
XNetEm Network Emulation using XDP

Stephen Hemminger
Microsoft Corporation

stephen@networkplumber.org

Abstract

Many protocols and applications perform poorly when ex-
posed to real life networks with delay and packet loss. Of-
ten, it is costly and difficult to reproduce Internet behavior in
a controlled environment. There are tools available for testing,
but they are either expensive hardware solutions, proprietary
software, or one-off-research projects.
XNetEm is an update to NetEm using eXpress Data Path
(XDP) to provide packet loss, corruption and marking at high
data rates. Later versions will provide rate and latency impair-
ments.

Keywords
XDP, eBPF, Linux, Network Emulation

Introduction
Network emulation is used as a testing tool for network proto-
cols and applications. NetEm [7] is a network emulator built
on the Linux Traffic Control (TC) subsystem. It has been used
to emulate WiFi, satellite aircraft network, wide area network
gaming [16], Next Generation Networks [4], and TCP proto-
col variants [18]. NetEm was even used in low end commer-
cial network emulators [10]. NetEm is useful but is limited
in the ability to handle high speed networks which lead to an
investigation of possible alternatives.

This paper describes a proof of concept using the. Linux
eXpress Data Path (XDP) [8] an infrastructure which pro-
vides low latency, high performance packet processing. XDP
has already been used to provide high performance dis-
tributed Denial Of Service protection [1] and packet forward-
ing at full speed on 40 Gbit networks. NetEm is a natural type
of application for XDP since it is small (a few hundred lines)
and does not have any loops in the packet flow.

History
The first version of NetEm arose from the need to test new
versions of TCP such as CUBIC [6] in a lab environment.
There were several test tools such as NISTnet [2] and Dum-
myNet [13] but they would not work for testing on the latest
2.6 kernel. DummyNet only worked on FreeBSD, and NIST-
net was no longer supported (and required patches to Linux
that were too invasive to upstream). The NetEm Queuing

Discipline (qdisc) based solution was developed and incorpo-
rated into the standard Linux kernel. The original version of
NetEm supported a full range of network impairments (and
bugs), and these have been expanded and improved by the
Linux network developers and research community.

Design

TCP

IP

Application

Network

Device

kernel

user

XNetEm

eBPF

parameters
state

Figure 1: XNetEm architecture

The architecture of XNetEm is similar to other XDP appli-
cations. There is a user level process the CLI and a inserted
kernel plugin to handle packets as shown in Figure 1. The
kernel plugin is a C program that is compiled into extended
Berkeley Packet Filter (eBPF) a special purpose virtual in-
struction set. This eBPF code is then evaluated by the ker-
nel via network device (or generic network) XDP processing
hook when packets are received. This eBPF code is automat-
ically loaded by command line as needed.

The configuration is done by the user space program us-
ing arguments similar to the existing iproute2 tc qdisc [12].
The difference is that tc command converts these parameters

into messages sent via netlink[14]; and the xnetem program
converts these into eBPF map arrays.
NetEm syntax:
tc qdisc add dev eth0 root netem \

loss random 0.03 .25

XNetEm syntax:
xnetem eth0 loss random 0.03 .25

Two eBPF maps are used: one is the parameter settings and
the other is the current state of the program. The state map
has statistics and other values that carry over from packet to
packet.

In NetEm, all the network impairments are contained in
one kernel module. For XNetEm, the individual emulation
functions are broken up into different programs. This keeps
each function smaller, and should improve performance.

Packet Loss
Packet loss is the easiest function to implement in XDP. It
uses the basic XDP_PASS or XDP_DROP action offered by
XDP. XNetEm supports the same rich models of packet loss
as NetEm.

Random Loss
The simplest network impairment is random packet loss as
shown in Listing 1.

The command line converts the probability in human read-
able format into a number scaled from 0 to the maximum
value of a 32 bit unsigned integer and places that in the array
shared between userspace and the eBPF program. For exam-
ple: 1% becomes 42949672/. The eBPF program then reads
that value and compares it against a random value it obtains
from bpf_get_prandom_u32().

The actual program includes more parameters to handle
correlated random generation. The original correlated ran-
dom loss model in NetEm did not work as expected [9] both
because of pure random is a poor model, and math errors in
NetEm. Several correction parameters in NISTnet [2] are
missing1 causing unexpected results. These deficiencies in
the original NetEm code, lead to a series of enhancements to
NetEm to support alternative models [15].

Gilbert-Elliot loss model
A better loss model is the 2-state Markov model introduced
by Gilbert [5] and Elliot [3] which is often used in network
research.

 G

1-k

 B

1-h

p

1-r

r

1-p

Figure 2: Gilbert-Elliott model of packet loss

1This will be addressed in XNetEm

This model uses two states, Good and Bad, and four pa-
rameters (p, r, h, 1−k) to determine the probability of losing
a packet in each state, and the probability of transitioning to
the other state as shown in Figure 2.
XNetEm gemodel syntax:
xnetem eth0 loss gemodel 20% 30% 70%

In this example the default (zero) is used for 1− k.
The existing code from NetEm was converted from kernel

to XDP for use in XNetEm as shown in Listing 2.

General and Intuitive Loss model

 4
(loss)

 1
 (ok)

 3
(loss)

 2
 (ok)

p14 p13 p32

1 p31
p23

1-p23

1-p31-p32
1-p13-p14

GOOD BAD

Figure 3: 4-state Markov model

1. packet received successfully
2. packet received with a burst
3. packet lost within a burst
4. isolated packet lost within a gap

The alternative model uses a 4-state Markov model in Fig-
ure 3. This model emulates both burst and gap periods to
better describe how real network loss events happen. Most
packets are lost either to burst noise or congestion in the net-
work path, but there can also be sporadic one time losses due
to random events such as collisions in shared media.

The transitions between states are controlled by a set of
probabilities which are inputs to the model as shown in List-
ing 3. These probabilities are derived from the “General and
Intuitive” model which uses:
• Loss probability P
• Mean burst length E(B)

• Loss density with burst ρ
• Isolated loss probability PISOL

• Mean good burst length E(GB)

The XNetEm command line takes care of converting the
probability values into the units, state transitions and defaults.
XNetEm four state example
xnetem eth0 loss state 20% 50%

This will get converted into to the state transitions with de-
faults applied of:
p13 20%
p31 50%
p23 1 (default)
p14 0 (default)

int xdp_loss_random_prog(struct xdp_md *ctx)
{

int key = 0;
u32 *val = bpf_map_lookup_elem(&options, &key);
u32 prob = val ? *val : 0;
int rc;

if (prob >= bpf_get_prandom_u32())
rc = XDP_DROP;

else
rc = XDP_PASS;

return rc;
}

Listing 1: Random packet loss example

struct clgstate { /* Gilbert-Elliot models */
u32 a1; /* p for GE */
u32 a2; /* r for GE */
u32 a3; /* h for GE */
u32 a4; /* 1-k for GE */

};

static inline bool loss_event(const struct clgstate *clg,
unsigned long *state)

{
u32 rnd1 = bpf_get_prandom_u32();
u32 rnd2 = bpf_get_prandom_u32();

switch (*state) {
case GOOD_STATE:

if (rnd1 < clg->a1)
*state = BAD_STATE;

if (rnd2 < clg->a4)
return true;

break;
case BAD_STATE:

if (rnd1 < clg->a2)
*state = GOOD_STATE;

if (rnd2 > clg->a3)
return true;

}
return false;

}

Listing 2: XDP Gilbert-Elliot model example

struct clgstate { /* 4-states and Gilbert-Elliot models */
u32 a1; /* p13 for 4-states or p for GE */
u32 a2; /* p31 for 4-states or r for GE */
u32 a3; /* p32 for 4-states or h for GE */
u32 a4; /* p14 for 4-states or 1-k for GE */
u32 a5; /* p23 used only in 4-states */

};

static inline bool loss_4state(const struct clgstate *clg,
unsigned long *state)

{
u32 rnd = bpf_get_prandom_u32();

switch (*state) {
case TX_IN_GAP_PERIOD:

if (rnd < clg->a4) {
*state = LOST_IN_BURST_PERIOD;
return true;

}
if (clg->a4 < rnd &&

rnd < clg->a1 + clg->a4) {
*state = LOST_IN_GAP_PERIOD;
return true;

}
if (clg->a1 + clg->a4 < rnd) {

*state = TX_IN_GAP_PERIOD;
}
break;

case TX_IN_BURST_PERIOD:
if (rnd < clg->a5) {

*state = LOST_IN_GAP_PERIOD;
return true;

} else {
*state = TX_IN_BURST_PERIOD;

}

break;
case LOST_IN_GAP_PERIOD:

if (rnd < clg->a3)
*state = TX_IN_BURST_PERIOD;

else if (clg->a3 < rnd &&
rnd < clg->a2 + clg->a3) {

*state = TX_IN_GAP_PERIOD;
} else if (clg->a2 + clg->a3 < rnd) {

*state = LOST_IN_GAP_PERIOD;
return true;

}
break;

case LOST_IN_BURST_PERIOD:
*state = TX_IN_GAP_PERIOD;
break;

}
return false;

}

Listing 3: XDP Generalized Intuitive model example

Packet Corruption
Random packet corruption with XDP is almost as simple to

implement as packet loss as show in Listing 4. Two random
numbers are used: the first determines the probability that a
packet will be modified, and the second determines which bit
in the packet will be flipped.

int xdp_corrupt_prog(struct xdp_md *ctx)
{

int key = 0;
u32 *val = bpf_map_lookup_elem(&options, &key);
u32 prob = val ? *val : 0;
int rc;

if (prob >= bpf_get_prandom_u32()) {
u32 pktbits = (data_end - data) * 8;
u32 pos = bpf_get_prandom_u32() % pktbits;

data[pos >> 3] ^= 1u << (pos & 7);
}
return XDP_PASS;

}

Listing 4: XDP Random Corruption program

Limitations

Userspace

Kernel

Figure 4: XNetEm vs NetEm

XNetEm has several limitations which prevent implement-
ing some of the network impairment functions present in
NetEm. Since XDP is normally done immediately on packet
reception, XNetEm happens at a different point in the Linux
packet processing stack as shown in Figure 4. Because
XNetEm runs at such a low level it is able to process more
packets per second but it is limited in functionality.

Queuing Disciplines like NetEm are designed to allow for
traffic shaping where bursts of packets are spread in time to
keep traffic above an allowed maximum. Internally, queue
disciplines have a queue which is usually First In First Out
(FIFO). NetEm uses its internal queue to apply impairments
such as added delay, reordering and rate control. Since it is
native kernel code NetEm can use other facilities such as high
speed clocks and timers which allows for more features.

XDP applications are more targeted at firewall and policing
type services. Applications such as XNetEm can not queue
packets, they can only give an action verdict such as DROP,
PASS or REDIRECT. There is also no way to invoke an XDP
program as the result of a timer event. These limitations are
why XNetEm can not easily implement the delay, reorder or
rate control impairments.

Conclusion and Future Directions
The current prototype code has limited functionality and has
not yet been fully tested. The first test will be to measure
the accuracy of the loss model under packet load of 14.8 Mil-
lion packets/sec (pps) or more. The earlier investigations of
NetEm showed that it is limited to about 1 Mpps.

The first planned enhancement is to allow impairments to
be cascaded using the chaining feature of XDP. This will al-
low combining packet loss and packet corruption.

The current packet loss logic can also be enhanced to sup-
port Explicit Congestion Notification (ECN). If this option is
set then instead of returning XDP_DROP the loss will be con-
verted into a modification of the IP packet header to set ECN
bit.

It should be possible to modify NetEm GUI environments
such as NetShaper project [17] to support XNetEm. This
would make the tool more accessible for developers unfamil-
iar with XDP.

Rate control via policing is also possible by measuring the
packet arrival time using (or enhancing) XDP clock functions.
There is an implementation of Token Bucket Filter(TBF) in
BPF already[11].

The major missing functionality in XNetEm is the ability
to delay packets. The delay function also makes reordering
possible. The problem is that current XDP architecture does
not have enough functionality to implement packet holding
and timers.

There are several possible ways to implement this:

• enhance XDP to allow deferring and injecting packets at a
later time; or

• use tc classifier eBPF, instead of at XDP (this would allow
for queuing but at the expense of performance); or

• using hardware timestamping and pacing to emulate delay
and reordering.

With these enhancements, XNetEm will allow Linux to
continue to be used for research in high speed network proto-
cols and environments.

Acknowledgments
XNetEm is a promising new direction for high performance
network emulation but is built on foundations provided by a
wider community. Without the patches and papers it would
not be possible to build such this kind of tool.

References
[1] Bertin, G. 2017. Xdp in practice: integrating xdp into

our ddos mitigation pipeline. Netdev 2.1.

[2] Carson, M., and Santay, D. 2003. Nist net: a linux-
based network emulation tool. ACM SIGCOMM Computer
Communication Review 33(3):111–126.

[3] Elliott, E. O. 1963. Estimates of error rates for codes on
burst-noise channels. The Bell System Technical Journal
42(5):1977–1997.

[4] Fabini, J.; Reichl, P.; Egger, C.; Happenhofer, M.;
Hirschbichler, M.; and Wallentin, L. 2008. Generic access
network emulation for ngn testbeds. In Proceedings of the
4th International Conference on Testbeds and research in-
frastructures for the development of networks & commu-
nities, 43. ICST (Institute for Computer Sciences, Social-
Informatics and Telecommunications Engineering).

[5] Gilbert, E. N. 1960. Capacity of a burst-noise channel.
Bell Labs Technical Journal 39(5):1253–1265.

[6] Ha, S.; Rhee, I.; and Xu, L. 2008. Cubic: a new tcp-
friendly high-speed tcp variant. ACM SIGOPS Operating
Systems Review 42(5):64–74.

[7] Hemminger, S., et al. 2005. Network emulation with
netem. In Linux conf au, 18–23.

[8] Herbert, T., and Starovoitov, A. 2017. express data path
(xdp).

[9] Jurgelionis, A.; Laulajainen, J.-P.; Hirvonen, M.; and
Wang, A. I. 2011. An empirical study of netem network
emulation functionalities. In Computer Communications
and Networks (ICCCN), 2011 Proceedings of 20th Inter-
national Conference on, 1–6. IEEE.

[10] Labs, I., and Wellens, C. 2017. Netem with a gui.

[11] Monnet, Q. 2017. Stateful packet processing: two-color
token-bucket poc in bpf.

[12] Pfeifer, H. P., and Ludovici, F. 2017. tc-netem(8) - linux
manual page.

[13] Rizzo, L. 1997. Dummynet: a simple approach to the
evaluation of network protocols. ACM SIGCOMM Com-
puter Communication Review 27(1):31–41.

[14] Salim, J.; Khosravi, H.; Kleen, A.; and Kuznetsov, A.
2003. Linux netlink as an ip services protocol. Technical
report.

[15] Salsano, S.; Ludovici, F.; Ordine, A.; and Giannuzzi, D.
2012. Definition of a general and intuitive loss model for
packet networks and its implementation in the netem mod-
ule in the linux kernel. University of Rome «Tor Vergata».
Version 3.

[16] Tzruya, Y.; Shani, A.; Bellotti, F.; and Jurgelionis, A.
2006. Games@ large-a new platform for ubiquitous gam-
ing and multimedia. Proc. BBEurope, Geneva, Switzer-
land 11–14.

[17] VanderLinden, J. 2017. Very simple ui for basic net-
work traffic shaping using tc-netem.

[18] Yamamoto, T. 2008. Estimation of the advanced tcp/ip
algorithms for long distance collaboration. Fusion Engi-
neering and Design 83(2):516–519.

