
Analysis and Evaluation of TCP Congestion Algorithms 

Lawrence Brakmo 
 

Facebook 
Menlo Park, USA 
brakmo@fb.com 

 
 

Abstract 
The development of new congestion algorithms for TCP 
has continued for almost 30 years. Starting with Van Ja-
cobson’s seminal work on congestion avoidance and con-
trol[8] in 1988 to the development of BBR[13][11] in 
2016, we have seen many interesting approaches to the 
basic problem of how to best use the available bandwidth. 
The fact that so much work has occurred in this area attests 
to the inherent difficulty of the problem. 
 In this paper, we analyze and evaluate some of the most 
relevant TCP congestion algorithms available in Linux. We 
use Cubic[14] as the baseline since it is the current default 
congestion algorithm. In addition to Cubic, we have chosen 
the following congestion algorithms to evaluate: Reno, 
DCTCP[12], NV[5], and BBR. 
 
 

Keywords 
TCP, Linux, congestion algorithms, Cubic, BBR, DCTCP, NV 
 

 Introduction 
The basic problem that a congestion algorithm attempts to 
solve is how to fully, and fairly, utilize the available band-
width in a connection’s path. Early works in this area ana-
lyzed the simplest cases, where there were only one or two 
flows, and very little noise in the measurements. Under 
these simplifications they were able to develop algorithms 
that behaved well in theory. 
 The problem is that reality is seldom sympathetic to 
theory. As a result, many of these algorithms were never 
used in actual systems. The problems that a congestion al-
gorithm tries to solve are very hard. The fact that in actual 
practice there will be many unrelated flows makes the 
problem even harder. At its most basic, a congestion algo-
rithm is a mechanism so that many unrelated flows can use 
all of the available bandwidth without overshooting it so 
much that queues fill up, increasing latency and creating 
packet drops. 
 For example, consider when a new flow starts and it 
has no knowledge of the available bandwidth. It has to 
probe the network in order to find the available bandwidth. 
TCP uses slow-start, doubling the size of the congestion 
window (cwnd) every RTT, for this purpose. That is, TCP 
will start with a “slow” exponential growth in the cwnd 
(and rate as long as there is enough bandwidth). Slow-start 

typically ends with large packet losses. Congestion avoid-
ance mechanisms such as those in NV, DCTCP, BBR or 
hystart in Cubic can reduce or prevent these losses. 
 Now, suppose the flow could “magically” know the 
available bandwidth. What should it do? Should it just start 
immediately at that rate? What if there were 2 flows start-
ing at the same time and both try to use the available band-
width at the same time? What if there were 10 flows? The 
problem is hard even knowing the available bandwidth.  
 In addition, because packet drops are a fact of life in 
most real networks, the congestion algorithm must also 
provide mechanisms to detect these loses as quickly as 
possible so that it can recover from them. 
 When considering congestion algorithms, it is im-
portant to differentiate between congestion control and 
congestion avoidance algorithms. But before discussing the 
difference between the two we need to define congestion. 
Congestion is the condition that occurs when a network is 
carrying so much data that it leads to large standing 
queues. These queues lead to increase latency and, as the 
condition worsens, to packet losses. Congestion is not only 
packet losses, but also large queues. 
 Congestion control algorithms do not try to avoid con-
gestion, they try to control it so that it doesn’t cause too 
much damage. For example, consider the original conges-
tion control in TCP Reno. This original congestion algo-
rithm in used an additive increase and multiplicative de-
crease (AIMD) of the congestion window (cwnd). The 
congestion window, representing the number of packets in 
transit, would increase linearly until packet losses were de-
tected, at which point the congestion window would be de-
creased by half (resulting in the well now saw tooth 
graphs). 
 Reno has no mechanism to detect when all of the avail-
able bandwidth was being utilized. As a result, it would in-
crease its cwnd until the bottleneck link was fully utilized, 
then it would keep increasing it, filling the bottleneck buff-
ers until they overflow and packets were dropped. Reno 
would detect this packet losses and interpret them as a sign 
of congestion. It would then decrease its cwnd by half and 
start the process again. Reno was never avoiding conges-
tion, instead it was periodically creating it and controlling 
it. It was avoiding congestion collapse, but it was not 
avoiding congestion.  



 In contrast, delay based congestion avoidance algo-
rithms like TCP-Vegas[2] would stop growing the conges-
tion window once they detected that all of the available 
bandwidth was in use. 
 Of the congestion algorithms we are evaluating in this 
paper, Reno and Cubic are congestion control algorithms 
while DCTCP, NV and BBR are congestion avoidance al-
gorithms. 
  

Experimental Setup 
The experiments can be broken into 2 orthogonal 
dimensions. One of these dimensions are experimental 
scenarios which describe the topology of the network. This 
includes link bandwidths, RTTs, buffer sizes, etc. The other 
dimension are the actual tests which encompass the number 
of active hosts, the number of flows, flow characteristics 
such as stream vs. RPC as well as RPC sizes. 
 In particular, the scenarios and tests were used are: 
Scenarios 

• LAN with 20us RTT, 10 Gbps - servers in same 
rack (D.C. scenario) 

• WAN with 10ms RTT, 10Gbps – using netem []to 
introduce delay on the receiver (its sending queue). 
Using a 20,000 packet buffer for netem. The 
bottleneck is still a real switch with shallow buffers 
(1-2 MB). Good scenario to visualize the 
algorithm’s dynamics when looking at 2-3 flows. 

• WAN 40ms RTT, 10 and 100Mbps. Reflects 
connection to user using modern networks. This 
scenario uses an intermediate host that uses the tbf 
qdisc to reduce the rate to 10 or 100 Mbps. 

Figure 0A shows the topology for the first 2 scenarios where 
the senders and receivers are connected through a switch. 
Delay is achieved through Netem in the Receiver so it only 
affects the ACKs being sent back. Figure 0B shows the 
topology for the 3rd scenario and links between hosts also go 
through a rack switch not shown in the figure. 
 

 
 
Tests: 
Fairness & Stability - consists of 2 or 3 stream flow tests 
(each from a different server) to one receiver. It helps to 
visualize the dynamics of the congestion control (or 
avoidance), as well as to examine how each TCP variant 
competes against itself and against Cubic. 

• 2-flow tests: the 1st flow lasts 60 seconds, and the 
2nd flow lasts 20 seconds and starts 22 seconds 
after the 1st one. 

• 3-flow tests: the 1st flow lasts 60 seconds, the 2nd 
flow lasts 40 seconds and starts 12 seconds after 
the 1st one, the 3rd flow lasts 20 seconds and starts 
26 seconds after the 1st one. 

 
 
 
Size Fairness – consists of a combination of streaming, 1MB 
and 10KB RPCs. Are the smaller RPC flows penalized? If 
so, by how much? This is an important question because 
smaller RPCs can be more important than bulk transfers (of 
course QOS can help with this). 
 
Netesto[4] was used to run the experiments, collect the data 
and produce the graphs and tables. mq and fq_codel with 
pacing and ECN enabled was used as the queuing discipline 
on all hosts. All hosts were running Linux kernel version 
4.14.0-rc5. The TCP maximum buffer sizes were set to 
32MB so as not to affect the behavior of the congestion 
algorithms. NetEm[15] was used at the recveiver to add 
network latency. 
 
 

Interpretation of Tests 
 

The Netesto outputs from all tests include (although 
these are not necessarily shown here): 

• Goodput (payload throughput)  graphs - These 
include output for each flow as well as the 
aggregate goodput. 

• Cwnd graphs - these include the cwnd for each 
flow. Red vertical lines indicate the time when one 
or more packets are retransmitted. they are a visual 
indicator of when congestion is occurring. 

• RTT graphs -  as seen by each server sending data 

• Graph of cumulative losses per flow 

• Table of results - with rows for each server and the 
aggregate with columns for: 

o test parameters 

Figure 0A: Topology for 10Gbps tests 

Figure 0B: 10 and 100Mbps toloplogy 



o average cwnd 

o average RTT 

o average ping RTT 

o rates (avg, min, max) 

o latencies (min, avg, max, 50%, 90%, 99% 
and 99.9%) 

o packet retransmissions 

2-Flow and 3-Flow Tests 
The 2-flow tests are used for: 

• examining how quickly existing flow adapt to new 
flows 

• examining how quickly flows adapt to released 
bandwdith from terminating flows 

• fairness between flows with the same congestion 
algorithm 

• fairness between flows using different congestion 
algorithms 

• levels of congestion 

• instability - conditions under which TCP variant's 
performance changes abruptly 

 

Streaming, 1MB and 10KB RPC Tests 
These tests are used for: 

• Studying the behavior under increasing loads 

• Performance (throughput and latency) of 1MB and 
10KB flows. How fair is the available bandwidth 
divided between them? 

• instability - conditions when the retransmissions or 
latency change abruptly 

The Congestion Algorithms 
As mentioned earlier, we will consider the following 
algorithms: 

• Reno – Although it shares the name with the 
original congestion algorithm, it has been 
enhanced through all the enhancements to the basic 
loss detection mechanisms in Linux. But at its core 
is still the same AIMD (additive increase, 
multiplicative decrease) mechanism. When not in 
slow-start, it increases its cwnd by 1 packet/RTT. 
When losses are detected (its only mechanism for 
detecting congestion) it decreases cwnd by 50%. 

• Cubic – The default TCP congestion algorithm in 
Linux. It grows the cwnd logarithmically for cwnd 
values near the cwnd where losses last occurred, 
and exponentially (at increasing rates) at other 
times (it also has a Reno friendly mode that uses 

additive increase). When losses are detected it 
decreases cwnd by 30%. 

• DCTCP – Data Center TCP uses ECN markings to 
detect congestion. Unlike the normal TCP response 
of decreasing cwnd by 50% when an ECN 
congestion signal is received, DCTCP decreases it 
based on the proportion of bytes marked in the 
previous RTT. That is, the response is smaller if 
20% of the bytes were marked than if 100% of the 
bytes are marked. To prevent unfairness against 
non-ECN traffic (due to Switch behavior), two 
queues are used. One for ECN and one for non-
ECN traffic. As it name implies, can only be used 
within a DC (small RTTs). 

• NV – is a follow-up to Vegas to deal with modern 
network conditions (larger bandwidths, TSO, 
LRO, interrupt coalescence, etc.). It uses RTT and 
achieved throughput to detect queue buildup and 
its response. It cannot compete against congestion 
control algorithms (Reno, Cubic, etc) using the 
same queue. If there will be non-NV traffic, then 2 
queues must be used at the switch; one for NV and 
one for the other flows. It has been developed for 
the DC and is tuned for that environment. It is also 
using TCP-BPF to set the baseRTT to 80us. 

• BBR – A new congestion avoidance algorithm that 
also uses RTT and throughput. However, it does 
not necessarily interpret losses as a sign of 
congestion. This can create unfairness when 
competing with other algorithms. 

• TCP-BPF – Using congestion algorithms in 
conjunction with TCP-BPF in order to set cwnd 
clamp and TCP connection buffer sizes based on 
the distance between the hosts. We tested various 
congestion algorithms but we only show Cubic 
since the results were similar. 

 
LAN Scenario 

 
Consists of all servers within a rack, 10Gbps links and ~20us 
RTTs. Each experiment ran more than 10 times and graphs 
were chosen to represent the most common behavior. 
 
2-Flow LAN, all flows same TCP variant  
 
 Figure 1A shows the Goodput of Cubic for 2 flows (2nd 
flow starts in the middle of the 1st one). The 2nd flow stops 
its slow-start due to losses early leading to unfairness. 
However, their goodputs would have converged given more 
time (and assuming no other flows). It could be considered 
fair at very large timescales. Figure 1B shows the congestion 
windows. The vertical red bars indicate when packets were 
retransmitted by either flow. 
 To achieve full link utilization, we only need a cwnd of 
80. So, when cubic starts by itself, the host queue has more 



than 400 packets. When congestion occurs due to the start 
of the other flow, the cwnd increases to 2500 packets. 
 

 

 
Reno behaves similarly so it is not shown.  
 

Figure 2A shows the behavior of DCTCP, which uses 
ECN markings at the router to achieve congestion 
avoidance. It is very fair and both flows quickly converge to 
nearly the same goodput. More interestingly, Figure 2B 
shows the congestion windows. When there is only one 
flow, its congestion window is much larger than necessary 
since there is no congestion at the switch to trigger ECN 
markings. When the 2nd flow starts, there is congestion and 
their congestion windows decrease to an optimal size. That 
is, large enough to fully utilize the bandwidth but not much 
more to prevent extra latency. 

For some unknown reason, it is encountering 
retransmissions at the start, when there should be no 
congestion (there is only 1 flow). In the 1st 200ms it 
retransmits 7000 packets. However, this does not occur in 
every test. Currently investigating the cause. 
 

 
Figure 2A: Goodput for 2 DCTCP flows 

 

 
Figure 2B: Cwnd for 2 DCTCP flows 

 
Figure 3A and 3B show similar graphs for BBR. It is 

quite fair at larger time scale, with small unfairness at the 
smaller time scales. The congestion windows are not as 
optimally sizes as with DCTCP. 
 

 
Figure 3A: Goodput for 2 BBR flows 

 

Figure 1A: 2 Goodput of 2 Cubic flows 

Figure 1B: Cwnd of 2 Cubic flows 



 
Figure 3B: Cwnd for 2 BBR flows 

 
Next, Figures 4A and B are for NV. Its fairness is 

similar to DCTCP. With 1 flow, it is more efficient in its 
use of the cwnd, but with 2 flows DCTCP is more 
efficient. 
 

 
Figure 4A: Goodput for 2 NV flows 

 

 
 

Finally, Figures 5A and 5B show the behavior when 
Cubic is used with TCP-BPF to set the cwnd clamp to 100 
and TCP send and receive buffer sizes to 150KB. The 
result is perfect fairness and low latency since the cwnds 

are now 100 per flow instead of around 1500 per flow. 
 

 
 

 
 
 
 

2-Flow LAN, 1st flow Cubic 
 

 

 Figures 6A to 6C show the behavior when one Cubic flow 
competes with a non-Cubic flow. Figure 6A shows Cubic 
and Reno together. On a LAN, Reno and Cubic compete 
fairly at a coarse timescale. However, it may seem surprising 
how long it takes for then to converge when the hardware 
RTTs are only 20us. The reason is that their cwnds are about 

Figure 6A: Goodput of Cubic vs. Reno 

Figure 2A: Goodput for 2 TCP-BPF Cubic flows 

Figure 4B: Cwnds for 2 NV flows 

Figure 5B: Cwnds for 2 TCP-BPF Cubic flows 



1500 so the measured RTTs are 3ms (i.e. it takes 3ms to 
increase cwnd by one). 

 Figure 6B shows the goodput of Cubic vs. DCTCP. It 
achieves as close to perfect fairness. The reason for this is 
that we have two queues on every port at the switch. One for 
ECN enabled traffic (DCTCP) and the other for NON-ECN 
traffic (Cubic). When there is contention, the bandwidth is 
divided evenly between the queues. However, the cwnds for 
Cubic are around 2500. This is the same behavior with NV 
since it also has its own queue. 

 

 

 However, as we will see later, when there are 3 flows with 
at least one Cubic and one DCTCP, then the bandwidth is 
divided evenly between ECN and non-ECN flows. Thus, 
when more flows are in one category than the other, then 
those flows get less bandwidth individually than those in the 
other category. For example, when there are 2 DCTCP flows 
and 1 Cubic flow, the DCTCP flows get 25% of the 
bandwidth each, while the Cubic flow get 50% of the 
bandwidth. 

  Figure 6C shows Cubic vs. BBR. For the 1st half Cubic 
is using most of the bandwidth. Then 10 seconds after the 
BBR flow starts and does it RTT and rate probing, it grabs 
most of the bandwidth. Figure 6D shows the behavior of 
the congestion windows. 

 

 When using TCP-BPF applied to all flows, then there is 
complete fairness and all the cwnds are around 100. And 
graphs look similar to 5A and 5B. 

 

3-Flow LAN  
 
 Results are similar to 2-Flow when all flows are the 
same, with all algorithms performing much better when 
TCP-BPF is used (perfect fairness, low cwnds and low 
buffer usage). 

 

3-Flow LAN, 1st Flow Cubic 

 When the flows are using 2 different congestion 
algorithms then there are 3 cases. The 1st case is when the 
flows are using the same switch queues and not using TCP-
BPF. There is unfairness at 5 second time scales. Figure 
7A shows Cubic vs BBR. 2nd case is when one of the 
congestion algorithms has its own queue, like DCTCP or 
NV. There is perfect sharing between the 2 queues, which 
means all of the flows in each queue share 50% of the 
bandwidth. 

 

 

 

Figure 3B: Goodput of Cubic vs. DCTCP 

Figure 6C: Goodput of Cubic vs. BBR 

Figure 6D: Cwnds of Cubic and BBR 

Figure 7A: Cubic vs. 2-BBR flows 



Figure 7B shows Cubic vs. DCTCP. Finally, the 3rd case is 
when TCP-BPF is used. All flows share the bandwidth 
evenly and their cwnds are small. Figure 7C shows Cubic 
vs. BBR with TCP-BPF. 

 
 

 
 
 
Size Fairness and Many Flows 
The following experiments consist of 1 streaming flow, 1 
10KB back-to-back RPC and 1 or more 1MB back-to-back 
RPCs. The goals are: (1) see how much bandwidth each flow 
can get, (2) see what happens as we increase the number of 
flows. This is still a LAN test. 
 
 Figures 8A to 8D show the results for this test. Figure 8A 
shows the average goodput of the Streaming flows (always 
1 per host). The BBR goodput for the streaming is higher 
than for other algorithms. This may seem good, but it means 
it is taking bandwidth from the 1MB and 10KB flows (all 
congestion algorithms fully use the bottleneck link 
bandwidth). In addition, BBR has much higher 
retransmissions that any other congestion algorithm. 
 
 Figure 8B and 8C show the goodputs of the 1MB and 
10KB back-to-back RPCs. As expected, since the streaming 
flow used so much bandwidth, the goodputs of the 1MB and 
10KB RPCs are lower for BBR. NV allows the 10KB flow 
to achieve the highest goodput by wide margins (greater 

than 4x factor). That is, small RPC flows benefit from 
running under NV. 
 

 
 

 

 
 

 Finally, Figure 8D shows the 99 and 99.9 percentile 
latencies for the 10KB RPCs (in a log scale). NV achieves 
the lowest latencies and the 99 and 99.9% latencies are the 
same. TCP-BPF achieves the next lower latencies and they 
are also the same. BBR has the worst latencies followed by 
DCTCP. Note that we are seeing retransmissions with 
DCTCP which we have not seen in the past. This is 
unexpected and not normal. We are investigating to 
determine if it is due to a bug in the latest kernel or due to 
an issue with ECN marking in our switch. 
 

Figure 7B: Cubic vs. 2-DCTCP flows 

Figure 7C: Cubic vs. 2-BBR with TCP-BPF 

Figure 8A: Streaming goodput with many flows 

Figure 8B: 1MB Goodputs 

Figure 8C: 10KB Goodputs 



 

 
 
 

10G-10ms Scenario 
This scenario introduces a 10ms delay and keeps the 
10Gbps rate. It uses a rack switch with its small buffers 
and NetEm at the receiver to introduce latency. We also 
include the following congestion algorithms: BIC[10], 
HighSpeed[7], H-TCP[6], Scalable[9], Westwood[5] and 
Yeah[1]. 
 
2 and 3 Flow, all flows same TCP variant 
Figure 9A shows the aggregate goodput (i.e. the sum of the 
flow goodputs) and the percent retransmissions for many 
congestion algorithms. The numbers are the averages of 20 
runs. First thing to notice is the high rate of retransmissions 
for BBR; for 2 flows the rate is 0.9%, for 3 flows is 3.4%. 
All other congestion algorithms have retransmission rates of 
0.01% or lower. 

 The second thing to notice is that many of the congestion 
algorithms will underutilize the available bandwidth by up 
to 60% (Westwood). Cubic underutilizes the link by 20% to 
12%. The algorithms that best use the bandwidth are BIC, 
Yeah, Scalable and BBR. 

 

 

 

 The 2nd dimension is how fair is the algorithm. That is, if 
two flows share the bandwidth evenly. Figure 9B shows the 
average rates of the fastest and slowest flow. Since the 1st 
flow runs by itself for some time, its rate is higher than that 
of the 2nd flow. BBR’s ratios between slower and faster are 
close to the ideal; when new flows start the bandwidth is 

divided evenly between them. We see that BBR, BIC and 
Yeah are the fairest algorithms. 

 

 Each test was ran 10 to 20 times and the various graphs 
examined to see the algorithm behavior. One interesting 
result was that in a few cases (10% of 2 flow tests and 20% 
of 3 flow tests) one of the BBR flows slowed down to 1/100 
of the other flows bandwidth for 5 to 40 seconds. 

 Figure 10A shows the goodputs of 3 BBR flows where 
the 1st flow suddenly collapses at 42 seconds and remains 
that way, even after the other flows end. Figure 10B shows 
the high rate of retransmissions for all flows. Interestingly, 
we do not see the RTT probing in the 1st graph that should 

be occurring every 10 seconds. BBR tries to synchronize 
the probing among all flows so it occurs at the same time. It 
does this by using losses as the synchronization signal and 
when there are too many it just stops probing.  

 

 

 Figure 11A shows the case where 2 out of 3 BBR flows 
are collapsed, they never get much throughput. Figure 11B 

Figure 8D: 10KB 99% and 99% Latencies 

Figure 9A: 2 & 3 Flow Aggregate Goodputs 

Figure 9B: Min and Max Rates 

Figure 10A: 3-BBR flows with one collapsing 



shows the retransmission; surprisingly there are very few as 
compared to previous case (and most other cases). 

 

 

 

 

 

 
However, in most cases 3-flow BBR looks as in figure 

12, achieving almost perfect fairness. Its retransmissions 
look as in those of figure 10B. 
 
 In contrast, figures 13A to 13D show the goodputs for 
Cubic, Reno, Bic and Yeah (not showing for the other 
algorithms since we know they performed poorly). Both 
Reno and Cubic take some time to grow their cwnd and to 
converge their goodputs. In contrast, BIC and Yeah adapt 
to available bandwidth much faster. Yeah converges to 

fairness faster than BIC. 
 

 
 
 

 
 

 

Figure 11A: 3-BBR Flows showing suppressed throughput 

Figure 10B: Retransmissions for 3-BBR flows 

Figure 11B: Retransmissions for 3-BBR flows 

Figure 12: 3-BBR flow common behavior 

Figure 13A: 3-Cubic flows 

Figure 13B: 3-Reno flows 

Figure 13C: 3-BIC flows 



 
 
 

 
 
3-Flow Cubic vs. Other 
Figure 14 shows the aggregate goodputs and 
retransmissions when Cubic competes with the other 
algorithms. We only look at BBR, BIC, Reno and Yeah 
because the others do poorly. The top algorithm shown in 
the X axis indicates that it started first. From the graph, we 
see that BBR, BIC and Yeah vs. Cubic achieve the highest 
aggregate goodput. However, BBR has the most 
retransmissions at 1.4% while it is less than 0.01% for the 
others. 

 The aggregate goodput is lower when Cubic starts first 
because Cubic is running by itself at the beginning and the 
end and it is not as efficient as the others. Cubic vs. Yeah 
does better than Cubic vs. BBR 

 
 
 However, that is not the whole story. We still need to 
look at fairness. Looking at the graphs shows that Cubic 
losses against BBR and BIC, Yeah losses against Cubic 
and Reno and Cubic are even overall.  
 
Size Fairness and Many Flows 
We again explore the scenario with many flows of 
different sizes. Each of the 3 senders is doing one 
streaming flow, one 1MB back-to-back RPC and 1, 2, 3, 8 
and 16 8MB RPCs.  Note that we used larger RPCs 

because the smaller RPCs cannot get much throughput 
with the larger latency. Figure 15A shows the overall 
goodput and retransmissions for Cubic, BBR, BIC and 
Yeah. 
 Surprisingly the retransmissions (as sown by green 
diamonds) decrease from 4% to 1.7% as the load increases. 
BBR has slightly higher throughput at the lowest loads, but 
it evens up as the load increases. 

 
 
 
 Figure 15B shows the goodput and retransmissions for 
the streaming flow. BBR has the highest goodput by far, 
about twice as fast as the others. However, since all the 
congestion algorithms are using all of the available 
bandwidth, this means the streaming flow is taking 
bandwidth away from the other flows. This is seen in 
figures 15C and 15D which show the goodput for the 8MB 
and 1MB flows. Now the BBR flows are getting much 
lower goodputs (especially the 1MB RPCs). This is an 
indication that, at least in this scenario, BBR is size unfair. 
That is, fatter flows get ore of the bandwidth.  
 

Figure 13D: 3-Yeah flows 

Figure 14: 3-flow versus Goodputs 

Figure 15A: Overall Goodput and Retransmissions 

Figure 15B: Goodput of streaming flows 



 

 

 
 Finally, Figure 15E shows the 99 and 99.9 percentile  
latencies of the 1MB RPCs. As expected they are much 
higher for BBR. They are almost 10x larger. 
 All of this means that when there are flows of different 
sizes the smaller ones will lose against the larger ones 
when using BBR. There are two reasons for this 
unfairness. The first one is that with BBR, larger flows get 
much higher cwnds increasing the RTT. Since the RPCs 
take at least 1 RTT, their goodput put decreases. The 
second reason is that the higher number of retransmissions 
lead to more RTOs. 

 
 

 

 40ms Scenarios 
These scenarios use a 40ms delay at 10 Mbps rates. As 
before, the delay is introduced to the ACKs by the receiver. 
The buffer sizes at the bottleneck ranged from 8X to half 

the BDP in order to analyze the effect of buffer size on the 
congestion algorithms. For these parameters, 40ms RTT 
and 10 Mbps, 16 buffers is half of BDP, 32 is BPD, 64 is 
2xBDP, etc. 
 
Size Fairness and Many Flows  
Figure 16A shows the overall goodput and retransmissions 
vs. buffer size at the bottleneck when we only have 1 flow 
per host. That is, 1 host is streaming, another host is doing 
back-to-back 1MB RPCs and the 3rd host is doing back-to-
back 10KB RPCs. 

 
 
 All congestion algorithms have similar goodput, but 
BBR has much higher retransmissions with the small 
buffer sizes. This is especially true when the buffering is 
1xBDP. 
 Figure 16B shows the goodput and 99 percentile 
latency of the 10KB flow. The 10KB goodput and 99% 
latency are worst for BBR with buffer sizes less or equal to 
1xBDP as compared to the other congestion algorithms. 
However, it starts doing better as the amount of buffering 
increases. 

 
 
 Figures 17A and 17B show similar graphs for the case 
where each host has 3 flows: streaming, 1MB RPCs and 
10KB RCP. Now BBR is worst in terms of oval 
retransmissions and 10KB latency for all buffer sizes. This 
seems to indicate that, at least for the parameters of this 

Figure 15C: Goodput of 8MB RCPs 

Figure 15D: Goodput of 1MB RPCs 

Figure 15E: 99 and 99.9 % latencies of 1MB RPCs 

Figure 16A: Overall goodput and retransmissions, 1 flow per host 

Figure 16B: Goodput and latency of 10KB RPC, 1 flow per host 



experiment, the amount of buffering BBR needs to perform 
well is a function of the level of congestion.  

 
 

 
 
 
 

Conclusions 
As we have shown, no congestion algorithm is better than 
the others under in all conditions. However, it is important 
that we understand their weakness and strengths before 
they are deployed widely.  
 
 In particular, here are some conclusions per congestion 
algorithm.  
 

• DCTCP. There were issues in the experiments that 
we have not seen in the past. An investigation is 
ongoing to determine whether this is an issue with 
our experimental setup for DCTCP (how marking 
was done) or an issue with the latest version of 
DCTCP. 

• NV. Performed well in DC experiments but more 
analysis is needed with more complex workloads 
to insure there are no issues. As mentioned earlier, 
NV is currently not suited for non-DC traffic. 

• TCP-BPF. Using TCP-BPF to limit cwnd sizes 
does improve DC performance when there are not 
too many flows, but its advantage decreases as the 
number of active flows increases. 

• Cubic. Perform badly in the 10G-10ms 

experiments. This was surprising since Cubic is 
supposed to do well with larger RTTs. It performed 
much worse than BIC, its predecessor and this was 
unexpected. Not clear if this has always been the 
case or it is the result of modifications to Cubic. 

• BIC. Did well with larger RTTs and larger 
bandwidths. 

• BBR. Mixed bag. Did well on some scenarios but 
was very unfair, even to itself, on other scenarios. 
It seems that BBR needs large buffering to perform 
well, but the amount of buffering may be a function 
of the load. 

 
 

References 
 

1. A. Baiocchi, A. Castellani, and F. Vacirca. YeAH-
TCP: Yet Another Highspeed TCP. In proc. 
International Workshop on Protocols for Fast 
Long-Distance Networks, Marina del Rey, 
California, USA, February 2007. 

2. Brakmo, L. S., Peterson, L.L. 1995. TCP Vegas: 
end-to-end congestion avoidance on a global 
Internet. IEEE Journal on Selected Areas in 
Communications13(8): 1465-1480. 

3. Brakmo, L. 2010. TCP-NV: Congestion 
Avoidance for Data Centers. Linux Plumbers 
Conference, Massachusetts, U.S.A. 

4. Brakmo, L. 2017. Network Testing with Netesto. 
Netdev 2.1 Technical Conference, Montreal, 
Canada. 

5. C. Casetti, M. Gerla, S. Mascolo, M. Sansadidi, R. 
Wang, "TCP Westwood: end-to-end congestion 
control for wired/wireless networks", Wireless 
Netw. J., vol. 8, pp. 467-479, 2002. 

6. D. Leith and R. Shorten. H-TCP Protocol for High-
Speed Long Distance Networks. In proc. 
International Workshop on Protocols for Fast 
Long-Distance Networks, Argonne, Illinois, USA, 
February 2004. 

7. Floyd, S. 2003. HighSpeed TCP for Large 
Congestion Windows. IETF RFC 3649. 

8. Jacobson, V. 1988. Congestion avoidance and 
control. ACM SIGCOMM Computer 
Communication Review 18(4): 314-329. 

9. Kelly, t. "Scalable TCP: improving performance in 
highspeed wide area networks", Comput. Commun. 
Rev., vol. 32, no. 2, Apr. 2003. 

10. Lisong Xu, Khaled Harfoush, and Injong 
Rhee, Binary Increase Congestion Control for Fast, 
Long Distance Networks, Infocom, IEEE, 2004 

11. Mario Hock, Roland Bless, Martina Zitterbart, 
"Experimental Evaluation  
of BBR Congestion Control", IEEE ICNP 2017, 
October 2017 

12. Mohammad Alizadeh , Albert Greenberg , David 
A. Maltz , Jitendra Padhye , Parveen Patel , Balaji 
Prabhakar , Sudipta Sengupta , Murari Sridharan, 

Figure 17A: Overall goodput and retransmissions, 3 flows per host 

Figure 17B: 10KB goodput and 99% latency, 3 flows per host 



Data center TCP (DCTCP), Proceedings of the 
ACM SIGCOMM 2010 conference, August 30-
September 03, 2010, New Delhi, India 

13. Neal Cardwell, Yuchung Cheng, C. Stephen Gunn, 
Soheil Hassas Yeganeh, Van Jacobson, “BBR: 
Congestion Based Congestion Control,” 
Communications of the ACM, Vol. 60 No. 2, Pages 
58-66. 
(https://cacm.acm.org/magazines/2017/2/212428-
bbr-congestion-based-congestion-control/fulltext) 

14. Sangtae Ha, Injong Rhee and Lisong Xu, CUBIC: 
A New TCP-Friendly High-Speed TCP 
Variant, ACM SIGOPS Operating System Review, 
Volume 42, Issue 5, July 2008, Page(s):64-74, 
2008. 

15. S. Hemminger “Network Emulation with NetEm” 
Linux Conf Au 2005. 
http://developer.osdl.org/shemminger/ LCA2005 
paper.pdf 
 

 

 

 

 

 

 

 

 

 


