
TTCN-3 and Eclipse TITAN for testing protocol stacks

Harald Welte
sysmocom - systems for mobile communications GmbH

Berlin, Germany
laforge@gnumonks.org

Abstract

Implementations of networking protocol stacks are in need of
thorough testing in order to ensure not only their security, but
also their interoperability and compliance to relevant standards
and specifications. Implementing test suites for verification of
implementations of TCP/IP communications protocols in the
IETF world has traditionally been done in any number of ways,
by using general-purpose programming languages such as C,
C++, Java, Python and others. In the ITU/ETSI world, TTCN-
3 has been develpoed as a domain-specific language for the
specific use case of writing protocol conformance tests. This
paper acts as an introduction into both TTCN-3 as well as an
open source TTCN-3 compiler, Eclipse TITAN.

Keywords
TTCN-3, conformance testing, protocol testing, validation,
TITAN

Introduction
Protocol Testing
Testing network protocols is important for a variety of rea-
sons, such as
• conformance to a specification
• ensuring interoperability, including quirks for known-

broken other implementations
• network security

The focus of this paper (as well as the focus of TTCN-
3) is functional testing. It is not primarily performance test-
ing, though some people use TTCN-3 even in those scenarios.
The fact that it’s not a scripted language or a VM but a com-
piled language executing native code helps with that.

In the implementation of a functional test of a given com-
munication protocol, there are typically repeating patterns of
certain building blocks, such as
• encoding and decoding messages between their wire for-

mat and some higher-level representation
• matching received messages against templates to validate

their contents or act depending on various parts of their
contents

• waiting for any number of different events/conditions
guarded by one or multiple timers

TTCN-3 offers unique language capabilities to address re-
lated problems in a very productive and expressive way.

The TTCN-3 Language
TTCN was originally called the Tree and Tabular combined
Notation, but has since been renamed to the Test and Testing
Control Notation. It is a purpose-built language with the sole
purpose of implementing testing.

History TTCN has been designed as an internationally
standardized language purely for testing. Its origins go back
to 1883, when ISO was working on Open Systems Intercon-
nection (OSI) conformance testing methodology and frame-
work. It was first standardized as ISO 9646-3 in 1992. Within
the ITU / OSI / ISO world, TTCN was well-established and
widely used in conformance tests for protocols like those used
in ISDN.

In 1997, STF 133 was formed by ETSI MTS to produce
TTCN version 3 in co-operation with ITU-T SG10. Main
contributions from Nortel, Ericsson, Telelogic, Nokia. More
than 200 members participated in the STF133 discussion
group, and the language was finally standardized in October
2000.

Ever since, TTCN-3 has gained widespread adoption
within the telecom industry. Several major telecom equip-
ment vendors such as Nokia and Ericsson have publicly dis-
closed some of the extensive in-house testing they do using
TTCN-3. A market of TTCN-3 compilers and tools has been
well-established, but the proprietary nature of those compil-
ers and toolchains has put TTCN-3 out of reach from the Free
Software community.

Meanwhile, as the classic telecom sector became more
and more involved with IP and Internet technologies, con-
formance testing specifications / test suites for Internet cen-
tric protocols have been developed by telecom standardiza-
tion bodies.

For example, ETSI has meanwhile developed and pub-
lished test suites for IPv6, SIP, DIAMETER, electronic
passports, DMR (Digital Mobile Radio) and 6LoWPAN in
TTCN-3. Those test suites are available via the ETSI
Subversion repository that can be browsed at http://
oldforge.etsi.org/websvn/

Also, TTCN-3 test suites have been specified by other bod-
ies for technologies and protocols such as CoAP, MQTT in

http://oldforge.etsi.org/websvn/
http://oldforge.etsi.org/websvn/

the IoT area, or MOST and AUTOSAR in the automotove
domain.

Eclipse TITAN
Around 2000, Ericsson internally started development of a
TTCN-3 toolchain, which developed into a complete, proven
product that was adopted and is used extensively both inside
Ericsson, as well as licensed to third parties. Over the years,
it has developed into approximately 300,000 lines of Java and
1,6 million lines of C++ code, including extensive self-testing
code for TITAN.

TITAN includes not only a TTCN-3 compiler for translat-
ing TTCN-3 to C++ and the corresponding runtime libraries,
but also a number of other tools, such as a parallel executor
for executing test components and result reporting, a Make-
file generator, log filtering, report generator, coverage analy-
sis and much more.

Being a commercially developed and supported tool, TI-
TAN also includes a set of extensive user and developer man-
uals.

In 2015, Ericsson decided to transform TITAN into an open
source project under the umbrella of the Eclipse foundation.
It is subsequently licensed under Eclipse Public License. Un-
like other large software projects developed as proprietary
software and dumped to the community, this did not mark
the end of Ericsson involvement. To the contrary, the are very
active in maintenance of the software ever since, with daily
commits to the public git repositories by the Ericsson team,
regular releases and participation on forums and mailing lists.

While Eclipse Titan has some optional GUI components
within the Eclipse IDE framework, such as the Titan Designer
and Titan LogViewer, neither the compiler nor the runtime li-
braries for executing the actual test suites require those UI
components. The entire toolchain can be used from the com-
mand line, driven from classic Makefiles.

Together with the TTCN-3 compiler and utilities, Erics-
son has also been releasing an ever-growing list of TTCN-3
source code implementations for a variety of protocols. This
includes native TTCN-3 implementations of IP, ICMP, IPv6,
L2TP, GRE, HTTP, ICMP, RTP, SCTP, SDP, TCP and UDP.
It also includes test ports for using the underlaying operating
system protocol stack(s), such as the IPL4asp for using the
regular socket API as provided by Linux+libc.

Key TTCN-3 Language Features
TTCN-3 is a high-level, abstract language. The code itself is
platform independent, as well as test environment indepen-
dent. In TTCN-3, you define only the abstract messages/sig-
nals as they are exchanged between the test system and the
tested entity. The transport layers and connections are pro-
vided and handled by the tools Message encoding (serializa-
tion) and decoding (deserialization) is part of the tool/envi-
ronment, and not part of the test definition itself.

The strong points of TTCN-3 for use in protocol tests are:
• A rich data/type system
• Parametric templating and powerful template matching
• Behavior specification using the alt and default behaviors
• Separation of tests, test adapter and codec

TTCN-3 data/type system
TTCN-3 is a strongly typed language. This provides the
advantage that many type incompatibilities can already be
caught at the compile time, as opposed to weakly typed lan-
guages, where type errors are often only discovered at run-
time and are hence hard to catch, particularly in rarely used
code such as error paths.

Basic types The simple basic types of TTCN-3 include
integer, float, boolean.

There verdicttype is a special type for storing the pre-
liminary and final verdicts of test execution. It has five dis-
tinct values: none, pass, inconc, fail, error. The
useful property is that a verdicttype varialbe can only get
worse, but never better. So if any part of a test case has ever
set the verdict to fail or error, no follow-up assignments
of the variable can ever turn it into pass anymore. This
greatly simplifies control flow handling in erroneous condi-
tions while writing test cases.

Basic strign types include bitstring, hexstring,
octetstring, charstring (IA5) as well as
universal charstring (UCS-4).

Structured Types Using the record, set, union,
record of and set of TTCN-3 structured types, pro-
grammers can create abstract container types.

TTCN-3 also knows a enumberated type, like many
other programming languages.

Not-used and omit Until any variable or field of a struc-
tured type has been assigned an explicit value, it is unbound.
Whenever a value is expected, and that value is unbound, the
TTCN-3 runtime will create an error. It’s therefore not possi-
ble to e.g. accidentially encode unspecified data!

If the programmer wishes to explicitly state that a struc-
tured type’s optional field is not present, the special value
omit may be used.

Sub-Typing You can derive a new child type from an ex-
isting parent type by restricting the new type’s domain to a
subset of the parent type’s value domain. You can use various
sub-typing constructs such as value range, value list, length
restriction and patterns, see Listing 1.

Listing 1: Example of TTCN-3 sub-typing
t y p e i n t e g e r MyIntRange (1 . . 1 0 0) ;
t y p e i n t e g e r MyIntRange8 (0 . . i n f i n i t y) ;
t y p e c h a r s t r i n g MyCharRange (” k ” . . ”w”) ;

t y p e c h a r s t r i n g SideType (” l e f t ” , ” r i g h t ”) ;
t y p e i n t e g e r MyIn tL i s tRange (1 . . 5 , 7 , 9) ;

t y p e r e c o r d l e n g t h (0 . . 1 0) o f i n t e g e r RecOf In t ;

t y p e c h a r s t r i n g CrLfTe rmSt r ing (p a t t e r n ”∗\ r \n ”) ;

Parametric templates
When sending messages of a given protocol, templating helps
in abstraction, readability and productivity. TTCN-3 has
quite extensive templating capabilities.

Templates can be parametric, i.e. they can take arguments
just like you would have function arguments in an encoding
function in a C program.

Listing 2: Example of parametric templates
t y p e r e c o r d MyMessageType {

i n t e g e r f i e l d 1 o p t i o n a l ,
c h a r s t r i n g f i e l d 2 ,
b o o l e a n f i e l d 3

} ;

t e m p l a t e MyMessageType t r MyTempla te
(b o o l e a n p l p a r a m) := {

f i e l d 1 := ? , / / p r e s e n t , b u t any v a l u e
f i e l d 2 := (”B” , ”O” , ”Q”) ,
f i e l d 3 := p l p a r a m

} ;

Templates can be hierarchical, so from the most generic to
the most specific case, you can specify ever more concrete
templates, depending on the need.

Templates can further be specified as subset,
superset, permutation (any order of elements).

Templates can also be used for the receiving side. Here, an
incoming, already-decoded message is matched against one
or multiple receive templates. Matching against a fixed tem-
plate wouldn’t give much improvement over e.g. compar-
ing with a ’const struct’ in a C-language test case. However,
TTCN-3 templates can have wild-cards and pattern matching.

The built-in match() function can be used to determine
if a received message (or actually any value) matches the tem-
plate. Even more so, the fundamental receive() func-
tion, which is used to receive any inbound message from a
test port, has built-in matching capability, so explicit calls of
match() are rarely required. See Section 5 below.

TTCN-3 + TITAN encoders/decoders
The data/type system of TTCN-3, extended by non-standard
capabilities of TITAN allows describing the messages of
practically all possible protocols. The programmer can fo-
cus on expressing the structure/syntax of the protocol, rather
than having to write an encoder/decoder by hand.

TTCN-3 specifies ways of importing other data types or
schema definitions, for example ASN.1, IDL, XSD (XML)
and JSON. TITAN allows adding encoding instructions as
annotations to the TTCN-3 type definitions to automatically
encode/decode them into binary or textual forms, XML or
JSON or ASN.1 (BER/CER/DER).

Import of the formal definition of a protocol works of
course only for such protocols that have a formal definition of
their encoding. While this is more often the case in modern
telecom protocols, it is not so often the case in the TCP/IP/I-
ETF world. This is where the TITAN binary and text en-
coder/decoder come into play.

Listing 3 uses the TTCN-3 type language with TITAN bi-
nary codec extensions to describe a UDP heaer. We first
define a LIN2 BO LAST type as an unsigned 16bit inte-
ger with little-endian byte order, then use this to define the
UDP header as a record of four such integers to finally de-
fine a UDP packet as a record consisting of the header and a

variable-length octetstring as payload. Note the LENGTHTO
and LENGTHINDEX notation to express that the ”len” field
of the header is set to the combined length of the header and
the payload of the packet.

Listing 3: Example of TITAN binary codec LENGTHTO
t y p e i n t e g e r LIN2 BO LAST (0 . . 6 5 5 3 5) wi th
{ v a r i a n t ”FIELDLENGTH (1 6) ,

COMP(n o s i g n) ,
BYTEORDER(l a s t) ”

} ;

t y p e r e c o r d UDP header {
LIN2 BO LAST s r c p o r t ,
LIN2 BO LAST d s t p o r t ,
LIN2 BO LAST len ,
LIN2 BO LAST cksum

} wi th { v a r i a n t ”FIELDORDER(msb) ” } ;

t y p e r e c o r d UDP packet {
UDP heasder h e a d e r
o c t e t s t r i n g p a y l o a d

} wi th {
v a r i a n t (h e a d e r) ”LENGTHTO(header , p a y l o a d) ,

LENGTHINDEX(l e n) ”
} ;

The next example in Listing 4 contains a partial definition
of the GRE header, where individual flag bits at the begin-
ning of the header determine if certain optional fields at some
later part in the header are present or not. The PRESENCE()
attribute of the TITAN binary codec provides an elegant so-
lution to express this:

Listing 4: Example of TITAN Binary codec PRESENCE
t y p e r e c o r d GRE Header {

BIT1 c s u m p r e s e n t ,
BIT1 r t p r e s e n t ,
BIT1 k e y p r e s e n t ,
. . .

OCT2 p r o t o c o l t y p e ,
OCT2 checksum o p t i o n a l ,
OCT2 o f f s e t o p t i o n a l ,
OCT4 key o t i o n a l ,
. . .

} wi th {
v a r i a n t (checksum) ”PRESENCE(c s u m p r e s e n t = ’1 ’ ,

r t p r e s e n t = ’1 ’B) ”
v a r i a n t (o f f s e t) ”PRESENCE(c s u m p r e s e n t = ’1 ’B ,

r t p r e s e n t = ’1 ’B) ”
v a r i a n t (key) ”PRESENCE(k e y p r e s e n t = ’1 ’B) ”

Much more complex constructs are possible in the TTIAN
binary codec, e.g. the extension octet concept found in many
telecom protocols.

Abstract Communications Operations
Abstract communications happens on the test ports which
connect the test case of the abstract test suite (ATS) with the
implementation under test (IUT). TTCN-3 supports abstract
communications operations for both asynchronous and syn-
chronous communication.

Asynchronous communication is what is typically used to
send and receive messages with the IUT. The send() func-
tion is non-blocking, while receive() is blocking1. Arriv-
ing messages stay in the incoming queue of the destination
part. MEssages are sent in order. The receive operation ex-
amines the first message of the port’s queue, but extracts it
only if the message matches the receive operations template.

Listing 5: Example receive() operation
t e m p l a t e MsgType MsgTemplate := { /∗ v a l i d ∗ / } ;
v a r MsgType MsgVar ;
P o r t R e f . r e c e i v e (MsgTemplate) −> v a l u e MsgVar ;

Program Control and Behavior specification
TTCN-3 offers the usual program control statements that C
programmers are familiar with: if-clauses, for-, while-
and do-while loops, including break and continue. It
also offers somehing like the switch statement of C, but it
is called select in TTCN-3. Furthermore, goto and asso-
ciated labels are supported, although again with slightly dif-
ferent syntax than in C.

Beyond those, TTCN-3 offers a couple of unique so-called
behavioral control statements which are further illustrated be-
low.

The alt statement In testing, quite often one is waiting for
one or multiple received messages, guarded by one or multi-
ple timeouts. The blocking semantics of receive() means
we need some kind of a non-blocking alternative. In TTCN-
3, this is achieved by the alt statement, which declares a set
of alternatives which can happen, but must not happen.

The below example Listing 6 shows a code example that
first sends a message through port P, and then waits for either

• a response from port P matching the template resp, at
which point it will set the verdict of the test to pass and
leave the alt.

• any other message on any other port, which it will receive
but ignore, and repeat the alt.

• a timeout of the timer T, which will set the verdict to fail
and leave the alt.

Listing 6: Example alt statement
P . send (r e q) ;
T . s t a r t ;
a l t {

[] P . r e c e i v e (r e s p) { s e t v e r d i c t (p a s s) ; }
[] any p o r t . r e c e i v e { r e p e a t ; }
[] T . t i m e o u t { s e t v e r d i c t (f a i l) ; }

}

The [] at the beginning of each line in Listing 6 is the
guard expression which can be used to restrict whether a
given alternative is eligible or not. This can e.g. be used
by state machines to allow certain processing only in certain
states.

1See the alt behavioral statement to achieve non-blocking se-
mantics

Experience shows that in more complex tests suites, there
will be many alt with partially repeating content, such as e.g.
the case when the main execution timer times out, which al-
ways leads to fail. Rather than open-coding those alternatives
again and again over the code, they can be abstracted out as
so-called altstep. Those altsteps can then be activated/deacti-
vated and then become active without any explicit code inside
each and every alt.

The interleave statement In alt, one of the stated events
must happen in order for the control flow to continue after the
statement. The interleave statement offers an different
behavior in which all events must happen exactly once, in
any order.

Listing 7: Example interleave statement
i n t e r l e a v e {

[] P . r e c e i v e (1) { . . . }
[] Q. r e c e i v e (4) { . . . }
[] R . r e c e i v e (6) { . . . }

}

Fuzzing extensions
As the TTCN-3 type notation contains stringent information
about what values are permitted, it is normally not possible
to create illegal values. TITAN introduces the erroneous
extension which can be usd to generate invalid messages, e.g.
those missing mandatory fields, with invalid values, etc.

Test execution
The test suite, comprised of any number of individual test
cases is executed by the TITAN executor. The executor takes
care of starting any of the parallel test components (on the
local host or even on remote hosts), performing the test cases
as indicated by either the command line, or by the configura-
tion file, or in absence of that by the compile-time default list
of testcases in the (control) section of the TTCN-3 code.
It also manages opening all configured log files / plugins, as
described below. The test executor is typically started using
the ttcn3 start program.

Configuration File
Every TITAN test suite has a configuration file, where many
aspects of test execution can be specified. Among oth-
ers, you can configure the log verbosity of the TITAN-
internal logging. There are different log masks for the log
file (FileMask) and for the console (FileMask). One
extremely useful feature is the TTCN MATCHING logging,
which will provide detailed information about the exact (even
nested) field of a value that did not match in any explicit or
implicit matching against a template. Another useful example
is TTCN ENCDEC, which will automatically log the input and
output of every encode/decode function, which is very useful
during debugging of codec problems.

Log Files
TITAN writes log files in a structured format, which makes
them easy to parse by downstream log-processing tools. Ev-
ery parallel test component will write its own log file. As logs

are timestamped, the ttcn3 logmerge tool can be used to
splice the individual log files into each other, providing one
log file of all components, sorted by timestamps.

The ttcn3 logformat tool can be used to convert the
single-line nested value representation into a multi-line for-
mat with proper indenting which is more easy to understand
as a human. Compare this to e.g. JSON or XML pretty-
printing.

Junit-XML output plugin
The TITAN runtime understands the concept of log output
plugins. Such plugins can be custom-developed to generate
whatever output format from test case logs / results as needed.
A number of standard plugins are included, among them the
capability to write Junit-XML output, which is a standard for-
mat for reporting test results in a machine-readable format.
This format is understood by the popular Jenkins continuous
integration software, so that one can easily feed per-testcase
results into the Jenkins test results analyzer as part of a CI test
suite.

Acknowledgments
The author acknowledges that like everyone in Free Software,
he is merely standing on the shoulders of giants2. Without
the work of the ITU and ETSI on the TTCN-3 Language and
without the release of Eclipse TITAN as Free Software by
Ericsson, he would not have been able to discover TTCN-3.

Special thanks go to Elemer Lelik for his responsiveness
and help in getting started with TITAN, as well as the excel-
lent support of the TITAN team for fixing any bugs I reported
in virtually no time.

References
[3] TTCN-3 Tutorial ETSI Centre for Testing and Interoper-

ability http://www.ttcn-3.org/files/ETSI_
TTCN3_Tutorial.pdf

[2] TTCN-3 Course Presentation Material Ericsson
Test Solutions and Competence Center http://www.
ttcn-3.org/files/TTCN3_P.pdf

[3] ETSI svn repository http://oldforge.etsi.
org/websvn/

2In this case, maybe rather on the shoulders of titans?

http://www.ttcn-3.org/files/ETSI_TTCN3_Tutorial.pdf
http://www.ttcn-3.org/files/ETSI_TTCN3_Tutorial.pdf
http://www.ttcn-3.org/files/TTCN3_P.pdf
http://www.ttcn-3.org/files/TTCN3_P.pdf
http://oldforge.etsi.org/websvn/
http://oldforge.etsi.org/websvn/

	Keywords
	Introduction
	Protocol Testing
	The TTCN-3 Language
	Eclipse TITAN

	Key TTCN-3 Language Features
	TTCN-3 data/type system
	Parametric templates
	TTCN-3 + TITAN encoders/decoders
	Abstract Communications Operations
	Program Control and Behavior specification
	Fuzzing extensions

	Test execution
	Configuration File
	Log Files
	Junit-XML output plugin

	Acknowledgments

