
Arachne: Large Scale Data Center SDN Testing

Jamal Hadi Salim, Alexander Aring
Mojatatu Networks

Ottawa, Canada
hadi@mojatatu.com, aring@mojatatu.com

Abstract

Current state of the art in modern data center structure makes
use of multi-stage switching known as a Clos Network. One
advantage of a Clos network is it allows for modularity in scal-
ing upgrades. A properly designed Clos network can be up-
graded by adding more racks or PoDs (Point of Delivery) level
without any need for re-arranging the existing connections.
Control of the datapath and other resources in a Clos Net-
work is typically constructed using SDN (Software Defined
Networking). A classical SDN setup includes one or more
software daemons/agents that run on the control and resource
path.
To test scale and robustness of a large SDN deployment re-
quires a large investment in a lot of real switch and server
equipment. Alternatively, one could reduce the amount of
equipment needed by using a VM based setup such as [5]. For
a scale where we need to test 10s of thousands of nodes, us-
ing VMs is still a very expensive proposition. Naturally our
struggle led us to look at containers. We looked at alternative
container-based approaches and concluded the complexity in
adjusting them for our needs would be more work and larger
maintenance effort.
This paper will describe Arachne, a basic SDN test tool, which
uses basic Linux namespaces. A Linux bridge is created within
a Linux net namespace container to emulate either a spine and
leaf switch; and basic net namespaces are created to emulate
end hosts residing within a data center rack.
Our focus is to test the scaling of the control-to-resource path
domain and not necessarily the scale of datapath traffic.
Arachne takes as its input a Clos Network description. A dot
file is generated by Arachne to describe the topology. The dot
file is then consumed to construct a data center PoD using basic
tools such as iproute2.

Keywords
Linux; Software Defined Networking; Namespaces; Contain-
ers; Data Center; Clos Networks; DOT; Graphviz; Bridge;
Router; Virtual Machines; Intent Based Networking; L2; L3

Introduction
SDN is a system architecture that enables centralized con-
trol of datapath resources. Figure 1 shows a classical SDN
setup. SDN control applications attach to controllers to mon-
itor and/or impose policies on datapath resources via cluster
controllers.

Figure 1: Classical SDN Architecture

As illustrated in figure 1, the datapath entities talk to each
other on the east-to-west plane whereas the control and data-
path entities talk to each other in the north-south direction.

On a large scale SDN setup, there are typically a magni-
tude or two more datapath entities than there are controllers;
and a magnitude more applications than there are controllers.
Each of the datapath and control entities run software agents
which talk to each other relaying sensor information and pol-
icy actuation via a dedicated control network.

We set out to come up with a test environment where the
System Under Test (SUT) is the control-to-resource infras-
tructure (north-south direction). We defined our goals as:
• Being able to introduce infrastructure variability so we can

test with a focus on all or some of:
– Control application testing
– Controller testing
– Datapath resources request-response and publish-

subscribe testing
• Being able to test with setups that range from a handful to

hundreds of thousands of nodes (applications, controllers
and datapath)

• Being able to test scale, robustness under chaos, and basic
system functionality

• Being able to achieve all the above cheaply (operational
and capital costs)

• Ensuring we reuse or create open source and particularly
Linux based infrastructure



• Ensuring the architecture allows for other (than our own)
SDN approaches to be incorporated without a lot of effort

We are interested in the datapath only with respect to its
northbound interface being a utility within the scope of our
SUT. For this reason, while we care about traffic flowing be-
tween the different datapath entities (east-west) we do not
strive to optimize that direction.

We named our tool Arachne after the figure from Greek
mythology who was gifted in the art of weaving. Arachne is
both a design and deployment tool.

This paper documents the trials and tribulations and
choices made in our journey to create Arachne.

Deployment: Clos Network Infrastructure
SDN environments are commonly deployed on data center
architectures; and currently the most popular data center de-
ployment is based on Clos networks [4]. For this reason we
chose to use the Clos network architecture as the infrastruc-
ture for meeting our goals.

Both Clos networks and SDN are a result of generations of
work in the telephony world.

Clos networks were an influence of the telephony world
which connected phone systems back in the 50s: if you
imagine a host as a phone and the Ethernet switches as
voice switches, then you can visualize how phone calls were
switched from the caller to the callee.

The telephone world also greatly influenced SDN. Tele-
phone networks introduced the concept of separating control
signaling (SS7 [9]) from datapath voice as two separate net-
works back in the 70s.

With Arachne we are going to use switches and
(deployment-dependent) hosts as datapath nodes. All data
center equipment we have come across so far (switches or
hosts) carry one or more management Ethernet port(s). We
are going to use these management ports to deploy the con-
trol infrastructure.

A Clos network provides a multi-stage switching setup
which is attractive for our tooling for two reasons:

• Its wide use in data centers implies we are closer to the
reality of our real-world deployment

• The ability to scale the infrastructure from a small build
to something extremely large was very appealing. More
nodes can be added without disrupting a running Clos net-
work setup. This means we can incrementally test different
SUT scale levels without undoing a running test setup

Clos networks can be generalized to any odd number of
switch stages; 3 and 5 stages are common. In our setup, in
order to meet our scale goals we are also going to allow for a
7 stage Clos in the future.

3-Stage Clos: PoD
A basic 3-stage Clos network encapsulation is known as a
PoD (Point of Deployment).

Within a PoD:

• A rack of hosts is connected to a leaf switch (Interchange-
ably referred to as a Top Of Rack (TOR) switch)

• Each leaf is connected to every spine in that PoD
Traffic sourced in a host in one rack needs to get through

three switch hops/stages (hence the 3-stage convention) to get
to a host on another rack within the PoD:

1. Local leaf to a spine
2. Spine to remote leaf
3. Remote leaf to remote host

Figure 2 shows a very basic PoD setup with 4 racks with
each rack carrying a dozen hosts and a leaf switch.

Figure 2: 3-Stage Clos Point of Delivery

From a scale/modularity and automation perspective, one
can imagine wheeling in a new preconfigured rack of hosts
with its leaf switch; connect the leaf switch to all spines in
the PoD and power it on for immediate use.

5-stage Clos: Zone
A Clos network can further be scaled by inter-connecting
PoDs; this would require a layer of switches above the spines
to connect the PoDs to each other. We will call such a setup
a zone. It should be noted that inter-PoD switches have a lot
of other naming conventions in the industry such as fabric,
super-spine, core etc. In our naming convention we will refer
to these inter-PoD switches as zone switches.

In a 5-stage Clos network packets emanating from a host
in one PoD have to take 5 hops to get to a host on a different
PoD.

A typical setup of how zones are connected via the zone
switches is similar to leaf to spine connections, i.e each spine
switch on every PoD connects to all zone switches. Such a
setup is illustrated in figure 3.

Figure 3: 5-Stage Clos

From a scale-up/modularity and automation perspective,
one can imagine trucking in a brand new pre-configured PoD
from the factory and connect the PoDs spine switches to zone
switches, power up things and voila! Things just work.



Clos Design Constraints
How does one decide how many hosts sit on a rack? Or
how many racks per PoD? Or how many PoDs per zone? Or
whether they need a 7-stage Clos network?

The selection of number of hosts within a rack, number of
racks connecting to a set of spines or the number of spines
within a PoD are decided based on many factors. We list
some of the prominent ones we have come across:

• Space available to house the equipment

• Power consumption required to operate the equipment. A
10 rack setup requires 1-4 MW according to SGI [17]

• Cooling needs of the equipment and capacity of tempera-
ture and airflow controls

• Limitations of available costed hardware. For example if
the leaf switch can only do 48x10G + 4x40G ports, you
are restricted to a maximum of 48 hosts and 4 spines that
can connect to such a rack

• Limitations of available bandwidth per port on a host or
switch defines what switches get used for leaf or spine

To re-iterate: our primary goal is to test the control-
datapath plane; however, being able to exercise constraints
of different real-world setups when designing is a pragmatic
secondary goal which would allow us for example to quickly
churn and emulate LinkedIn’s Altair data center design [12]
and test our SDN solution on it. We plan to consider this
constraint setting feature for upcoming Arachne releases.

Deployment Approach Selection
The immediate thought that comes to mind when contemplat-
ing a SUT deployment is to build a physical setup. Given our
desire to build 10s-100s of thousands of datapath entities, we
very quickly figured out that the operational and capital costs
were beyond our means. We are not going to be able to af-
ford a LinkedIn or Facebook layout. So we crossed out this
possibility.

Naturally this leads one to an option to use VMs to simulate
all the components. An excellent fit for a VM emulating a
Linux switch is the Cumulus VX [5].

While the Cumulus VX worked very well, we soon ran
into challenges. On a small x86 device (i5, NUC) with 8G of
RAM we were unable to run more than 12 VMs effectively
(single PoD with 2 spines and 4 racks each with one host).
For our requirement of achieving 10s-100s of thousands of
nodes, the cost would have been too high for us to bear (in
terms of hosts we would have to acquire). For this reason we
also abandoned this VM approach.

It was clear we had to go to the path of using containers to
achieve a large scale setup.

Our immediate thought was to use Docker [6] since it is
integrated into our CI build and has a rich set of tooling.

We quickly reached a conclusion it was too heavyweight
for our goals. All we needed was to be able to create emu-
lation switches and hosts and interconnect them; Docker re-
quired a lot of extra infrastructure of daemons and setups that
would consume more of our limited compute resources.

We next looked at Mininet [14] which looked interesting
because it was lightweight. The major obstacle was Mininet’s
heavy bias towards OVS and OpenFlow which contradicts our
intention to allow other SDN approaches to be easily added
(and ours in particular). Mininet is also a lot more complex
than we needed because it is designed to be multi-purpose;
e.g. it allows arbitrary topologies, while we were only inter-
ested in Clos.

In the end we decided we needed to create our own tool
and so Arachne was born.

High Level Design Overview
We decided early on that it was imperative to make the
Arachne interface friendly to humans. To address this chal-
lenge, we provided two user facing features:

1. A simple user configuration to describe the Clos network.
Anyone with a basic knowledge of Clos networks should
be able to describe what they intend their network to look
like

2. A visual output of the created network so the user can val-
idate that it was in fact the infrastructure layout they in-
tended

Figure 4 illustrates the workflow an Arachne user will have
to go through.

Figure 4: Arachne Workflow

There are two phases to the Arachne workflow: A design
phase and a weave phase.

Design Phase
In the design phase the user creates the Clos network of
choice.

1. The user defines, via the Arachne console interface, what
they wish their Clos network to be. Arachne takes the de-
fined user description and crunches out the Clos network
graph (which the user can save)

2. The user requests, via the Arachne console interface, a vi-
sualization of the resulting network. If the user is unhappy
with the results they can edit the description and redo the
design

This feedback loop can go on as many times as the user
wishes.



Network Description Semantics As mentioned earlier, we
wanted to have a simple way for a human to describe their
Clos networks without needing to understand any of the in-
volved intricacies.

We introduce five parameters that a user needs to provide
to Arachne to describe their Clos network. All parameters
are optional if the user chooses to use the default prescribed
design.
Number of zones Needed if more than one PoD is present.

At the moment of writing only one zone is supported by
Arachne

Number of PoDs By default 1 PoD is assumed
Number of spines in a PoD By default 2 spines are as-

sumed
Number of racks per PoD By default 4 racks are assumed
Number of hosts per rack By default one host per rack is

assumed. At the moment of writing, Arachne supports a
single leaf switch per rack
Most use cases assume all PoDs are created equal (same

number of racks and hosts per rack) and so the above param-
eters are sufficient; however, such a setup may be insufficient
for other multi-PoD setups. As an example, a compute PoD
may have 40 hosts per rack but a storage PoD may have 16
hosts per rack for the same rack real estate. The Arachne
design tool allows the user to be more specific at a per-PoD
level.

Topology Description Instead of inventing our own topol-
ogy language, or using Mininet’s variant we decided to use
the Dot graph language [7]. Our choice was inspired from
our experience with Cumulus VX which uses the Dot lan-
guage. Dot is open and widely used and has a lot of tooling
around it including many programming language bindings.

Weave Phase
Once the user is satisfied with the results they instruct
Arachne (using the console interface) to go ahead and
build/deploy the setup.

Addressing Convention We decided to adopt another tele-
phony feature in creating the addresses of the nodes loosely
based on the numbering plan described in E.164 [10].

Arachne uses this geographical addressing scheme for both
MAC and IP addresses.

Based on E.164, as most phone user would recognize, tele-
phone numbers take the form:

Country code Area code Subscriber
number

Figure 5: E.164 Telephone Number Scheme

We map:
Country code An ID we refer as zone ID
Area code An ID we refer to as PoD ID
Subscriber number An number which depends on the type

of node (spine or leaf switch, host etc) we give it a semantic
as described

Why Geographic Addressing? As mentioned earlier, we
are striving for our setup to handle hundreds of thousands of
nodes. This means there will be a large number of packets fly-
ing all over the ether: imagine running tcpdump on some arbi-
trary port. If it is immediately apparent what the geographical
source or destination of a packet is, it is immensely helpful
for debugging; security features such as checking whether a
packet should be seen at certain locations become much eas-
ier to implement.

It should be noted also that IPv6 has adopted hierarchical
addressing and routing which allows identifying nodes by ge-
ographic location.

We believe that a geographical addressing setup facilitates
simplification in infrastructure management automation (as
we hope to convince you in this paper). We can choose to
either go with a basic L2 or L3 setup and pre-compute the
setup.

For L3, although we allow the Arachne user to run dynamic
routing protocols, we feel it is sufficient to setup static routing
and static provisioned policy. Moreover, we feel geographic
addressing allows us to reduce the number of routes and ACL
policies. There are cases where dynamic routing features may
be needed in particular in hardware based deployments; as an
example when an upstream link becomes defective resulting
in a path/route that a downstream node uses to become un-
available. Our view is we can achieve much faster conver-
gence with an SDN approach that is aware of the topology
than by using a dynamic routing protocol. While this is an
opinion we hold, we are not dogmatic about whether the user
wishes to use dynamic routing, SDN or neither. Arachne will
support all those approaches.

MAC Addressing By default we construct the MAC ad-
dress according a special pattern.

10 ZID PID R D 0

Figure 6: EUI-48 OUI Scheme

The first 3 bytes of the EUI-48 MAC address (known as
OUI) is constructed as shown in figure 6. The bits has the
following meaning, we use “10” as first octet to signal a lo-
cally administrated address. All other fields has the following
meanings:

10 8 bits for the constant “10”, meaning “locally adminis-
tered address”

ZID 3 bits for zone ID implying we can have a maximum of
8 zones

PID 6 bits for PoD ID implying we can have a maximum of
64 PoDs

R 2 bits for role identity type. Further explanation follows in
this section

D 2 bits for direction. This bit describes the direction in ori-
entation of the Clos Network, if the link goes north or south

0 3 bits for the constant “0”



Role ID number Port ID

Figure 7: EUI-48 NIC Scheme

The last 3 bytes are constructed according to figure 7. Each
field is part of the geographic address scheme and means the
following:

RID 12 bits for role identity number. This indicates the ID
number which belongs to it

Port ID 12 bits for port ID. This means a given node can
have a maximum of 4096 ports

The Role ID type identifies whether the address is located
on a host, spine switch, leaf switch or zone switch.

The following Role IDs are defined:

0 Reserved for future use
1 Leaf node identification
2 Spine node identification
3 Zone node identification

Host IPv4 Addressing By default, the host IPv4 ad-
dressing is constructed by the following scheme:

10 ZID PID RID HID

Figure 8: Host IPv4 Addressing Scheme

10 A prefix-octet with value “10” occupies the first byte
ZID The zone ID occupies the next 3 bits
PID The PoD ID occupies the next 6 bits
RID A 4 bit rack ID identifies a rack within a PoD. This

implies we can have a maximum of 15 racks per PoD
HID The remainder 11 bits identify the host on a rack. This

implies up to 2045 hosts can be supported within a rack

Leaf Switch IPv4 Addressing We only give IP ad-
dresses to leaf nodes when Arachne runs in L3 mode and
operates as router. More later when we discuss L3 mode.

One IP address is attached to the loopback (“lo”) interface.
This leaf address is used by a neighbor (host/spine) as a next
hop IP address for L3 forwarding. Given Linux IPv4 address-
ing is based on the weak host model (RFC 1122 [1]), the IPv4
address attached to lo is seen by any ARP request from any
of the leaf ports (spine or host attached).

Leaf routers use IPv4 Link-Local Addresses (RFC 3927
[3]) for their addresses.

169.254 1 PID RID L-
ID 1

Figure 9: Leaf IPv4 Link-Local Address Scheme

169.254 The first 16 bits are occupied by octets “169.254”

1 2 bits are occupied by the Role identification. A leaf al-
ways has value 1

PID 6 bits identify the PoD

RID A 4 bit rack ID identifies a rack within a PoD. This
implies we can have a maximum of 15 racks per PoD

LID 2 bits represent the leaf ID. This means we can have up
to a maximum of 4 leaf routers per rack. At the moment
Arachne supports only one leaf so this number is hard-
coded to 0

1 2 bits are used for An IP address ID (that is attached to
“lo”). At the moment this value is hard coded to 1

Spine Switch IPv4 Addressing We only give IP ad-
dresses to spine routers when Arachne runs in L3 mode. One
spine IP address is attached to the loopback (“lo”). A spine
address is used by a neighbor (leaf/spine) as a next hop IP
address for L3 forwarding. More below when we discuss L3
mode.

Spine routers use IPv4 Link-Local Addresses (RFC 3927)
for their addresses.

169.254 2 PID SID 1

Figure 10: Spine IPv4 Link-Local Address Scheme

169.254 The first 16 bits are occupied by octets “169.254”

2 2 bits are occupied by the Role identification. A spine al-
ways has value 2

PID 6 bits identify the PoD

SID A 4 bit spine ID identifies a spine router within a PoD.
This implies we can have a maximum of 15 spines per PoD

1 4 bits are used for An IP address ID. At the moment, a
value of “1” is hard coded

Zone Switch IPv4 Addressing We only give IP ad-
dresses to zone routers when Arachne runs in L3 mode.

One zone IP address is attached to the loopback (“lo”). A
zone address is used by a neighbor (a spine within a PoD or a
core router/switch) as a next hop IP address for L3 forward-
ing. More below when we discuss L3 mode.

Zone switches use IPv4 Link-Local Addresses (RFC 3927)
for their addresses.

169.254 3 ZID ZSID 1

Figure 11: Zone IPv4 Link-Local Address Scheme

169.254 The first 16 bits are occupied by octets “169.254”

3 2 bits are occupied by the Role identification. A zone
router always has value 3



ZID 3 bits are occupied by the zone ID
ZSID A 6 bit zone router ID identifies a zone router within

a zone. This implies we can have a maximum of 64 zone
routers per zone

1 5 bits are used for an IP address ID. At the moment, a value
of “1” is hard coded

Naming Convention Arachne uses geographic encoded
names for all nodes. These names are used to assign a name
to each iproute2 net namespace.

H<HID> R<RID> P<PID> Z<ZID>

Listing 1: Host Node Name Convention

Listing 1 shows the naming convention for host names-
paces. The following table show the replacement parts as
described in the naming convention which is also follows the
geographic addressing scheme.

HID Host/Subscriber ID (Range 3..2044)
RID Rack ID (Range 1..15)
PID PoD ID (Range 1..63)
ZID Zone ID (Range 1..7)

Leaf node names follow the convention:

L<LID> R<RID> P<PID> Z<ZID>

Listing 2: Leaf Node Name Convention

LID Leaf ID (Range 1..3)
RID Rack ID (Range 1..15)
PID PoD ID (Range 1..63)
ZID Zone ID (Range 1..7)

The spine node names are constructed as the following
scheme:

S<SID> P<PID> Z<ZID>

Listing 3: Spine Node Name Convention

SID Spine ID (Range 1..15)
PID PoD ID (Range 1..63)
ZID Zone ID (Range 1..7)

The zone node names are constructed as the following
scheme:

ZS<SID> Z<ZID>

Listing 4: Zone Node Name Convention

ZS Zone switch/router ID (Range 1..63)
ZID Zone ID (Range 1..7)

Network Build Approach Arachne consumes the gener-
ated dot files from the design phase and proceeds to weave
the network.

Each node is built as a network container. Figure 12 shows
how a single PoD with 3 racks and one spine switch would be
constructed.

Figure 12: Arachne Single Container Build

Each node, regardless of its type, is created as a container
with unshared network and UTS namespaces using iproute2.
On a single host all containers share the host filesystem.

All ports are of type veth. Veth is ideal because of its dual
port nature. It can be used as a virtual cable between pairs of
switches or between switches and hosts, with each end of the
veth being placed in a different network namespace.

Both leaf and spine switch nodes contain a Linux bridge
interface.

• All nodes have a management veth endpoint inside their
respective namespace; the other end of the veth is attached
to a bridge in the container parent which is used as a man-
agement switch. By default, Arachne has a DHCP daemon
connected to this switch; all containers get their manage-
ment IP addresses via this daemon

• Host to leaf switch connections are constructed with a veth
cable with one end residing inside the host container and
the other inside the leaf container attached to the resident
Linux bridge (the leaf switch is the master of the veth end-
point)

• Leaf to spine connections are likewise veth based. The leaf
side is attached to the Linux bridge residing in the leaf con-
tainer and the spine side is attached to the Linux bridge in
the spine container

Arachne has two components in its weaving approach: A
front end on which the user interacts and a back-end which
does the actual network creation.

Figure 13 shows how these components come together.



Figure 13: Arachne Weaving

The front- and back-ends communicate over ssh. This
means that the network design can be deployed on any re-
mote node which has an ssh host.

Another approach to realize the deployment at the back-
end side is to use Ansible [16]. We tried Ansible and came
across issues. There was no easy way to allow for big changes
dynamically. Ansible depends on creating provisioning steps
using playbooks. The playbook inventories are static in na-
ture and Arachne’s intended use is more dynamic therefore
needing more flexibility with inventories. Debuggability of
the playbooks was a bit of a challenge as well. Given what
we needed was easily implemented using only ssh whereas
Ansible added more dependencies, we gave up on Ansible.

Back-End Commands

Arachne provides a console interface to the user to manipu-
late data center parameters as shown in the section “Network
Description Semantics”. The weave phase initiates back-end
commands when the user types weave. In the background
Arachne generates a bash script which will be executed by
the back-end machine.

. . .
i p l i n k add swp5 t y p e v e t h p e e r name swp2
i p l i n k s e t n e t n s S2 P2 Z1 dev swp5
i p l i n k s e t swp2 name swp2
i p l i n k s e t n e t n s L1 R3 P2 Z1 dev swp2
. . .

Listing 5: Arachne Back-End Weave

Listing 5 shows part of the generated script to create a veth
cable connection from interface swp5 at S2 P2 Z1 to inter-
face swp2 at L1 R3 P2 Z1. The command unweave tries to
cleanup every created net namespace.

Listing 6 shows how Arachne deletes all generated net-
working namespaces.

. . .
i p n e t n s p i d s L1 R4 P1 Z1 | x a r g s k i l l
i p n e t n s d e l L1 R4 P1 Z1
. . .

Listing 6: Arachne Back-End Unweave

Network Infrastructure Choices
There are several Clos network connectivity modes that
Arachne supports. We discuss them in this section.

Layer 2 Network
A layer 2 network is very simple to setup and automate.
Arachne defaults to such a setup. Only hosts are assigned
IP addresses. So the whole thing looks like one Big Freaking
Switch (BFS) i.e a single broadcast domain with hosts hang-
ing off it.

Figure 14: Arachne L2 Mode

A layer 2 network has drawbacks.

1. It is possible to have broadcast loops

2. Even if you avoid broadcast loops, an ARP/ND from a host
on one PoD will show up at all hosts on all PoDs causing
unnecessary traffic

3. Given the BFS nature, every switch’s FDB/MAC tables
will have an entry for every host. This part is undesirable
if the FDB tables are not large enough

To address issue 1, Arachne enables STP on all the
switches. It could be argued on one hand that STP results
in less of the available cluster link capacity being utilized;
on the other hand, it could be argued that STP provides path
resiliency. Our need for STP is mainly to deal with loops.

For small scale setup, we simply ignore issues 2 and 3; we
believe that the offered convenience of simplicity is a reason-
able tradeoff. Recall: our goal is to test the north-south fron-
tier and so we are not overly focussed on an optimal east-west
setup.

When deploying using real hardware switches, we do rec-
ognize L2 equipment has limited FDB/MAC table sizes - and
the cost of such hardware tends to go up as these table sizes
go up; moreover, once these tables fill up, packets get broad-
cast and consume more wire resources.



Although such a limit is a red herring as far as software
based L2 is concerned, we expect Arachne users to have de-
sire to emulate deployments closer to what the hardware of-
fers. So we propose to address drawbacks 2 and 3.

Layer 3 Network
L3 overcomes all the issues mentioned as shortcomings in L2,
but it comes at the cost of complexity of setup.

The most predominant solutions we have seen in data cen-
ters is to set up dynamic routing on all spines and leafs.
Operators run I/EBGP or OSPF, in our opinion, mostly be-
cause they are already skilled craftsmen of such routing pro-
tocols. While Arachne allows for such setup, we do not be-
lieve such complexity is necessary given our geographic ad-
dressing setup.

We can get away with pre-configured static routing which
takes advantage of the geographic addressing.

The reader is reminded to review the “Why Geographic
Addressing?” section and consult the scheme shown in Fig-
ure 15. Everything we are describing in the next section
is easy to automate and pre-provision (because we use ge-
ographical addressing).

In this section, all of the leaf/spine/zone nodes run as
routers i.e no Linux bridge is configured. All packets are for-
warded using FIB table.

L3 Ingress traffic IP packets destined for a specific zone
are selected based on a 10.x/11 prefix as illustrated by the
ingress direction (north to south) of figure 15. Essentially, the
prefix selects a zone. The next hop in a specific zone’s direc-
tion is selected from one amongst the zone routers within that
zone. This is achieved by pre-provisioning a default ECMP
route with next hops pointing to all possible zone routers (in
the 169.254.x.y address space using the zone router address-
ing as described in figure 11. It should be noted all the zone
routers in the next hop list will have a “1” in their least sig-
nificant nibble.

From a specific zone router downstream, a /17 mask is used
to select a PoD as well as a spine router within the PoD. Since
there are multiple spines per PoD, again ECMP is used to
select one of the spines within a target PoD as the next hop
(in the 169.254.x.y address space as described in figure 10).

From a specific spine within a PoD, a 10.x/21 address pre-
fixing is used to forward to a specific rack. Given we currently
support a single leaf router per rack, the next hop points to
that single leaf residing in the target rack. The next hop IP
address is in the 169.254.x.y address space with the last nib-
ble of value 0x1 (leaf ID of “0” and IP address ID of “1” as
described earlier)

Once the packet hits the leaf router, it gets routed to the
host using a host link route.

L3 Egress traffic Each host has a default gateway pointing
to the leaf router. The leaf is configured so as to proxy ARP
on the host side. This helps us reduce the complexity of the
leaf router setup. All ARPs are responded to by the leaf.

The leaf is provisioned with:

• Host routes for all its attached hosts

• Default ECMP to point to all the spines north of it

When a host within a rack tries to communicate with an-
other within the same rack, the leaf does the IP forwarding
locally. When the host tries to communicate with a host in
a different rack or PoD, the leaf forwards to one the spines
within the PoD per ECMP rules.

On the spine, there are two possibilities:

• If the destination IP was within the PoD but a different rack
then a /21 route will select a leaf router within the PoD (as
was described in the “L3 Ingress Traffic” section)

• Otherwise, by default one of the upstream zone routers
are selected based on ECMP. IOW, the spine has a default
ECMP route with the next hop pointing to all of the zone
routers it is connected to

Once a packet is received from a spine on the zone router,
there are two possible outcomes:

• If the destination IP is within the same zone, then a des-
tination PoD is selected and the packet is forwarded to a
specific PoDs spine router based on ECMP as described
earlier (caveat: this is not a default ECMP route)

• Otherwise, by default a zone is selected based on /11 mask
and the next hop is programmed to be one of the core
routers

Trials And Tribulations
We ran into several challenges in the process of creating
Arachne. There is no doubt there are more to come as
Arachne evolves. We summarize several issues that stood out
for us below.

Tooling Challenges
The iproute2 netns utility, which we use to create all contain-
ers, was our first challenge. Some user space applications
(e.g. various DHCP clients/servers, LLDPd [13] etc.) use
gethostname() and exchange hostnames in their messaging.
It means we require that containers have hostnames. Iproute2
netns only isolates network namespaces. The approach of
writing hostnames within a container results in an over-write
which is visible in all other containers as well as the host. To
achieve unique hostnames, we patched iproute2 to support
isolation of the UTS namespace. Refer to the section “Nam-
ing Convention” on how we named the different containers.

Veth interface pairs are created in one namespace and then
one endpoint must be moved to another namespace. At first
we tried to create long names for the ports to reflect whether
they were in a spine/leaf/host etc. But we quickly ran into
the limitation of “IFNAMSIZ” being too short so we decided
to use shorter names which are still reflective of the port lo-
cation. For example, switch port 1 is named ”swp1”. We
quickly ran into a namespace collision problem. Let’s say in
both namespaces we have the ports being connected called
”swp1”. It is not possible to create a veth in the initial names-
pace and call both endpoints ”swp1”. To solve this issue we
used an intermediate name for the remote endpoint. Once mi-
grated to the other namespace we could rename it. Listing 5
illustrates an example.

As mentioned earlier, all container management ports are
connected to a management bridge that resides on the host.



Figure 15: Arachne L3 Mode

We chose dnsmasq [18] to issue DHCP management ad-
dresses to the containers. A DHCP client [11] running inside
a container will then issue a request for an IP address. This
worked well until we integrated the ability to start applica-
tions (such as the SDN agent) inside the container. Because
we not have a real init/systemd setup inside the containers,
we ran into challenges when the application needed to bind
to an IP address - but the request for the address was after
the application was started. We resolved the issue by using
DHCP hooks to run the application that needed to bind to an
IP address.

IPv6 stateless autoconfiguration sends unsolicited ndisc
messages as soon as the interfaces are brought up. Given we
wanted veth to operate as a cable i.e only forwarding traffic
from/to the bridge, this caused us some grief (in particular be-
fore we discovered the failure of veth to participate in STP).
For now we disable IPv6 on these interfaces.

Python seems to be going through some transition from
python2 to 3. Depending on which distro you use there
is a lack of backward and often forward compatibility be-
tween version 3 and 2 of the system. We settled on python3.
The backward/forward compatibility issue caused us prob-
lems when testing on different distros; there were times when
we corrupted a machines python installation while installing
dependencies. Ultimately, we ended creating python binaries
using pyinstaller [15].

Bridge Issues
One of the first fun things we came across was L2 broadcast
loops. Our natural reaction was to turn on STP on the bridges.
To our surprise, all bridge ports using veth netdev came up in
the forwarding state and yet broadcast loops persisted. Upon
further investigation we found that the kernel was obstruct-
ing LLC packets going across ports that are not in init net.
Patching the kernel resolved this issue.

Another bridge issue we encountered had to do with the
management bridge. We need to be able to reach the contain-
ers from the host based on the management addresses. This

became a problem when trying to access containers from the
host while Arachne was still in its weaving phase. Such a
situation will occur when we are initializing SDN agents in-
side the container as part of the container creation. By default
the Linux bridge uses the lowest MAC address of any of its
enslaved interfaces for packets “sourced” via the bridge on
the host towards the containers. When a newly created veth
has a lower MAC, as soon as it is attached, it becomes inher-
ited by bridge as its source MAC for any packets emanating
out of the host towards the containers. The neighbor tables in-
side the containers communicating with the host become con-
fused; and until those neighbor caches are re-updated (which
could take many seconds) connectivity is stalled. We solved
this issue by assigning the bridges MAC address when the
bridge is created. The bridge then uses this MAC address as
its source regardless of any other MAC addresses that might
be added to it.

Scaling Issues
Amusingly, the first scale issue we ran into was in regards to
the process of issuing management IP addresses to containers
via DHCP. As we increased the size of the Clos network, it be-
came very clear that the DHCP protocol exchange was slow-
ing the process of weaving. Each DHCP address assignment
required up to 4 messages to issue a management address to
the container. At the point when we started creating hun-
dreds of containers, this serial process became unbearable.
We solved this problem by abandoning DHCP altogether for
management and creating geographical static IP addressing in
the management space (similar to the approach taken for east-
west IP addresses). We ended up using a similar geographical
address handling scheme. We use the address prefix 25.x.x.x
which is assigned to “UK Ministry of Defence” [8]. We used
this prefix because there are no other /8 prefixes available for
private use and the “UK Ministry of Defence” doesn’t use this
address space at all. A report from Oct. 28 2015 indicates the
UK wants to sell these unused addresses [2].

The second issue also was manifested by the management



bridge. The Linux bridge only allows 1024 ports to be at-
tached to it.

We fixed the issue by increasing the bridge port limit hard
coded in the Linux kernel. Unfortunately the Linux bridge
code uses static data structures to store the attached ports.
An additional module parameter or dynamically allocating a
variable-sized data structure can fix this issue.

The third issue was again manifested by the management
bridge. As the number of management IP addresses connect-
ing to the host went up, given the host to container to host
communication, we ran into issues of ARP table exhaustion
on the host. We fixed this issue by tweaking the different ARP
garbage collection parameters.

In one of our setups we ran a daemon (LLDP) inside each
container that created a file descriptor. As indicated earlier,
the filesystem was shared between the host and all contain-
ers. As the number of containers went up, we hit the upper
limit on the number of open fds. We resolved this issue by
increasing the system fd limit.

Conclusions And Future Work
In this document we described our end goals for a large SDN
test infrastructure. We explained how our investigation even-
tually led us to conclude we needed to implement a new tool:
Arachne. We explained the rationale behind the design de-
cisions we took at cross roads in our journey, and some of
the potholes that confronted us along the roads we took. We
journeyed on by changing direction at times (eg. giving up
on DHCP for example) and in some cases we patched the
potholes (eg. kernel and iproute2) so we could continue our
travel.

It is our belief that, on a single medium to higher end phys-
ical/server machine, we will be able to run tens of thousands
of these light weight container nodes (and therefore build a
very large scale network emulation). Connecting more than
one of these physical machines should allows us to experi-
ment on a very large scale network cluster. We are hoping to
experiment on such large scale setups and report back on our
experiences.

It should be noted that in our testing scenarios, due to the
fact that we run in a software only environment, we could
have settled on having a single PoD or maybe a single zone
and it would have adequately served our purpose in providing
a large number of nodes. But as we stated earlier we want to
be closer to what a real physical network looks like. Physical
switches have a limited number of ports (unlike the Linux
bridge) and limited bandwidth capacity. Towards that end,
we plan to:

• Add support to allow the user to design a 7-stage Clos Net-
work

• Use switch-constraint templates i.e. allowing the network
design to be able to specify constraints on the different
switches. For example, a switch by vendor foo may be
constrained to have 24x100G + 48x25G ports and a switch
by vendor bar has a limit of 48x50G ports which can
be split into 10G or 25G ports using octopus cables etc.
The designer can then specify which switches to use for

spines/leafs/servers and Arachne will do some basic sanity
checking

We plan to introduce some variant of chaos monkey sup-
port. The monkey could randomly or deterministically ma-
nipulate links to bring them up/down, introduce latency, cor-
rupt packets, kill containers, etc. We are going to focus on
both east-west as well as north-south frontiers for the chaos
monkey work.

At the moment our addressing scheme is purely IPv4. We
plan to add support for both IPv6 and a hybrid IPv4/6.

In order to improve east-west traffic performance we plan
to add support for bridge offloading on modern NICs and use
real physical switches when present.

Last but not least, we plan to open source Arachne.

References
[1] Braden, R. 1989. RFC 1122 Requirements for Internet

Hosts - Communication Layers.

[2] Business Insider UK. The Ministry of Defence
is sitting on 38.5 million worth of unused IP ad-
dresses. http://uk.businessinsider.com/government-slow-
to-embrace-ipv6-2015-10. [Online; accessed 18-October-
2017].

[3] Cheshire, D. S. D.; Ph.D., D. B. D. A.; and Guttman,
E. 2005. Dynamic Configuration of IPv4 Link-Local Ad-
dresses. RFC 3927.

[4] Clos, C. 1953. A study of non-blocking switching net-
works. The Bell System Technical Journal 32(2):406–424.

[5] Cumulus Networks. Cumulus VX.
https://cumulusnetworks.com/products/cumulus-vx/.
[Online; accessed 17-October-2017].

[6] Docker. Build, Ship, and Run Any App, Anywhere.
https://www.docker.com/. [Online; accessed 17-October-
2017].

[7] Graphviz. The DOT Language.
http://www.graphviz.org/content/dot-language. [On-
line; accessed 17-October-2017].

[8] IANA. IPv4 Address Space Registry.
https://www.iana.org/assignments/ipv4-address-
space/ipv4-address-space.xhtml. [Online; accessed
18-October-2017].

[9] International Telecommunication Union. 1993. Introduc-
tion to CCITT Signalling System No. 7 - Recommendation
Q.700. http://www.itu.int/rec/T-REC-Q.700-199303-I/en.

[10] International Telecommunication Union. 2010. The
international public telecommunication numbering plan -
Recommendation E.164. http://www.itu.int/rec/T-REC-
E.164-201011-I/en.

[11] Internet Systems Consortium. Dynamic Host Con-
figuration Protocol for connection to an IP network.
https://www.isc.org/downloads/dhcp/. [Online; accessed
19-October-2017].

[12] LinkedIn. Project Altair - The Evo-
lution of LinkedIns Data Center Network.



https://engineering.linkedin.com/blog/2016/03/project-
altair–the-evolution-of-linkedins-data-center-network.
[Online; accessed 17-October-2017].

[13] LLDPd. Implementation of IEEE 802.1ab (LLDP).
https://vincentbernat.github.io/lldpd/. [Online; accessed
18-October-2017].

[14] Mininet. An Instant Virtual Network on your Laptop
(or other PC). http://mininet.org/. [Online; accessed 17-
October-2017].

[15] PyInstaller. Put Python programs into a stand-alone ex-
ecutables. http://www.pyinstaller.org/. [Online; accessed
18-October-2017].

[16] Red Hat. Ansible is Simple IT Automation.
https://www.ansible.com/. [Online; accessed 18-October-
2017].

[17] Silicon Graphics International Corp. HPE SGI
8600 System - Supercomputer Technology & Archi-
tecture. https://www.hpe.com/us/en/servers/hpc-server-
sgi8600.html. [Online; accessed 17-October-2017].

[18] Simon Kelley. Dnsmasq.
http://www.thekelleys.org.uk/dnsmasq/doc.html. [Online;
accessed 19-October-2017].


