
man 3 rtnetlink. https://www.kernel.org/doc/
man-pages/.

[6] Westphal, F. 2017. rtnetlink: add rtnl flag doit unlocked.
commit 62256f98f244fbb1c7a10465e1ee412f209d8978.

https://www.kernel.org/doc/man-pages/
https://www.kernel.org/doc/man-pages/
https://www.kernel.org/doc/man-pages/
https://www.kernel.org/doc/man-pages/
https://www.kernel.org/doc/man-pages/
https://www.kernel.org/doc/man-pages/

	What is rtnetlink?
	Kernel API
	RTNL mutex problems
	rtnetlink in 4.14

	converting callbacks to not depend on RTNL lock
	RTNL removal obstacles: consistent guarantees
	RTNL removal obstacles: link ops

	Issues and ongoing work
	devinet
	IP FIB
	netlink dumps

	Summary

