
Network stack personality in Android phone

Cristina Opriceana

Polytechnic University of Bucharest

Hajime Tazaki

IIJ Research Laboratory

1. Motivation

The network stack personality with an alternate network stack
is a way to introduce protocol extensions without interven-
tions of host systems. Various studies [1][9][8] have at-
tempted to understand how it is useful with detailed perfor-
mance analysis. This paper explores further with another tar-
get environment, a smartphone.

Smartphone market has been grown and now the most
dominant operating system in the world is Android, which
is based on Linux kernel. While it keeps providing important
and critical features for mobile users, the system faces a diffi-
cult situation in case of software updates. It takes a long time
to deliver an update of the various part of software compo-
nents, even the update includes a critical security issue.

Why is it so difficult? Because a software update involves
various players such as Android core developers, silicon man-
ufactures, device makers, and mobile carriers, which makes
immediate delivery of a software update hard. Google an-
nounced a new framework, called project Treble [2], to alle-
viate this issue, but introducing new network stack extension
to an Android device is still hard.

There are several options which we can consider for alter-
natives: virtual guest operating system on top of a hypervisor,
user-mode linux (UML [3]), or container-based guest OS. But
none of them meets various requirements of an application
under Android platform. Others [4] also tried to deploy a
middlebox which is capable of a network extension, but this
deployment manner heavily relies on an infrastructure-side
upgrade, which is sometime much harder than an endpoint
upgrade.

In the rest of sections, we describe how we reached to the
network stack personality on Android phone in order to in-
troduce a protocol extension to a particular application. Es-
pecially we used Multipath-TCP (mptcp) [5] as an example
of protocol extension, which is still an out-of-tree extension
to the Linux mainline kernel.

2. Extention to LKL

Our contribution is to extend Linux Kernel Library (LKL) [6]
to run an application with it on Android platform. There
are several other people who also contributed to this de-

velopment1, especially most of ARM Android cross-build
toolchain support are from them. Our development focuses
on an integration to LKL with additional features which re-
quire to use network devices on Android devices.

IPv4 encapsulation over PF PACKET socket: Our ad-
ditional implementation is to support proper pf packet back-
end over a celllar interface of Android device. A cellular in-
terface encapsulates pakcets with IP (v4/v6) so that point-to-
point communication with the gateway does not require ad-
ditional Layer-2 level negotiation (e.g., ARP). On the other
hand, the original implementation of pf packet backend in
LKL encapsulate packets as if the underlying network inter-
face expects Ethernet encapsulation, which does not meet the
condition with this case. Thus, we extend this pf packet back-
end with an option to encapsulate with IP header. Note that
the IPv6 encapsulation, which nowadays is provided by var-
ious service providers, is not implemented yet at the time of
writing.

Permission issues: At the beginning of design, we would
like to have our extension in a transparent way: if we could
install our module over the application store, all of users ben-
efit without a pain of system configuration. But unfortu-
nately our extension requires root privilege, more specifically
a CAP NET RAW permission, in order to open a packet socket
inside an application.

With the above issue resolved, an application on Andriod
device has ability to run with alternate network stack which
will be dynamically loaded at runtime. As usual LKL ap-
plications, we use LD PRELOAD to load this library, replace
necessary function call symbols in order to redirect such calls
into the library (we call this library as a hijack library).

Out-of-tree protocols with LKL: Network stack person-
ality is always powerful with any kind of extensions to a net-
work stack, but an out-of-tree protocol extension, which is
still under review, or is far to reach the goal, is most suit-
able use case since it does not require to replace a host kernel
which is often a hard-to-achieve task in some system.

Multipath-TCP (mptcp) is categorized in such extension: it
was proposed a couple of years ago and has always difficul-
ties to widely deploy its implementation. Backporting its im-

1The detail is described in a pull request on github https://
github.com/lkl/linux/issues/59, especially huge con-
tributions from @mxi1 and @stfairy.

https://github.com/lkl/linux/issues/59
https://github.com/lkl/linux/issues/59


Figure 1: Network configuration of experiment.

plementation to Android kernel has been conducted several
times2, but they are required to be specific devices, which
makes this backport hard to apply any Android devices and
update with the latest modification to both mptcp and An-
droid kernel.

Backporting LKL to mptcp kernel3 benefits such a painful-
ness of maintenance and availability of various devices, and
then we can use the out-of-tree network protocol on Android
phones.

3. Benchmarks
One might raise natural questions to our implementation:
1) how does the network stack personality show the perfor-
mance compared to the native kernel ? 2) how does the
battery consumption look like ? Our evaluation tries to an-
swer these questions by conduction benchmarks with popular
netperf tool on a Android phone.

The benchmark was conducted with a single android de-
vice, Nexus5, with the Android 6.0.1 stock image installed or
with a custom image of mptcp extension included. We used
a Linux server, Ubuntu 16.04 (amd64) over QEMU/KVM,
with mptcp kernel extension installed (mptcp-4.4.70, v0.92).
As illustrated in figure 1, there are two paths between the An-
droid phone and Linux server, which are diverged between
a cellular and WiFi network attached to the phone. We col-
lected achieved goodput of ten-second TCP STREAM in bit-
s/second from five repetitions of measurement as well as CPU
utilization reported by netperf command, which is based
on the values reported at /proc/stat.

Single-stream TCP STREAM At first, we measured the
goodput and processor usages with a single path TCP stream
in order to understand the base performance. We simply exe-
cuted netperf sessions with variable size of payload (from 64
to 65507 bytes), and only used a WiFi interface over stock
version of Android kernel. Figure 2 is the result of this exper-
iment. While the WiFi condition is quite unstable as usual,

2https://multipath-tcp.org/pmwiki.php/
Users/Android

3https://github.com/multipath-tcp/mptcp

 0

 20

 40

 60

 80

 100

64 128 256 512 1024 150065507
 0

 10

 20

 30

 40

 50

G
o
o
d
p
u
t 
(M

b
p
s
)

C
P

U
 u

ti
liz

a
ti
o
n
 (

%
)

Payload size (bytes)

LKL
native

 0

 20

 40

 60

 80

 100

64 128 256 512 1024 150065507
 0

 10

 20

 30

 40

 50

G
o
o
d
p
u
t 
(M

b
p
s
)

C
P

U
 u

ti
liz

a
ti
o
n
 (

%
)

Payload size (bytes)

LKL
native

Figure 2: Goodput (bars) and CPU utilization (points) with a
single path (WiFi) TCP STREAM: Tx (top) and Rx (bottom).

the achieved goodput between LKL-ed netperf and host net-
perf are almost comparable in both directions. On the other
hand, the CPU utilization of LKL over the executions is al-
most less than the one with host kernel, resulting the power
consumption is more effective with LKL. We have no experi-
ence with the detail profiling with those executions; we plan
to do in future investigation.

Dual-stream TCP STREAM Next measurement uses the
same configurations as the previous one but with multiple
streams by mptcp. We used a private custom Android image
instead of the stock one for the mptcp-enabled kernel, and
the LKL as the previous measurement. We also collected the
same information based on netperf command outputs. Fig-
ure 3 plots the result of this experiment. Unlike the previous
experiment with a single stream, the achieved goodputs of Tx
path (from netperf to netserver) are different: the goodput of
LKL always outperforms the one of native kernel, while the
goodput of Rx path is opposite (LKL ≤ native). One of the
reason of this difference for the Tx path is the used conges-
tion control algorithms: LKL uses cubic while native kernel
uses LIA [7]. Further investigations are required but it will be
future work.

We also observed that the CPU utilization with LKL is
larger than LKL unlike the previous experiment, even if the
achieved goodput of LKL is less than the native kernel. Al-
though we also need to profile in detail, a possible cause of
this higher CPU usage with LKL is likely attributed to the
raw socket implementation with IPv4 encapsulation. With
this mode over the cellular interface, every incoming packet
goes to both the host kernel and the LKL network stack be-
cause those two stacks use the same IP address4. We needed
to configure iptables entry to drop the specific TCP re-
set packets from the host kernel so that the LKL stack can

4Otherwise, the gateway at cellular network does forward any
packets.

https://multipath-tcp.org/pmwiki.php/Users/Android
https://multipath-tcp.org/pmwiki.php/Users/Android
https://github.com/multipath-tcp/mptcp


 0

 20

 40

 60

 80

 100

64 128 256 512 1024 150065507
 0
 10
 20
 30
 40
 50
 60
 70

G
o
o
d
p
u
t 
(M

b
p
s
)

C
P

U
 u

ti
liz

a
ti
o
n
 (

%
)

Payload size (bytes)

LKL
native

 0

 20

 40

 60

 80

 100

64 128 256 512 1024 150065507
 0
 10
 20
 30
 40
 50
 60
 70
 80

G
o
o
d
p
u
t 
(M

b
p
s
)

C
P

U
 u

ti
liz

a
ti
o
n
 (

%
)

Payload size (bytes)

LKL
native

Figure 3: Goodput (bars) and CPU utilization (points) with
multiple paths (WiFi+LTE) TCP STREAM: Tx (top) and Rx
(bottom).

Figure 4: A crafted application for Android to use alternate
network stacks.

handle TCP sessions, but this limitation consumes more pro-
cessing resource while the native kernel does not have such
issue. To alleviate this issue, we may want to use other net-
work backend for LKL, such as macvtap devices, so that
this limitation is to be eliminated.

4. Further Use Cases
Although current implementation only allows us to use an
alternate network stack at the condition of available permis-
sion, the deployment obstacle which requires to re-install a
custom image (with a kernel replacement) is eliminated by
installing our library (i.e., LKL). Figure 4 is a screenshot of a
crafted Android application which executes a couple of net-
working utilties (netperf, iperf, curl) with different network
stack, specified by a library (libname in the application).

Another example is to expand the idea into a GUI-based
application. Typically the most of traffic is based on http or
https nowadays, supporting this feature into a web browser

Figure 5: Multipath-TCP enabled web browser as an Android
application.

might be of interest. Unlike console-based applications,
a GUI based application has a different way to do the
LD PRELOAD-like jobs5. Figure 5 is another screenshot to
demonstrate mptcp capability with the client application, en-
hanced with mptcp support in LKL, without any host kernel
upgrade to introduce the extension.

5. Summary and Further Directions
Network stack personality is useful if you have no control on
a system which you have to live with, but we also have to
carefully consider that this has still restrictions on transparent
usages as we have on our commodity operating system. In
this paper, we have investigated if the personality is possible
on Android devices and how much this restriction we would
have.

Further investigations of observed measurement results are
required and we will look for a profiling technique on com-
modity Android phone in order to see LKL equipped appli-
cations have meaningful insight to alleviate the update frag-
mentation issue of Android platform.

References
1. HK Jerry Chu and Yuan Liu, User Space TCP-Getting LKL

Ready for the Prime Time, Linux Netdev 1.2 (October 2016).

2. The Android Source Code, Project Treble. (Accessed Oct 11th
2017).

3. J. Dike, User Mode Linux, Proceedings of the 5th anual linux
showcase and conference, 2001, pp. 3–14.

4. SungHoon Seo et al., KT’s MPTCP Proxy Experiences - Deploy-
ment and testing considerations. (Accessed Oct 11th 2017).

5. Doru-Cristian Gucea and Octavian Purdila, Shaping the Linux
kernel MPTCP implementation towards upstream acceptance,
2015.

6. Octavian Purdila, Lucian Adrian Grijincu, and Nicolae Roedunet
International Conference RoEduNet 2010 9th Tapus, LKL: The
Linux kernel library, Roedunet international conference (roe-
dunet), 2010 9th, 2010, pp. 328–333.

5setprop wrap.$(package name)
LD PRELOAD=liblkl-hijack-mptcp.so is the exact
command line to specify the library name.



7. C. Raiciu, M. Handley, and D. Wischik, Coupled Conges-
tion Control for Multipath Transport Protocols, Request for
Comments, IETF, Internet Engineering Task Force, 2011,
http://www.ietf.org/rfc/rfc6356.txt.

8. Hajime Tazaki, Playing BBR with a userspace network stack,
2017.

9. Hajime Tazaki, Ryo Nakamura, and Yuji Sekiya, Library operat-
ing system with mainline Linux kernel, 2015.


	1.Motivation
	2.Extention to LKL
	3.Benchmarks
	4.Further Use Cases
	5.Summary and Further Directions

