
Multi-PCIe socket network device

Achiad Shochat

Mellanox
Yokneam, Israel

achiad@mellanox.com

Abstract
This paper explains why connecting a single network port device
to the host CPU through multiple physical PCIe sockets may be
desired in some cases and suggests a software model to handle it.

Many concepts discussed here are generally applicable to any I/O
device that uses DMA and for any host bus technology (not
necessarily PCIe), but we will focus on the PCIe network devices
case.

Keywords
Linux, kernel, PCIe socket, network port, netdev, aRFS,
NUMA, server

 Introduction
There are two cases where connecting a network port
device through multiple physical PCIe sockets may be
desired:

1) The network port speed is higher than that of any
available PCIe socket in the host system

2) NUMA (Non Uniform Memory Access) Systems

Case 1: network port faster than PCIe socket

The motivation in this case is quite obvious…
This case gets more viable lately as network device ports
running at 200 Gb/sec are being introduced these days
while most servers do not have PCIe sockets supporting
this speed.
Case 2: NUMA systems

A single PCIe socket is likely to satisfy the application
network bandwidth needs, even with compute
power-intensive systems such as modern NUMA systems
usually are. In NUMA systems however a given PCIe
socket is local to a given host memory instance only.
Therefore a NIC attached to a single PCIe socket can

benefit memory locality for its DMA and I/O operations
only with a single memory instance and thus cannot take
advantage of the NUMA architecture. A network
application running on a remote CPU core will incur NIC
DMA to the remote CPU memory which obviously yields
inferior performance. Furthermore, those DMAs to remote
memory load the memories interconnect bus (e.g QPI)
which may create other bottlenecks in the system. This
severely limits the system scaling.

By connecting the NIC to multiple PCIe sockets those
performance scaling pitfalls are resolved.

 [TODO: add local / remote access performance numbers]

Netdev per network port
The Linux kernel convention is to represent each network
port by a kernel netdev (struct net_device). So far in the
kernel, netdevs representing physical device ports are
being created upon device PCI probe – one (or sometimes
more) netdev per PCI function. This is fine as long as each
network port is represented by a single PCIe function.
Doing so for a multi-PCIe bus device port however will
break the netdev-per-port convention and yield multiple

netdevs over a single network port. Therefore the right
approach is to create a single netdev that operates the
device through its multiple PCIe buses and thus hide the
PCIe topology details from the network stack and the
operating system.

Why not use Linux bond/team
One could think of an alternative approach - have a netdev
per device PCIe bus (as done so far) and enslave them
under a bonding netdev. Well, that approach breaks the
netdev-per-port convention and as a consequence creates
un-clarity when it comes to managing device port offloads
such as RSS and aRFS. Also, as the single PCIe bus device
driver would be un-aware of being just a part of the whole
network port driver it would likely strive to create RX/TX
queue per system CPU core rather than just per local CPU
core, yielding RX/TX queues redundancy in the system.

In addition, setting a bond device requires manual settings
– not a nice out-of-box experience.

Multi-PCIe bus device detection
In order to achieve a single netdev over a multi-PCIe bus
device port, some method is required for the device driver
to identify that multiple PCIe buses connect the same
network port.

Ideally that method should be generic (NIC vendor
agnostic) – through the device PCI configuration space.
Maybe by having the PCI class code specify that the device
has multiple PCIe buses and specify the common network
port ID in the capabilities list.

A device specific method may be used as well.

Ordering and TX/RX queues PCIe bus affinity
Traffic sent to/from a given netdev TX/RX queue is
expected to be delivered in order.

By PCI spec ordering rules, traffic sent on a given PCIe
bus is delivered in order. But the PCI spec does not
guaranty any ordering between traffic sent on different
PCIe buses.

This implies that each TX/RX queue must be affined with
a single PCIe bus.

In MUNA systems this aligns with the common practice of
assigning an RX/TX queue per core.

Shared netdev resources
Unlike RX/TX queues, other device resources are not
affined with a PCIe bus. These are mostly resources
controlling the device flow steering – RSS hash function,
RSS indirection table, aRFS rules, and any other flow
rules.

Device resources management

Through which PCIe bus of the device its resources are
managed is a device specific implementation policy.
Possible policies for example:

Manage all resources via one of the PCIe buses

Manage affined resource (RX/TX queues) through
their designated bus and un-affined resources
through one of the buses

Manage any resource through any bus

RSS (Receive Side Scaling)
In Order to support RSS the device must support a single
indirection table that points to RX queues affined with
different PCIe buses.

Traditionally the indirection table controls the load
balancing of ingress traffic over the host CPU cores. Now
it also implicitly controls the load balancing of ingress
traffic over the device PCIe buses.

aRFS (Accelerated Receive Flow Steering)
By having a single netdev running over multiple PCIe
buses, and as RX queues are affined with a PCIe bus, aRFS
will naturally steer flows through the PCIe bus assigned
with the core’s RX queue. In MUNA systems this also
means that RX flows will be naturally steered to local
memory. This way there are no remote memory NIC
DMAs, which relieves the memories inter-connect (QPI),
yields linear scalability with systems cores and reduces the
networking latency.

PCIe hot plug
Different PCIe buses may be attached/detached (either
physically or virtually by a shell command line) to/from
the system dynamically and independently of each other.

A multi-PCIe bus device driver should create an RX/TX
queue per bus-local CPU core. Therefore the amount of
netdev RX/TX queues depends on the number of device
PCIe buses that are attached in the system at a given
moment.

The amount of netdev RX/TX queues however must be
determined at netdev allocation (at alloc_etherdev_mqs()).

So a multi-PCIe device driver may take two approaches to
handle it:

1) Static approach

a. Register a netdev only when all PCIe
buses of the device are attached

2) Dynamic approach

a. Register a netdev upon first PCI probe of
any of the device buses, dynamically
enable/disable RX/TX queues upon

further PCI bus probes/removes and
un-register the netdev upon removal of
its last PCI bus

SR-IOV and device assignment
So far, cloud management SW, such as OpenStack, assume
that a network port is represented by a single PCIe
function. Thus, when it wishes to provide a virtual machine
(VM) with a pass-through network port it assigns it a
single PCIe virtual function (VF) who’s parent physical
function (PF) represents the network port.

With a multi-PCIe bus device this assumption is no longer
true. Each VM should be assigned with multiple VFs - one
per device PCIe bus. Virtualization management SW need
to be extended to support it. This emphasizes the need for
making the multi-PCIe device detection method generic.

Supporting NIC devices
All Mellanox NICs starting from ConnectX-4 support
multi-PCIe buses connectivity:

ConnectX-4
ConnectX-4Lx
ConnectX-5

All future Mellanox NICs are expected to keep supporting
it.

