
TC Flower Offload

Simon Horman
Netronome

simon.horman@netronome.com

Abstract

The TC Flower Classifier allows control of packets based on
flows determined by matching of well-known packet fields and
metadata. This is inspired by similar flow classification de-
scribed by OpenFlow and implemented by Open vSwitch. Off-
load of the TC Flower classifier and related modules provides
a powerful mechanism to both increase throughput and reduce
CPU utilisation for users of such flow-based systems. This
presentation will give an overview of the evolution of offload
of the TC Flower classifier: where it came from, the current
status and possible future directions.

Introduction
Packet processing may be viewed as a sequence operations
a packet passes through from ingress to its ultimate destina-
tion; typically egress or being dropped. Historically many
datapath implementation have been fixed-function, arranged
into tables where packets are successively matched, acted on
using actions and optionally passed to a subsequent table.

In one sense such an architecture is a sequence of one or
more match/action rules, where a packet classifier seeds a
flow key describing the packet and determines if any of the
rules present in the table match the packet. If so the ac-
tions associated with the rule are executed. If not fall-through
occurs, for example the passing the packet to the next pre-
defined processing stage.

The TC flower classifier, part of the TC subsystem in the
Linux kernel, provides a mechanism to describe matches on
packets using a flow key it defines. Currently the flow key
may include both fields extracted from packet fields and op-
tionally tunnel metadata. TC actions may be used to per-
form drop, modify, output and a variety of other operations
on packets.

This mechanism is similar to that described by OpenFlow
and implemented in Open vSwitch. It is the authors under-
standing that TC Flower was originally designed to some ex-
tent with them in mind.

Flower Implementation Overview
Flower makes use of the Linux flow dissector to extract
packet data into a flow key. The keys of interest are passed
as parameters to the flow dissector and only these keys are
populated by it in the resulting flow key.

The populated flow key is masked and matched against the
rules of the classifier. If a match is found then actions of the
matching rule, if any, are executed.

The implementation currently only allows only one mask
per priority-level and matches against different masks must be
assigned to classifiers at different priority levels. If matches
are not disjoint then some care must be taken in ordering the
priorities of classifiers accordingly.

As of v4.14-rc4 the supported flow key matches are as fol-
lows.

Metadata Fields:
Field Maskable
Input Device No

Unlike other matches, the input device is not currently pop-
ulated by the flow dissector. Rather it is populated directly
from a packet’s skb metadata.

Packet Data Fields:
Field Maskable
Ethernet Source Address Yes
Ethernet Destination Address Yes
Ethernet Type No
IP Protocol No
IPv4 or IPv6 Source Address Yes
IPv4 or IPv6 Destination Address Yes
TCP, UDP or SCP Source Port Yes
TCP, UDP or SCP Destination Port Yes
VLAN ID No
VLAN Priority No
ICMPv4 or ICMPv6 Type Yes
ICMPv4 or ICMPv6 Code Yes
ARP SIP Yes
ARP TIP Yes
ARP Op Yes
ARP SHA Yes
ARP THA Yes
MPLS TTL No
MPLS BoS No
MPLS TC No
MPLS label No
TCP Flags Yes
IPv4 or IPv6 TOS Yes
IPv4 or IPv6 TTL Yes

Tunnel Metadata Fields:
Field Maskable
Encap. Key ID No
Encap. IPv4 or IPv6 Source Address Yes
Encap. IPv4 or IPv6 Destination Address Yes
Encap. UDP Source Port Yes
Encap. UDP Destination Port Yes
Encap. Flags Yes
Encapsulation flags is used to allow a match to differentiate

between fragments and non-fragments.
Like other TC classifiers flower may be used in conjunction

with a range of actions including csum, gact, mirred, pedit,
skbmod, tunnel key and vlan.

An example usage of the TC flower classifier is as follows,
it drops IPv4/SCTP packets received on eth0 whose destina-
tion port is 80.

tc qdisc add dev eth0 ingress
tc filter add dev eth0 protocol ip \

parent ffff: \
flower ip_proto sctp \

dst_port 80 \
action drop

Hardware Offload
Motivation
In the case of the flower (and BPF) offload implemented in
the Netronome NFP driver the aim is to give both improved
throughput across a variety of work-loads.

History
The git kernel history indicates that the origins of the
current support for TC hardware offload lie in work by
John Fastabend to add support for offloading to HW based
QoS schedulers[1]. This work introduced ndo setup tc and
was accepted for inclusion in v2.6.39 in January 2011.

In February 2016 John Fastabend added further HW off-
load support extending the use of ndo setup tc to allow off-
load of TC classifiers. This included an offload of the u32
classifier[2]. This work was included in v4.6.

In v4.14-rc4 ndo setup tc is used to offload the BPF,
flower, u32 and matchall classifiers as well as mqprio.

Mechanism
When a TC flower rule is added flower determines the off-
load device, if any, of the flow. An offload device is one that
has the NETIF F HW TC feature enabled and implements
ndo setup tc. First the device to which the rule is attached
is checked and if it is an offload device it is used. If not the
actions of the rule is scanned for a mirred action (that out-
puts to a device). The device of the first such action is then
checked to see if it is an offload device. If so it is used, if not
the flow is not offloaded.

The above scheme works for cases where rules are added
directly to an offload device, for example dropping packets
received on a device with offload capabilities. And adding
rules to software devices which output to an offload device,
for example tunnel decapsulation followed by output to a de-
vice with offload capabilities. It does not, however, handle

adding rules to software devices that also output to software
devices.

If an offload device is found rule is passed to its
ndo setup tc implementation. This implementation may re-
ject a rule for any reason including that any part of match,
actions or combination thereof is not supported; and lack of
space on the device for a new rule. This allows drivers and
moreover offload devices themselves to ultimately determine
which rules are not offloaded.

Policy
Hardware offload may be enabled and disabled on a per-
netdev basis using the NETIF F HW TC feature which may
be toggled using ethtool:
ethtool -K eth0 hw-tc-offload on
ethtool -K eth0 hw-tc-offload off

Hardware offload may also be controlled on a per-
rule basis using the TCA CLS FLAGS SKIP HW and
TCA CLS FLAGS SKIP SW flags. These flags are mutually
exclusive.
• skip-hw denotes that the rule will be added to software but

not hardware. An error is reported if adding the flow cannot
be added to software.

• skip-sw denotes that the rule will be added to hardware but
not software. An error is reported if adding the flow cannot
be added to hardware.

• The default behaviour is to try to add the rule to both hard-
ware and software. No error is returned if the flow cannot
be added to harware but error is reported if the flow cannot
be added to software.
Two flags, TCA CLS FLAGS IN HW and

TCA CLS FLAGS NOT IN HW are provided to allow
the kernel to report the presence of a rule in hardware. The
tc command-line tool makes use of the TCA CLS described
above to allow the user to control and inspect the placement
of rules in hardware and software. The example below uses
the skip sw parameter to tc to add a rule to hardware but not
software.
tc qdisc add dev eth0 ingress
tc filter add dev eth0 protocol ip \

parent ffff: \
flower skip_sw \

ip_proto sctp dst_port 80 \
action drop

This is reflected in the flow reported. in hw indicates un-
ambiguously that the flow is present in hardware.
tc filter show dev eth3 ingress
filter parent ffff: protocol ip

pref 49152 flower chain 0
filter parent ffff: protocol ip
pref 49152 flower chain 0
handle 0x1
eth_type ipv4
ip_proto sctp
dst_port 80
skip_sw
in_hw

...

Future Enhancements
As described earlier the TC flower classifier already allows
matching on a wide range of layer 2 through 4 header fields
and tunnel metadata. There does, however, appear to be some
scope to extend match coverage to include IPv6 Neighbour
discovery and label and Geneve options.

There also appears to extend existing support for exact-
match on fields of MPLS label stack entries to allow masked
matches.

Lastly, while stateless matching is well supported there is
currently no support for matching on stateful flow informa-
tion. It seems that in conjunction with an appropriate ac-
tion flower could support matching on connection state de-
termined by conntrack.

Such a scheme could take inspiration from the conntrack
support implemented in the Open vSwitch Linux kernel data-
path whereby packets are passed to a conntrack action. After
processing by that action a packet-classification occurs for
a second time and may match on conntrack states. Such
a scheme would allow enhanced security policies to be de-
scribed by TC flower rules.

Conclusion
The TC flower classifier when used in conjunction with TC
actions provides a rich mechanism to allow the construction
of match/action datapaths with one or more table. The Linux
kernel provides both a software implementation of this data-
path and a control plane that may be used to configure both
this software implementation and hardware implementations.

On the matching side this mechanism implements stateless
matching on a variety of packet fields as well as tunnel meta-
data. And on the action side a variety of operations are sup-
ported including drop, output with and without cloning of the
packet, and modification of packet fields and tunnel metadata.

This mechanism seems well suited being enhanced to cover
more packet header fields and stateful information provided
by conntrack.

Bibliography
References

[1] Fastabend, J. 2011a. net: implement mechanism for hw
based qos. git.kernel.org. commit id: 4f57c087de9b.

[2] Fastabend, J. 2011b. net: sched: add cls u32 off-
load hooks for netdevs. git.kernel.org. commit id:
a1b7c5fd7fe9.

