
Highly-Scalable Transparent Performance Enhancing Proxy

Jae Won Chung, Xiaoxiao Jiang, Jamal Hadi Salim*, Roman Mashak*, Sriram Sridhar, Manish Kurup

Verizon Labs, *Mojatatu Networks
jae.won.chung, xiaoxiao.jiang, sriram.sridhar, manish.kurup@verizon.com, hadi,mrv@mojatatu.com

Abstract

Performance Enhancing Proxies (PEPs) are often employed to
improve degraded TCP performance caused by characteristics
of specific link environments, for example, in satellite, wire-
less WAN, and wireless LAN environments. A classical PEP
use case is to bridge two different TCP congestion avoidance
algorithms; one suitable for wireless and another for wired net-
work. By terminating an end-to-end TCP flow at the bound-
ary of the networks, PEP allows to use TCP congestion avoid-
ance algorithms designed/tuned for the environment irrespec-
tive of TCP versions used by the end-systems. One of the im-
portant traits of such PEP includes IP address transparency to
avoid masking the clients from the Internet content servers. In
this paper, we introduce a simple but effective way to build
a highly scalable transparent PEP on Linux using HAProxy,
an open-source TCP proxy, tc, containers and TProxy module.
This configuration does not require TProxy Netfilter hooks to
NAT and plumb TCP traffic to the proxy. The transparent PEP
achieved closed to 100K TCP proxy transactions per second
with 8KB object download per connection on a single server
with 14 core Sandy Bridge CPUs and a RSS enabled NIC. This
is a significant milestone in transparent PEP tuning. This talk
presents performance analysis of the chosen and alternative de-
sign options we considered.

Introduction
Transparent L4/L7 proxies are often used to implement se-
curity gateway services or to enhance end-to-end TCP per-
formance over satellite and wireless networks. The proxies
used for the latter purpose are referred to as Performance
Enhancing Proxies (PEPs) [4, 5]. Recently, PEPs are get-
ting attentions in mobile wireless industry as a way to im-
prove user-perceived network speed, i.e., object download
time and TCP throughput. Most Internet content servers use
a version of TCP designed for wired networking environ-
ment. TCP congestion control algorithms suited for wire-
lines may not work well on wireless environments charac-
terized by high bit-error-rate, larger L1/L2 queues and a wide
range of frequently changing available bandwidth, since as-
sumptions made for congestion detection and recovery may
not hold.

Recently, new generation TCP congestion control algo-
rithms [3, 2, 1] have been proposed to adapt to evolving
communication network environments. These algorithms use
RTT-based congestion feedback loop to control TCP trans-

mission rate, and thus have potential to perform better on mo-
bile wireless environments. The new generation algorithms
are being actively evaluated [7, 9, 8], although wide adoption
as a de facto Internet standard will take a little more time and
effort as their performance and fairness on various network-
ing environments and conditions need to be evaluated.

A practical way to adopt the new TCP algorithms into mo-
bile environment progressively before a wide adaptation is
to deploy transparent L4 PEPs in the wireless access net-
work borders. This paper shows a simple but effective way
to build a highly scalable transparent PEP on Linux using
HAProxy [6], an open source TCP proxy, in an attempt to
fulfill the following requirements: fast time-to-market, low
deployment and maintenance cost, and ease of adaptation to
emerging technology.

Two assumptions behind our proof of concept (PoC) trans-
parent TCP proxy service implementation were the following.
First, the proxy servers are front-ended by L3 load balancers
that forward packets from either end of a proxy flow to the
same instance. This paper does not focus on the routing or
the load balancer design. Second, the proxy would merely
serve as PEP, and would not inspective or modify the bearer
packets. This allows us to optimally splice the two sockets
minimizing kernel/user cross-space memory copies and con-
text switches.

We adopted the following three design principles: First,
maximize parallel processing by pining packets from a pair
of proxy flows to the same CPU core using receive side scal-
ing (RSS). This maximizes the chance of a core processing
incoming packet to completion, from an input direct mem-
ory access (DMA) ring to local TCP sockets to an outbound
DMA ring. Second, minimize memory access across the non-
uniform memory access (NUMA) boundary to reduce inter-
rupts and context switches. Although not a new concept in
Linux packet switching and routing domain, we show that
this design principle can be extended to socket access and
management for TCP termination service to further reduce
software interrupts. We ended up running all HAProxy in-
stances on the same NUMA node responsible for the NIC
PCI management to get the best performance.

Third, use containers to simplify transparent proxy routing
and the service orchestration. The proxy service orchestra-
tion and policy enforcement was performed at the host using
Linux Traffic Control (TC) subsystem, where service eligible



flows are mirrored to proxy container via virtual interfaces.
Within the service container, all incoming packets are routed
to local sockets in IP TRANSPARENT mode without using
TPROXY Netfilter hooks to NAT or check for local socket.
Localizing transparent proxy routing within a container helps
flexible proxy service orchestration.

Our PoC transparent proxy on a single x86 server with 14
core Sandy Bridge CPUs and a RSS enabled NIC achieved
closed to 100K TCP proxy transactions per second with 8KB
object download per connection. This paper presents perfor-
mance analysis of the chosen and alternative design options
we considered, and organized as follow. In Section Method-
ology, we explain all the experiment scenarios and test cases.
Section Bottleneck Removal describes the efforts on elimi-
nating the bottleneck for improving the performance. Exper-
iment results are demonstrated and analyzed in Section Per-
formance Results and Section Conclusions and Future Work
concludes our work.

Methodology
In this section, we describe our environment setup and trans-
parent PEP performance tuning options we considered in the
experiments.

Figure 1: End-to-End Experiment Setup

Table 1: Hardware and System Information

Architecture x86 64
Number of Sockets 2
Cores per Socket 14
Threads per Core 2

Model Name Intel Xeon E5-2648L@1.80GHz
NIC Intel XL710 40GbE

Kernel Version Linux 4.11.0

Experiment Setup
Figure 1 demonstrates the end-to-end experiment setup. In
our experiment, Ixia is employed to generate HTTP (port 80)
traffic. While Ixia runs both client and server, the x86 blade
in the middle provides the proxy service. Table 1 shows the
hardware and system information of the x86 blade.

Figure 2: PEP Overview

Table 2: Summery of Scenario Configurations

Scenario Netfilter Proxy Listen Port
NO-NF Disable 80
NF-NO-IPT Enable 80
NF-IPT Enable 1234

HAProxy is an open-source TCP/HTTP proxy offering
transparent mode of operation. We used HAProxy version
1.4 for this project. It uses IP TRANSPARENT socket option
(part of tproxy kernel feature) to terminate redirected TCP
connections as long as the destination port matches the lo-
cal listening port, and spoof the client IP when establishing a
TCP connection to the server. In addition to HAProxy config-
uration, Linux networking is configured to route the service
eligible packets to the loop-back device to which the local
proxy listen sockets are attached. This is typically done using
Netfilter TPROXY hooks and routing rules.

To localize transparent proxy routing, we created a network
container for HAProxy and isolated the proxy networking en-
vironment. Two pairs of virtual Ethernet interfaces (veth) are
configured to connect the host and container for client-side
and server-side respectively. Figure 2 describes the transpar-
ent PEP configuration. Inside the container, default route is
set to the client-side veth, and the HAProxy is configured to
bind the server-side connection to the server-side veth. Using
this approach, packets sent from HAProxy to the client take
the default route while packets from HAProxy to the server



go to the bound server-side veth interface. In addition, rout-
ing table 100 and a rule for each veth is added within the
container to route all incoming packets to the loopback de-
vice.

To differentiate traffic coming from client side and Inter-
net/server side, two VLANs are used. When Ixia sends traffic
from client to server, client-side VLAN tag is attached while
traffic from server to client is using the server-side VLAN.
When a packet arrives at the host network interface, Traffic
Control (TC) Mirred Action redirects packets based on their
VLAN tag to the corresponding container virtual interfaces.
When traffic landing into the container, TC VLAN Action
strips off the VLAN tag and put the VLAN back when traffic
sent out from the container.

Three system scenarios were considered for the perfor-
mance analysis: two scenarios without using IPTables and the
third using IPTables for traffic routing within the container. In
the first two scenarios, we configure the HAProxy to listen on
port 80, the same as Ixia generated traffic destination port.
The difference between first two system scenarios is that the
first scenario (NO-NF) uses Linux kernel without Netfilter
support and the second (NF-NO-IPT) uses kernel with Net-
filter support but without any IPTables rule. The third sce-
nario uses IPTables TPROXY target to NAT incoming port
80 packets to a local proxy service port. This gives flexibil-
ity of mapping a wide range of destination service ports to a
single local proxy port. Table 2 summarizes configurations
for the three system scenarios. In all scenarios, 20 HAProxy
processes were running in the container.

Performance Tuning Options

Table 3: Summery of All Test Cases

Scenario Proxy Splice RSS Mode NUMA
NO-NF TCP Yes Symmetric No Bind
NO-NF TCP Yes Symmetric Bind
NO-NF TCP Yes Asymmetric Bind
NO-NF TCP No Symmetric Bind
NO-NF HTTP Yes Symmetric Bind
NO-NF HTTP No Symmetric Bind
NF-NO-IPT TCP Yes Symmetric No Bind
NF-NO-IPT TCP Yes Symmetric Bind
NF-NO-IPT TCP Yes Asymmetric Bind
NF-IPT TCP Yes Symmetric No Bind
NF-IPT TCP Yes Symmetric Bind
NF-IPT TCP Yes ASymmetric Bind

Four variables considered for our proxy service per-
formance tuning are RSS mode, splicing, proxy mode
(TCP/HTTP) and proxy-NUMA binding.

RSS (Receive Side Scaling): RSS is a mechanism pro-
vided by NIC to support multiple receiving queues that dis-
tributes traffic among multiple CPUs. By configuring the
hash key in NIC, symmetrical RSS can be achieved such that
the same CPU will handle both sides of the connection. For
results shown in Section Performance Results, the NIC was
configured to RSS with 28 queues, one for each hyper-thread.

Splicing: Splicing is another technique which potentially
boosts up the proxy performance, by which two sockets can
be spliced inside kernel instead of sending traffic to the user-
space proxy.

Proxy Mode: HAProxy can be configured as either HTTP
or TCP proxy. While TCP proxy runs on layer 4 doesn’t in-
volve layer 7 examination, HTTP proxy needs to parse the
HTTP request/response in order to proxy the traffic.

Proxy-NUMA Binding: Instead of letting CPU cores from
both the NUMA nodes run HAProxy processes, we bind
those processes to the cores within the same NUMA that
manages the NIC PCI.

Totally 12 combinations were tested in this paper for show-
ing the effect of each factor. Table 3 lists of all the tests we
run in this paper.

Bottleneck Elimination
Before jumping to the transparent proxy performance evalua-
tion, we base-lined the performance of containerized service
orchestration using Linux TC subsystem. 128K TC (CLSFW
rules) graphs were created and used in the baseline setup.
The qualifying metrics are packets per second (PPS) and av-
erage latency. These metrics shall effectively assess the ca-
pability of the NIC+TC pipeline to sustain TCP/IP encapsu-
lated HTTP session traffic at some pre-determined TPS. All
the metrics are calculated by pushing traffic through our x86
blade using the Ixia traffic generator. The latency is calcu-
lated by inserting a timestamp into the packet during Tx and
calculating the differential when its received at the other end.
This requires us to cap the minimum packet size at 78 byte
packets. We used single-VLAN-tagged UDP/IP packets for
this test, since the objective was to tune raw L2/L3 band-
width through the NIC+TC subsystem in preparation for ac-
tual TCP+HTTP traffic.

For this effort, the NIC was configured to do the following:
RSS with 12 queues, use the multi queue priority (mqprio)
qdisc, tuned netdev budget usecs = 4000 and set the CLSFW
hash bucket size as 128K. Different packet sizes (78-1500
bytes) were used through the baseline tests. The mqprio
Linux queuing discipline provides a method to map multiple
traffic classes to specific hardware queues on the NIC. The
general observation was that larger packet sizes yield higher
throughput (close to 20Gbps), but this only means that PPS
is the real bottleneck, and all further attempts we made were
only to maximize PPS.

Further analysis made along this path revealed a couple
of kernel locks that were causing bottlenecks: 1) A transmit
lock in the prio qdisc causes poor performance when con-
tended by multiple cores. The prio qdisc uses a single lock to
guard accessing to NIC hardware queues (as opposed to the
mqprio qdisc). 2) A TC action context and statistics update
lock in the VLAN action was causing performance issues as
well. Both bottlenecks were resolved by using the mqprio
qdisc and modifying the TC VLAN action which is a kernel
module to use the Read Copy Update (RCU)) mechanism,
instead of a spinlock. The linux RCU provides users (ker-
nel threads/functions) a method to protect shared structures
against concurrent read/write access. Table 4 presents the re-
sults after removing the mentioned bottlenecks.



Table 4: Results after Bottleneck Removal

Pkt Size(B) Rx PPS Tx PPS Rx Mbps Tx Mbps Tx Avg. Latency (us) Rx Avg. Latency (us)
78 10M 6.8M 6240 4261 873 873

256 8.9M 7.7M 18285 15736 883 883
800 3M 3M 19417 19417 34 34
900 2.7M 2.7M 19483 19483 190 97
1500 1.6M 1.6M 19680 19680 106 105

Performance Results
This section shows the performance results of all test sce-
narios, and analyzes the impacts of the four tuning options
mentioned in Section Methodology.

Figure 3 and Figure 4 depict the performance results of
the three system scenarios: NO-NF, NF-NO-IPT and NF-IPT.
Overall, the NO-NF with all the tuning options enabled: Sym-
metric RSS, Proxy-NUMA Bounding, Splicing, TCP Proxy,
produces the best performance as 97K proxy transactions per
second (TPS) and 2.8ms of time-to-first-byte latency. Sce-
nario NF-NO-IPT has 3K less TPS and 0.2ms more latency
comparing to NO-NF, which indicates, even IPTables is not
used, the Netfilter still introduces some overheads. Similarly,
scenario NF-NO-IPT performs slightly better than NF-IPT,
however the difference is insignificant (1% for TPS and 3%
for latency) as NF-IPT uses only a single stateless TPROXY
NAT rule.

Initially, in order to validate NUMA overhead for packet
processing, we tried RSS on all the cores across both NUMA
nodes. As expected, we got a poor performance low as 20K
TPS. Thus, we decided to RSS on the first NUMA node
responsible for NIC PCI management for the rest of our
tests. As shown in the results, symmetric RSS having the
same CPU core to handle data and acknowledge packets from
both end of TCP proxy connection pairs improves the per-
formance. Comparing to asymmetric RSS, symmetric RSS
supports 2% more TPS and 3% to 6% less time-to-first-byte
latency.

We found that not binding HAProxy processes to the same
NUMA node where packets ingress severely hurts the proxy
performance even when splicing is used. This is because
NUMA overhead applies to socket structure access. For all
the three system scenarios, the TPS drops around 10% to 14%
when HAProxy processes are not bounded to the first NUMA
node. The time-to-first-byte latency also decreases by 14%,
20% and 32% for NO-NF, NF-NO-IPT and NF-IPT system
scenarios respectively as the traffic load on the systems is de-
creased.

Although TCP proxy does fulfill our requirements, we are
still interested in understanding the performance of HTTP
proxy and seeing how much overhead it can introduce. As
expected, Figure 5 and Figure 6 show that due to extra load
of HTTP request and response header processing, the proxy
performance reduces dramatically when HTTP proxy mode
is used. TPS of HTTP proxy drops by 23K (23.7%) and time-
to-first-byte latency increases by 1.6ms (57%) comparing to
the TCP proxy. Due to the huge performance impact, it is rec-
ommended to use HTTP proxy mode only when necessary.

Next, we investigate the impact of socket splicing option

Figure 3: TPS Impact of RSS Mode

Figure 4: Latency Impact of RSS Mode

provided by Linux kernel. By turning the splicing feature off,
the TPS decreases about 3K (3%) and latency increases by
0.3ms (10%) when HAProxy is running on TCP mode. Since
we are transmitting objects with very small size (8KB), the
advantage of splicing is insignificant. We are expecting more



Figure 5: TPS Impact of TCP Splicing

Figure 6: Latency Impact of TCP Splicing

performance gain from splicing for larger object transfers. On
the other side, for HTTP proxy, the splicing little impacts the
performance. TPS stays the same when splicing is turned
off, and time-to-first-byte latency is even improved by 18%.
This is because, although HTTP response header is given to
the client-side socket, the splice system call delays the initial
move of the remaining response data to the client-side socket
which waits for enough data to generate the first packet for
efficiency reason.

Conclusions and Future Work
In this paper, we introduce a simple but effective way to
build a highly scalable transparent PEP on Linux using open-

sourced HAProxy. When Netfilter is completely disabled,
our transparent PEP with 14 core Sandy Bridge CPUs and
symmetric RSS enabled NIC achieved closed to 100K proxy
transactions per second for 8KB download object sizes. This
paper also identifies and evaluates major proxy performance
tuning design considerations on NUMA architecture.

In the future, we would like to continue our work to eval-
uate transparent PEP performance on more realistic traffic
models. We are also interested in investigating TC scaling as
a tool for containerized service orchestration, and XDP scal-
ing as a mean to enforce service bypass rules.

Acknowledgment
We want to thank our colleagues, Damascene Joachimpil-
lai, Mark Richardson, Anh Quach and Rekha Sundararajan,
who provided insight and expertise that greatly assisted this
project.

References
[1] Alizadeh, M.; Greenberg, A.; Maltz, D. A.; Padhye, J.;

Patel, P.; Prabhakar, B.; Sengupta, S.; and Sridharan, M.
2010. Data Center TCP (dctcp). In ACM SIGCOMM Com-
puter Communication Review, volume 40, 63–74. ACM.

[2] Brakmo, L. 2010. TCP-NV Congestion Avoidance for
Data Centers. In Proceedings of the Linux Plumbers Con-
ference 2010.

[3] Cardwell, N.; Cheng, Y.; Gunn, C. S.; Yeganeh, S. H.;
and Jacobson, V. 2016. BBR: Congestion-Based Conges-
tion Control. ACM Queue 14, September-October.

[4] Dukkipati, N.; Mathis, M.; Cheng, Y.; and Ghobadi, M.
2011. Proportional Rate Reduction for TCP. In Proceed-
ings of the 2011 ACM SIGCOMM Conference on Internet
Measurement Conference, IMC ’11.

[5] Flach, T.; Papageorge, P.; Terzis, A.; Pedrosa, L.; Cheng,
Y.; Karim, T.; Katz-Bassett, E.; and Govindan, R. 2016.
An Internet-Wide Analysis of Traffic Policing. In Pro-
ceedings of the 2016 conference on ACM SIGCOMM 2016
Conference, 468–482.

[6] http://www.haproxy.org/. HAProxy, The Reliable, High
Performance TCP/HTTP Load Balancer.

[7] Li, F.; Chuang, J. W.; and Jiang, X. 2017. Driving TCP
Congestion Control Algorithms on Highway. In Proceed-
ings of Netdev 2.1.

[8] Nguyen, B.; Banerjee, A.; Gopalakrishnan, V.; Kasera,
S.; Lee, S.; Shaikh, A.; and Van der Merwe, J. 2014. To-
wards Understanding TCP Performance on LTE/EPC Mo-
bile Networks. In Proceedings of the 4th Workshop on All
Things Cellular: Operations, Applications, & Challenges,
41–46.

[9] Snellman, J. 2015. Mobile TCP Optimization: Lessons
Learned in Production. Technical report, Telco. Networks.


